On the Decidability of Role Mappings between Modular Ontologies

Jie Bao1, George Voutsadakis2, Giora Slutzki2 and Vasant Honavar2
1Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
baojie@cs.rpi.edu
2Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
gvoutsad,slutzki,honavar}@cs.iastate.edu

Abstract
Many semantic web applications require support for mappings between roles (or properties) defined in multiple independently developed ontology modules. Distributed Description Logics (DDL) and Package-based Description Logics (P-DL) offer two alternative logical formalisms that support such mappings. We prove that (a) variants of DDL that allow negated roles or cardinality restrictions in bridge rules or inverse bridge rules that connect ALC ontologies are undecidable; (b) a variant of P-DL ALCHIO(¬)P that supports role mappings between ontology modules expressed in ALCHIO(¬) is decidable.

Introduction
Ontologies play a central role in current efforts aimed at developing a semantic web by enriching the web with machine interpretable content. In such a setting, instead of a single, centralized ontology, it is much more realistic to have multiple, independently developed, distributed ontology modules that cover different, perhaps partially overlapping, domains of expertise. However, many application scenarios require selective, and often context-sensitive use of knowledge from multiple ontology modules with the help of ontology mappings. For example, consider two ontology modules O1 and O2; suppose O1 contains the role (binary relation) marriedTo; and O2 contains the role knows. Suppose we want to assert that “any pair of individuals that belongs the marriedTo relation (as defined in O1) is also a member of the knows relation (as defined in O2)”.

Preliminaries: DDL and P-DL
In this section, we briefly introduce the syntax and semantics of DDL and P-DL.

DDL
Given a non empty set I of indices, a DDL distributed TBox is of the form \(\langle \{ T_i \}, \{ B_{ij} \}_{i \neq j} \rangle \), where each \(T_i \) is a DL TBox, and each \(B_{ij} \) is the collection of bridge rules from \(T_i \) to \(T_j \). In (Ghidini & Serafini), each module \(T_i \) is assumed to be in SHIQ. A bridge rule from \(i \) to \(j \) is an expression in either one of the two forms:

- (into bridge rule) \(i : X \xrightarrow{\leq} j : Y \)
- (onto bridge rule) \(i : X \xrightarrow{\geq} j : Y \)

where \(i : X \) is a concept of \(T_i \), \(j : Y \) is a concept of \(T_j \), or \(i : X \) is a role of \(T_i \), \(j : Y \) is a role of \(T_j \)

For example, a role mapping in DDL could be \(i : \text{marriedTo} \xrightarrow{\leq} j : \text{knows} \) to indicate that every pair in the relation marriedTo is also in the relation knows. The two roles marriedTo and knows are in different ontologies.

The semantics of DDL assigns to each \(T_i \) a local interpretation domain \(\Delta^{2i} \). A domain relation \(r_{ij} \) is a subset of \(\Delta^{2i} \times \Delta^{2j} \).
of $\Delta^x_i \times \Delta^y_j$. For $d \in \Delta^x_i$, we use $r_{ij}(d)$ to denote \(\{d' \in \Delta^x_i | (d',d') \in r_{ij}\}\). For any subset D of Δ^x_i, we use $r_{ij}(D)$ to denote $\bigcup_{d \in D} r_{ij}(d)$. For any $R \in \Delta^x_i \times \Delta^x_i$, we use $r_{ij}(R)$ to denote $\bigcup_{(d,d') \in R} r_{ij}(d) \times r_{ij}(d')$. For any x,y, if $y \in r_{ij}(x)$, we say that x is a preimage of y and y is an image of x.

The domain relation r_{ij} satisfies a bridge rule in B_{ij} according to the following rules:

- $i : X \subseteq \top, j : Y$ if $r_{ij}(X^{T_i}) \subseteq Y^{T_j}$
- $i : X \subseteq \top, j : Y$ if $r_{ij}(X^{T_i}) \supseteq Y^{T_j}$

A distributed interpretation $J = \{(I_i)_{i \in I}, \{r_{ij}\}_{i \neq j}\}$ satisfies a DDL distributed TBox $\Sigma = \{(I_i), \{B_{ij}\}_{i \neq j}\}$, denoted $J \models \Sigma$, if, for every i, $I_i \models I_i$ and for every $i \neq j$, r_{ij} satisfies all bridge rules in B_{ij}. Concept $i : C$ is satisfiable with respect to Σ if there is a J such that $J \models \Sigma$, and $C^{\Sigma} \neq \emptyset$.

For convenience, we introduce the naming system of DDL languages. For each DDL language, its name is the concatenation of a DL language, of which each local TBox is a subset, followed by the letter D. In particular, we use D_C, D_C^{R}, D_C^{C}, D_C^{W} to denote DDLs that allow bridge rules between concepts and D_C^{CR} to denote DDLs that allow bridge rules between concepts and between roles. For example, $ALCOP^{\ast}$ stands for a DDL language that supports bridge rules between concepts and between roles, and each module of which is in a language weaker or equivalent to the DL ALC.

Reductions from $SHIQD_C$ and $SHIQD_{CR}$ to $SHIQ$ have been given in (Borgida & Serafini 2002) and (Ghidini & Serafini, respectively). The decidability of $SHIQ$, combined with these reductions, immediately implies

Proposition 1 The DDLs $SHIQD_C$ and $SHIQD_{CR}$ are decidable.

P-DL

P-DL allows role mappings by using a semantic importing approach. A P-DL ontology is a set $\{P_i\}$, where each P_i is a package. The signature of each package P_i is divided into two disjoint sets: its local signature $\text{Loc}(P_i)$ and its external signature $\text{Ext}(P_i)$. If a name $X \in \text{Loc}(P_i) \cap \text{Ext}(P_j)$, we say that P_j imports $(X \ from \ P_i)$. P_i’s importing transitive closure, including itself, is denoted as P_i^{\ast}.

Each package may contain a set of concept inclusions and a set of role inclusions. Concepts and roles in each package may be constructed starting from atomic concepts and atomic roles in the usual recursive way. The major difference from ordinary DL is that, for a P-DL package P_i, the top concept \top and negation \neg are replaced by a contextualized top \top_i and a contextualized negation \neg_i. A package P_i may use \top_i and \neg_i in constructing its concept expressions only if P_i imports P_k.

Role mappings are supported by P-DL with unrestricted role inclusions and role importing. For example, suppose package P_j imports the role $i : \text{marriedTo} \ on \ P_i$. Then a role mapping can be represented as a local role inclusion $i : \text{marriedTo} \subseteq \top, j : \text{knows} \ in \ P_j$.

The naming of P-DL languages is similar to that of DDL. We use P to denote the package extension. For example, $ALCOP^{\ast}$ is a P-DL language that allows the importing of concept, role and nominal names between ALC modules.

For a P-DL ontology $\Sigma = \{I_i\}$, an interpretation of Σ is a pair $I = \{I_i, \{r_{ij}\}_{r \in P_i^{\ast}}\}$. Each of the local interpretations $I_i = \langle \Delta^x_i, \otimes_i \rangle$ interprets each concept expression in P_i starting from assigned interpretations of atomic (concept, role and nominal) names. For example, concept negation and existential restriction are interpreted as

$$\neg_j C^{I_i} = r_{ji} \langle \Delta^x_i \rangle C^{I_i},$$

$$\exists R.C^{I_i} = \{\langle x \in r_{ki}(\Delta^x_i) \exists y \in \Delta^y_j, (x,y) \in R^z_i \} \land y \in C^{I_i}\},$$

where R is a k-role and C is a concept.

An interpretation I is a model of $\Sigma = \{P_i\}$ if $\bigcup_i \Delta^x_i \neq \emptyset$ and the following conditions are satisfied.

1. For all i,j, such that $P_i \subseteq P_j$, r_{ij} is one-to-one;
2. **Compositional Consistency:** For all i,j,k, $P_i \in P_k^{\ast}$ and $P_k \in P_j^{\ast}$, we have $\rho_{ij} = r_{ij} \circ r_{ik}$, where ρ_{ij} is the projection on $\Delta^x_i \times \Delta^y_j$ of the equivalence relation on $\bigcup_{i,j} \Delta^x_i$, generated by $\bigcup_{i \in P_j^{\ast}} r_{ij}$;
3. For every name $X \in \text{Loc}(P_i) \cap \text{Ext}(P_j)$, $r_{ij}(X^{T_i}) = X^{T_j};$
4. **Cardinality Preservation:** For every role name $R \in \text{Loc}(P_i) \cap \text{Ext}(P_j)$ and every $(x,x') \in r_{ij}$, we have $(x,y) \in \Delta^x_i$ if and only if $(x',r_{ij}(y)) \in \Delta^x_i;$
5. $I_i \models P_i$, for every i.

A concept C is satisfiable as witnessed by P_w if there is a model of P_w^{\ast}, such that $C^{P_w \ast} \neq \emptyset$.

Previous work has shown that $SHOIQP^{\ast}$, a P-DL that allows both role importing and role inclusions, is decidable (Bao, Slutzki, & Honavar 2007). However, the decidability proof of $SHOIQP^{\ast}$ relies on a reduction to the DL $SHOIQ$, which is only possible when imported roles do not appear in role inclusions. We will denote this restricted version of $SHOIQP^{\ast}$, i.e., in which role inclusion may be applied only between two local role names (or their inverses), as $SH^{\ast}OIQP^{\ast}$. The reduction presented in (Bao, Slutzki, & Honavar 2007; Bao et al. 2008) shows that

Proposition 2 P-DL $SH^{\ast}OIQP^{\ast}$ is decidable.

However, the decidability of P-DLs that support unrestricted role inclusion (“H^{\ast}”) is still an open problem.

Undecidable Extensions of DDL

We now proceed to investigate the decidability of several useful extensions of DDL. Each extension is obtained by considering each of the following features in turn:

- **Inverse bridge rules (denoted as D_2):** Allow bridge rules in both directions. An into inverse bridge rule $i : X \subseteq \top, j : Y$ has the semantics $X^{T_i} \subseteq r_{ij}(Y^{T_j})$, and an onto inverse bridge rule $i : X \subseteq \top, j : Y$ has the semantics $X^{T_i} \supseteq r_{ij}(Y^{T_j})$.

• Role negation (denoted as \((\neg)\)): Allows negated roles to be used in local TBoxes and bridge rules. A negated role \(\neg R\) in a TBox \(T_i\) is interpreted as \((\Delta_{T_i} \times \Delta_{T_i}) \setminus R_{T_i}\).

• Cardinality restrictions on domain relations (denoted as \(D_N\)): Allow bridge rules of the form \(\exists \geq \in G\) (where \(\geq \in \{\leq, \geq, =\}\)) in \(B_{ij}\) to indicate that for any \(x \in G^{j,i}\), \(|r_{ij}(x)| \geq n\).

We show that \(\text{ALC}(-)\mathcal{DCR}, \text{ALC}\mathcal{DCRN}\) and \(\text{ALC}\mathcal{DCRT}\) are all undecidable. All proofs are obtained using a reduction of the undecidable domino tiling problem (Berger 1966) to a concept satisfiability problem in DDL.

Definition 1 (Domino System) A domino system \(D = (D, H, V)\) consists of a non-empty set of domino types \(D = \{D_1, ..., D_n\}\), a horizontal matching condition \(H \subseteq D \times D\) and a vertical matching condition \(V \subseteq D \times D\). The problem is to determine if, for a given \(D\), there exists a tiling of the infinite \(\mathbb{N} \times \mathbb{N}\) grid, such that each of its points is covered with a domino type in \(D\) and all horizontally and vertically adjacent pairs of domino types are in \(H\) and \(V\), respectively. In other words, a solution to the problem is a mapping \(t: \mathbb{N} \times \mathbb{N} \rightarrow D\), such that, for all \(m, n \in \mathbb{N}\), \((t(m,n), t(m+1,n)) \in H\) and \((t(m,n), t(m,n+1)) \in V\).

Undecidability of \(\text{ALC}(-)\mathcal{DCR}\)

We first show that the DDL, \(\text{ALC}(-)\mathcal{DCR}\), i.e., \(\text{ALC}\mathcal{DCR}\), extended with role negations, is undecidable. The reduction is accomplished by the construction of an \(\text{ALC}(-)\mathcal{DCR}\) ontology \(\Sigma_1\), such that a solution to the domino system can be constructed from a model of \(\Sigma_1\) and vice versa. Let \(D = (D, H, V)\) be a domino system. Construct an \(\text{ALC}(-)\mathcal{DCR}\) ontology \(\Sigma_1 = (\{T_1, T_2\}, \{B_{12}, B_{21}\})\), where the local signature of \(T_k\) consists of a role name \(v_k\) and a concept name \(D^k\) for each \(D_k \in D, k = 1, 2\). \(T_k\) consists of the following concept inclusions:

\[
\begin{align*}
T_k &\subseteq 1 \leq i \leq n \left(D^k_i \cap (\bigcap_{j \neq i} \neg D^k_j) \right) \tag{1} \\
D^k_i &\subseteq \exists v_k, T_k \cap \forall v_k, (D_i, D_j) \in V D^k_j, \forall i \tag{2}
\end{align*}
\]

\(B_{k,3-k}\) contains bridge rules:

\[
\neg \bigcup (D_i, D_j) \in H D^k_j \iff \neg D^k_{3-k} \forall i \tag{3}
\]

\(v_k \supseteq v_{3-k} \tag{4}
\]

\(\neg v_k \subseteq \neg v_{3-k} \tag{5}
\]

Note that \(\Sigma_1\) contains subsumptions and bridge rules that ensure that each of its models encodes a grid structure corresponding to a solution of the tiling problem \(D\). The structure (see Figure 1) has alternating columns that belong to the local domains of \(T_1\) and \(T_2\), respectively. All vertical edges represent interpretations of local roles \((v_1\) and \(v_2)\) and all horizontal edges represent domain relations \(r_{12}\) and \(r_{21}\). More precisely, Axiom (1) states that, in each local domain, every individual belongs to one and only one type. Axiom (2) ensures that each individual has a vertical successor and

![Figure 1: Undecidability of Several DDL Extensions](image)

Each vertical successor relation satisfies the vertical matching condition \(V\). Axiom (3) ensures the horizontal matching condition \(H\). Axiom (4) ensures that every individual has a horizontal successor. Finally, Axiom (5) puts a finishing touch to the grid by closing some gaps.

Lemma 1 \(D\) has a solution iff \(T_1\) is satisfiable in \(\Sigma_1\).

Proof sketch: Clearly, if \(D\) has a solution, it corresponds to a model of \(\Sigma_1\) with \(T_1 \neq \emptyset\). We only need to show the other direction. Suppose there is a model of \(\Sigma_1\) such that \(T_1 \neq \emptyset\) (see Figure 1). Let \(x_{0,0} \in T_{1,1}\). Then, according to \(\Sigma_1\), \(x_{0,0}\) belongs to one and only one type \(D_{1,0}\) (Axiom 1) and has a \(v_1\) (vertical) successor \(x_{1,0}\) (Axiom 2), which belongs to one and only one type \(D_{0,1}\) (Axiom 1), and \(D_{0,0}, D_{0,1}) \in V\), i.e., the vertical matching condition is satisfied (Axiom 2). According to Axiom 4, there must be a pair \(x_{1,0}, x_{1,1}\) in \(v_{2,1}^2\) in domain \(\Delta T_2\), such that \(\langle x_{1,0}, x_{0,0}, x_{1,1}, x_{0,1}\rangle \in r_{2,1}\). Let \(D_{1,0}\) be the type of \(x_{1,0}\). Then, according to Axiom 3, \((D_{0,0}, D_{1,0}) \in H\), i.e., the horizontal matching condition is satisfied. A similar analysis shows that all edges in the grid structure satisfy the vertical and the horizontal matching conditions. According to Axiom 1, \(x_{0,1}\) has a \(v_1\) successor \(x_{0,2}\), and \((x_{0,1}, x_{0,2})\) has a preimage \(\langle x_{1,1}, x_{1,2}\rangle \in v_{2,2}^2\). Note that \(x_{1,1}\) and \(x_{1,2}\) are not required to be same. Let us assume that \(\langle x_{1,1}, x_{1,2}\rangle \notin v_{2,2}^2\), i.e., \(\langle x_{1,1}, x_{1,2}\rangle \in (v_{2}^2)\). Then, according to Axiom 5, \(\langle x_{0,1}, x_{0,2}\rangle \in (v_{1})^T\), which contradicts that \(\langle x_{0,1}, x_{0,2}\rangle \in v_{2,1}^2\). Therefore, \(\langle x_{1,1}, x_{1,2}\rangle \notin v_{2,2}^2\). Thus, the second square in the grid is finished. Using similar constructions along both the vertical and the horizontal direction, we can extract from a model of \(\Sigma_1\), with \(T_1 \neq \emptyset\), a grid that corresponds to a solution of \(D\). Q.E.D.

An immediate consequence of Lemma 1 is that:

Theorem 1 The DDL \(\text{ALC}(-)\mathcal{DCR}\) is undecidable.

Undecidability of \(\text{ALC}\mathcal{DCRT}\)

Inverse bridge rules are useful when ‘backward’ propagation of knowledge between ontology modules is desir-
able. They also help avoid some modeling problems that arise from the fact that domain relations in $(\cdot)D_{CR}$ can be empty sets, and empty sets do not help transfer information across ontology modules (Stuckenschmidt, Serafini, & Wache 2006). For example, an inverse bridge rule $T_i \leftarrow T_j$ requires that every individual in the local domain i has at least one image in the local domain j.

However, we show that extending the DDL \mathcal{ALCD}_{CR} with inverse bridge rules between roles leads to undecidability of the resulting DDL. The proof is based on a reduction from the domino tiling problem \mathcal{D} to the concept satisfiability problem in an $\mathcal{ALCD}_{CR\mathcal{T}}$ ontology. In fact, we can construct such an ontology $\Sigma_2 = \langle \{T_1, T_2\}, \{B_{12}, B_{21}\}\rangle$ using Axioms (1)-(4) together with the following two inverse bridge rules that help enforce the grid structure (for $k = 1, 2$):

$$v_k \leftarrow v_{3-k} \quad (6)$$

Intuitively, Axiom (6) requires that every preimage of an instance of v_k be an instance of v_{3-k}.

Lemma 2 \mathcal{D} has a solution iff T_1 is satisfiable in Σ_2.

Proof sketch: It is easy to see that a solution of \mathcal{D} corresponds to a model of Σ_2 with T_1 \neq \emptyset. For the other direction, we only need to show that Axiom (6) indeed enforces the grid structure. This can be done by a construction that is similar to the one used for $\mathcal{ACC}(\neg)D_{CR}$. In Figure 1, suppose that the boxes $(x_{0,0}, x_{0,1}, x_{1,0}, x_{1,1})$ and $(x_{0,1}, x_{0,2}, x'_{1,1}, x_{1,2})$ have already been constructed. Then, according to Axiom (6), $x_{1,1}, x_{1,2} \in v^{2}_{3}$, which completes the box $(x_{0,1}, x_{0,2}, x_{1,1}, x_{1,2})$. Employing a similar argument, we can complete the tiling of the entire plane using the given model of Σ_2. Q.E.D.

Thus, by Lemma 1, we obtain

Theorem 2 The DDL $\mathcal{ALCD}_{CR\mathcal{T}}$ is undecidable.

Undecidability of $\mathcal{ALCD}_{CR\mathcal{N}}$

Cardinality restrictions on domain relations have been proposed as a useful feature in several proposals for modular ontology languages. In (Serafini, Borgida, & Tamlin 2005), bridge rules of the form $\leq_{1} G$ are used to enforce the partial injectivity of domain relations relative to the concept G. \mathcal{E}-Connections (Grau, Parsia, & Sirin 2004) also allow cardinality restrictions on inter-domain relations as a means of asserting facts such as “1 : DogOwner (a concept in ontology 1) owns at least one 2 : Dog (another concept in ontology 2)”. Unfortunately, extending \mathcal{ALCD}_{CR} to allow cardinality restrictions on domain relations yields $\mathcal{ALCD}_{CR\mathcal{N}}$ which can be shown to be undecidable.

The undecidability of $\mathcal{ALCD}_{CR\mathcal{N}}$ can be established through a reduction of the undecidable domino tiling problem to a concept satisfiability problem in $\mathcal{ALCD}_{CR\mathcal{N}}$. Let $\mathcal{D} = \langle D, H, V \rangle$ be a domino system. An $\mathcal{ALCD}_{CR\mathcal{N}}$ ontology $\Sigma_3 = \langle \{T_1, T_2\}, \{B_{12}, B_{21}\}\rangle$ contains Axioms (1)-(4) together with the following bridge rule in $B_{3-k,k}$ (for $k = 1, 2$):

$$\leq_{1}, T_k \quad (7)$$

Axiom (7) means that each individual in the local domain Δ_{k} has at most one preimage in the local domain Δ_{3-k}. This axiom ensures that a model of Σ_3 contains an encoding of a grid structure, resulting in a tiling of the plane.

Lemma 3 \mathcal{D} has a solution iff T_1 is satisfiable in Σ_3.

Proof sketch: We use again Figure 1 to illustrate the proof. In this case, we use Axiom (7) to complete the grid. For example, if $x_{0,1}$ has two preimages $x_{1,1}$ and $x'_{1,1}$, then, according to Axiom (7), the two preimages must refer to the same individual. Hence, the edge $\langle x_{1,1}, x_{1,2} \rangle = \langle x'_{1,1}, x_{1,2} \rangle \in v^{2}_{3}$. Such a grid construction allows us to tile an infinite plane. Q.E.D.

This lemma, together with the undecidability of the domino tiling problem, yields

Theorem 3 The DDL $\mathcal{ALCD}_{CR\mathcal{N}}$ is undecidable.

Decidable P-DL Family $\mathcal{ALCHIO}(-)\mathcal{P}$

The P-DL Family $\mathcal{ALCHIO}(-)\mathcal{P}$

We now proceed to show that the two P-DLs $\mathcal{ALCHIO}(-)\mathcal{P}$ and $\mathcal{ALCHIO}(-)\mathcal{R}$, that together constitute the family $\mathcal{ALCHIO}(-)\mathcal{P}$, obtained by extending the P-DL \mathcal{ALCP} to allow role importing, general role inclusions (and hence role mappings between ontologies), inverse roles, nominals, nominal importing, and negation on roles, are decidable. The syntax of both P-DLs in $\mathcal{ALCHIO}(-)\mathcal{P}$ can be obtained from $\mathcal{ALCHIOP}$ with (contextualized) negations on roles. Thus, roles of a package P_i in both P-DLs in $\mathcal{ALCHIO}(-)\mathcal{P}$ are defined inductively by the following grammar:

$$R := p|\neg R | P_i R$$

where p is a local or imported role name, and P_i imports P_k. A role of the form $\neg R$ is called a k-negated role. The semantics of role negation is given by $\neg R \models (\Delta)R_i = r_k (\Delta R^T_k) = r_k (\Delta R^T_{\neg})$. Depending on whether negated roles can be used or not in concept inclusions, the two members of the family $\mathcal{ALCHIO}(-)\mathcal{P}$ are given by:

- $\mathcal{ALCHIO}(-)\mathcal{C}$: negated roles can be used in both concept and role inclusions. If an i-role name P is imported by P_j, we require that the cardinality preservation condition holds for both P and $\neg P$.

- $\mathcal{ALCHIO}(-)\mathcal{R}$: negated roles can only be used in role inclusions. In this variant, we only require cardinality preservation for imported role names but not their negations.

Consideration of these two P-DLs and the respective conditions imposed in each case are motivated by the desire to achieve transitive reusability of knowledge using a minimal set of restrictions on domain relations between local models. The decidability proofs of the P-DLs in $\mathcal{ALCHIO}(-)\mathcal{P}$ use a reduction to the decidable DL \mathcal{ALBO} (Schmidt & Tishkovsky 2007). The logic \mathcal{ALBO} extends \mathcal{ALC} with boolean role operators, role inclusions, inverses of roles, domain and range restriction operators and nominals.
In ALCBO, roles are defined inductively by the following grammar:

\[R := p | R \cap R^\% | -R | (R \mid C) \mid (R \mid C) \]

where \(p \) is a role name and \(C \) is a concept. The semantics of ALCBO is defined as an extension of that of ALC\(\mathcal{H}I\mathcal{O} \) with the following additional constraints on interpretations (where \(\Delta^I \) is the interpretation domain):

\[
\begin{align*}
(\neg R)^I & = (\Delta^I \times \Delta^I) \setminus R^I \text{ with } p \notin \{\exists, \forall\} \\
(R \cap S)^I & = R^I \cap S^I \\
(R \mid C)^I & = R^I \cap (\Delta^I \times C^I) \\
(R \mid C)^I & = R^I \cap (C^I \times \Delta^I)
\end{align*}
\]

We use the abbreviation \(R \mid C = (R \mid C) \mid C \).

Decidability of P-DL ALC\(\mathcal{H}I\mathcal{O}(\neg) \) cR P

A reduction \(\mathcal{R} \) from an ALC\(\mathcal{H}I\mathcal{O}(\neg) \) cR P KB \(\Sigma_d = \{P_i\} \) to an ALCBO KB \(\Sigma \) can be established based on the reduction of P-DL S\(\mathcal{H}O(I)\mathcal{P} \) to S\(\mathcal{H}O(I)\mathcal{Q} \), as presented in (Bao et al. 2008), with a couple of modifications to handle role inclusions: \(\#_i \) is also applied to roles and that a negated local domain and a negated local range axiom for roles are added to the ALCBO KB \(\Sigma \).

- The signature of \(\Sigma \) is the union of the local signatures of the component packages together with a global top \(\top \), a global bottom \(\bot \), and local top concepts \(\top_i \), for all \(i \), i.e., \(\text{Sig}(\Sigma) = \bigcup_i \text{Loc}(P_i) \cup \{\top_i\} \cup \{\top, \bot\} \).
- For all \(i, j, k \) such that \(P_i \in P_i', P_k \in P_j', \top_i \cap \top_j \subseteq \top_k \) is added to \(\Sigma \).
- For each GCI or role inclusion \(X \subseteq Y \) in \(P_i, \#_j(X) \subseteq \#_j(Y) \) is added to \(\Sigma \). The mapping \(\#_j \) is defined below.
- For each i-concept name or i-nominal name \(C \) in \(P_i, i : C \subseteq \top_i \) is added to \(\Sigma \).
- For each i-role name \(R \) in \(P_i \), its domain and range is \(\top_i \), i.e., \(\top \subseteq \forall R.	op_i \) and \(\top \subseteq \forall R.	op_i \) are added to \(\Sigma \).
- For each i-role name \(R \) in \(P_i \), the following axioms are added to \(\Sigma \):
 - \(\exists \forall R. \top_j \subseteq \top_j \); (local domain)
 - \(\exists \forall R. \top_j \subseteq \top_j \); (local range)
 - \(\exists \forall \neg R. \top_i \subseteq \top_i \); (negated local domain)
 - \(\exists \forall \neg R. \top_i \subseteq \top_i \); (negated local range)

For a formula \(X \) used in \(P_j, \#_j(X) \) is:

- \(X \), for a j-(concept, role or nominal) name.
- \(X \cap \top_j \), for an i-concept name or an i-nominal name \(X \).
- \(X \mid \top_j \), for an i-nominal role name.
- \(\#_j(Y)^\% \), for a role \(X = Y^\% \).
- \(\neg \#_j(X) \cap \top_i \cap \top_j \), for \(\neg X \), where \(X \) is a concept.
- \(\neg \#_j(Y) \mid \top_i \cap \top_j \), for a role \(X = \neg Y \).
- \(\#_j(X_1) \oplus \#_j(X_2) \mid \top_j \), for a concept \(X = X_1 \oplus X_2 \), where \(\oplus = \cap \) or \(\oplus = \cup \).

- \((\oplus \#_j(R).\#_j(X')) \mid \top_i \cap \top_j \), for a concept \(X = (\oplus R.X') \), where \(\oplus \in \{\exists, \forall\} \) and \(R \) is an i-role or an i-negated role.

The following lemma shows that the consistency problem in ALC\(\mathcal{H}I\mathcal{O}(\neg) \) cR P can be reduced to the concept satisfiability problem in ALCBO:

Lemma 4 An ALC\(\mathcal{H}I\mathcal{O}(\neg) \) cR P KB \(\Sigma \) is consistent as witnessed by a package \(P_w \) if and only if \(T_w \) is satisfiable with respect to \(\mathcal{R}(P_w^*) \).

Proof sketch: The proof is similar to the proof of Theorem 1 in (Bao et al. 2008). The main modification concerns the reduction of role inclusion axioms. The basic idea is that, given a distributed model of \(\Sigma \), we can construct an ordinary model of \(\mathcal{R}(P_w) \) by “merging” individuals connected by domain relations. Given a model of \(\mathcal{R}(P_w^*) \), we can construct a distributed model of \(\Sigma \) by “copying shared individuals” into local interpretation domains.

For the “if” direction, if \(T_w \) is satisfiable with respect to \(\mathcal{R}(P_w) \), then \(\mathcal{R}(P_w^*) \) has at least one model \(I = \langle \Delta^I, \top_I \rangle \), such that \(\top^I \not\subseteq \emptyset \). Our goal is to construct a model of \(P_w^* \) from \(I \), such that \(\Delta^{I^w} \not= \emptyset \). For each package \(P_i \), a local interpretation \(\mathcal{I}_i \) is constructed in the following way:

- \(\Delta^{I^w} = \top^I \).
- For every concept name \(C \) in \(P_i, C^{I^w} = C^I \cap \top^I \).
- For every role name \(R \) in \(P_i, R^{I^w} = R^I \cap (\top^I \times \top^I) \).
- For every nominal name \(o \) that appears in \(P_i, o^{I^w} = o^I \).
- For every pair \(i, j \), such that \(P_i \in P_j^* \), we define
 \[
 r_{ij} = \{(x, y) \mid x \in \Delta^I \cap \Delta^{I_j}\}.
 \]

Clearly, we have \(\Delta^{I^w} = \top^I \not\subseteq \emptyset \). So it suffices to show that \(\langle \{I_i\}, \{r_{ij}\} \rangle \) is a model of \(P_w^* \). The proof is similar to (Bao et al. 2008). We will only show that if \(\#_j(X) \subseteq \#_j(Y) \) is satisfied by \(I \), then \(X \subseteq Y \) is satisfied by \(I \). To accomplish this, it suffices to show that for any role X in the signature of \(P_j, \#_j(X)^{I^w} = X^{I^w} \).

- If \(X \) is a j-role name, \(\#_j(X)^{I^w} = X^{I^w} \) by definition.
- If \(X \) is a i-role name, \(i \neq j, \#_j(X)^{I^w} = (X \mid \top_j)^{I^w} = X^I \cap (\Delta^{I_j} \times \Delta^{I_j}) = X^{I_j} \).
- If \(X = Y^\% \) and \(\#_j(Y)^{I^w} = Y^{I_j} \), then \(\#_j(X)^{I^w} = (\#_j(Y)^{I^w})^\% = (Y^{I_j})^\% = (Y^{I_j})^\% = X^{I_j} \).
- If \(X = \neg Y \) and \(\#_j(Y)^{I^w} = Y^{I_j} \), then \(\#_j(X)^{I^w} = (\neg \#_j(Y)^{I^w}) \mid (\top_i \cap \top_j)^{I^w} = ((\Delta^{I_i} \cap \Delta^{I_j}) \times (\Delta^{I_i} \cap \Delta^{I_j})) \mid (\top_i \cap \top_j)^{I^w} = X^{I_j} \).

For the “only if” direction, suppose that \(\Sigma \) is consistent as witnessed by \(P_w \). Thus, \(\Sigma \) has a distributed model \(\langle \{I_i\}, \{r_{ij}\} \rangle \in P_j^* \), such that \(\Delta^{I^w} \not\subseteq \emptyset \). We construct a model \(I \) of \(\mathcal{R}(P_w^*) \) by merging individuals that are related via chains of image domain relations or their inverses. More precisely, for every element \(x \) in the distributed model, we define its equivalence class \(\sigma = \{y \mid (x, y) \in \rho\} \), where \(\rho \) is the symmetric and transitive closure of the set \(\bigcup_{P_i \in P_j} r_{ij} \).
For a set \(S \), we define \(\overrightarrow{S} = \{ \overrightarrow{x} | x \in S \} \) and, for a binary
relation \(R \), we define \(\overrightarrow{R} = \{ (\overrightarrow{x}, \overrightarrow{y}) | (x, y) \in R \} \).

Now, let \(\mathcal{I} = (\Delta^I, \mathcal{I}) \) be defined as follows:

- \(\Delta^I = \overrightarrow{\Delta^I} \).
- For every \(i \)-name \(X \), \(X^I := \overrightarrow{X^I} \).
- For every \(i \), \(\top^I = \overrightarrow{\top^I} \).

We denote by \(\overrightarrow{\mathfrak{I}} \) the element (if it exists) in \(\overrightarrow{\Delta^I} \) that belongs to \(\mathfrak{I} \), i.e., \(\overrightarrow{\mathfrak{I}} \in \overrightarrow{\Delta^I} \cap \mathfrak{I} \).

The proof that \(\mathcal{I} \) is a model of \(\mathcal{R}(P_w^*) \), with \(\overrightarrow{T^I_w} \neq \emptyset \), is also similar to that of (Bao et al. 2008). We only show that for every role inclusion \(X \subseteq Y \subseteq P_j \), we have that \(\mathcal{I} \) satisfies \(\#_j(X) \subseteq \#_j(Y) \). We prove this by showing that, for any role \(R \) the appears in \(P_j \), \(\overrightarrow{R^I} = \#_j(R)^I \), again using induction on the structure of \(R \). Due to space limitations, we only show the case for negated roles, other cases (local roles, imported roles and inverse roles) can be handled similarly.

When \(R = \neg \gamma S \) and \(\overrightarrow{S^I} = \#_j(S)^I \), we have that \(\overrightarrow{R^I} = \neg \gamma \overrightarrow{S^I} = \overrightarrow{(R_{ij}(\Delta^I) \times \neg \gamma ((\Delta^I) \times \Delta^I))} = \overrightarrow{(\top_i \cap \top_j)^I} \times \overrightarrow{(\top_i \cap \top_j)^I} = \overrightarrow{(\neg \gamma S)^I} = \#_j(R)^I \). Q.E.D.

Decidability of P-DL ALCHIO\((\neg)\mathcal{P}\)

The decidability proof of \(\text{ALCHIO}(\neg)\mathcal{P} \) is almost the same as that of \(\text{ALCHIO}(\neg)\mathcal{CRP} \) and uses a reduction to \(\text{ACBO} \). Since negated roles appear only in role inclusions and cardinality preservation is not required for negated roles, in the reduction from an \(\text{ALCHIO}(\neg)\mathcal{P} \) ontology to an \(\text{ACBO} \) ontology, the negated local domain and the negated local range axioms are not needed. Note that, in \(\text{ALCHIO}(\neg)\mathcal{CRP} \), if \(P_i \) imports a role from \(P_j \), then due to cardinality preservation on both role names and negated roles, \(r_{ij} \) has to be either empty or a total function. In \(\text{ALCHIO}(\neg)\mathcal{CRP} \), on the other hand, there is no such a requirement. This allows some increased flexibility in role mappings while, at the same time, maintaining the autonomy of ontology modules.

From the above reductions from \(\text{ALCHIO}(\neg)\mathcal{CRP} \) and \(\text{ALCHIO}(\neg)\mathcal{CRP} \) to \(\text{ACBO} \) and the fact that the complexity of \(\text{ALBO} \) is \(\text{NExpTime} \)-complete (Schmidt & Tishkovsky 2007) we obtain the following decidability and complexity result.

Theorem 4 The consistency problem and concept satisfiability problem in \(\text{ALCHIO}(\neg)\mathcal{CRP} \) and \(\text{ALCHIO}(\neg)\mathcal{CRP} \) are in \(\text{NExpTime} \).

Conclusions

We have explored the decidability of modular ontology languages (specifically, variants of DDL and P-DL). We have shown that if role mappings between ontology modules that are expressible in \(\text{ACL} \) are combined with some otherwise useful features such as negated roles, cardinality restrictions in bridge rules, or inverse bridge rules, they yield an undecidable DDL. We also established the decidability of P-DLs \(\text{ALCHIO}(\neg)\mathcal{CRP} \) and \(\text{ALCHIO}(\neg)\mathcal{CRP} \) with unrestricted role inclusion between ontology modules when each module is in \(\text{ALCHIO}(\neg) \), a language that extends \(\text{ALC} \) with general role inclusions, inverse roles, nominals and negated roles. The fact the restriction that the domain relations in P-DL be one-to-one and compositionally consistent (Bao, Slutzki, & Honavar 2007) (as opposed to DDL which imposes no such restrictions (Ghidini & Serafini)) turns out to be critical to the decidability of P-DSLs \(\text{ALCHIO}(\neg)\mathcal{CRP} \) and \(\text{ALCHIO}(\neg)\mathcal{CRP} \). Since decidability of modular ontologies is a prerequisite for automated reasoning, these results have significant implications with regard to the design of modular ontology languages for semantic web applications. Ongoing work is focused on further exploration of the decidability frontier of DDL and P-DL, e.g., by investigating the decidability of the DDL \(\text{ALCOD}(\neg) \) (with support for nominals), and of the P-DL \(\text{SHIQ} \) (i.e., with support for transitive roles and number restrictions).

Acknowledgement: This research was supported in part by grants from the US National Science Foundation (IIS-0639230).

References

Ghidini, C., and Serafini, L. Mapping properties of heterogeneous ontologies. In ISWC Workshop on Modular Ontologies (WoMo), CoopIS.

Bozen-Bolzano University Press.

