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Abstract

There is now extensive interest in reasoning about moving
objects. A PST knowledge base is a set of PST-atoms which
are statements of the form “Object o is/was/will be at loca-
tion L at time t with probability in the interval [L,U]”. In
this paper, we study mechanisms for belief revision in PST-
KBs. We propose multiple methods for revising PST-KBs.
These methods involve finding maximally consistent subsets,
as well as changing the spatial, temporal, and probabilistic
components of the atoms. We show that some methods can-
not satisfy the AGM axioms for belief revision, while others
do but are coNP-hard. Finally we present an algorithm for re-
vision through probability change which runs in polynomial
time and satisfies the AGM axioms.

Introduction
There are numerous applications where we need to reason
about probabilistic spatio-temporal applications. A shipping
company may be interested in continuously tracking the lo-
cations of its vehicles. As RFID tags become ever more
common, companies (pharma, automotive, electronics) are
interested in tracking supply items and in understanding
where these items are now, and where they might be in the
future. Military agencies are interested in tracking where ve-
hicles might be - now and in the future. Cell phone compa-
nies are interested in when and where cell phones might be
in the future in order to determine how best to balance load
on cell towers. Moreover, all these applications have an es-
sential component involving uncertainty. Predicting where
a cell phone might be in the future may be derived prob-
abilistically from past logs showing the phones’ location.
Likewise, predicting where and when an RFID tag will be
is subject to uncertainty. Where and when a ship will reach
a given geolocation is also subject to many forces that cannot
be accurately specified, even when a schedule is available.

Methods to reason about probabilistic spatio-temporal
(PST) information have emerged in recent years, both in
databases (Parker, Subrahmanian, and Grant 2007) and in
AI (Cohn and Hazarika 2001; Muller 1998).
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One important aspect of applications such as those men-
tioned above is that there is continuous change. As objects
move, they encounter unexpected situations, leading to a
continuous revision of estimates of where they might be in
the future, as well as a revision of where they might have
been in the past. Surprisingly, to date, we are not aware of
any effort to handle revisions to such PST knowledge bases.
A PST knowledge base K can be revised in many differ-
ent ways. Clearly, when the insertion of a fact a into the
knowledge base leads to no inconsistency, i.e. K ∪ {a} is
consistent, then a can just be added to K. However, when
K ∪ {a} is inconsistent, then many different belief revision
operations are possible based on whether we modify tempo-
ral information, or probabilistic information, or spatial in-
formation.

In this paper, we first formalize the problem of insert-
ing facts into PST knowledge bases. We also recall the
AGM belief revision postulates (Alchourrón, Gärdenfors,
and Makinson 1985). We then examine four different ways
of revising PST knowledge bases. For each such method,
we study which of the AGM postulates it satisfies, as well as
what the complexity of the method is. Surprisingly, by revis-
ing only the probabilistic aspect of the data, we find that one
can satisfy all the basic AGM axioms in polynomial time.

Background: Formal Model
(Parker, Subrahmanian, and Grant 2007) proposes a frame-
work for probabilistic spatio-temporal reasoning. However,
they place no restrictions on the speed at which a vehicle
can travel, nor do they restrict where a vehicle can go. This
is clearly unrealistic as no vehicle can travel at arbitrary
speeds, and some vehicles cannot go some places (e.g. a
car cannot drive across an ocean). PST KBs proposed here
enhance their framework by including velocity and reach-
ability constraints. We assume the existence of some set
ID of object id’s and a finite convex set S of points in a 2-
dimensional space1. We assume that the set T of time points
consists of all non-negative integers. Occasionally, we will
make the bounded time assumption that T is the set of all
non-negative integers upto some arbitrary but fixed maxi-
mum time bound.

1The framework is easily extensible to higher dimensions.
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Figure 1: An example PST knowledge base representing
possible locations of a delivery boy in Beijing, China. The
dotted lines represent possible paths taken by the delivery
boy where each dot is the boy’s location at a particular time.

Definition 1. If id ∈ ID, t ∈ T, r ⊆ S (r 6= ∅) and 0 ≤
` ≤ u ≤ 1, then (id, r, t, [`, u]) is called a PST-atom.

Intuitively, a PST-atom (id, r, t, [`, u]) says that the object
with the given id is somewhere in (or expected to be some-
where in) region r at time t with a probability in the [`, u]
interval. We use statistical probabilities, make no indepen-
dence assumptions, and use intervals and linear programs
for joint probability computations.

Example 1. Figure 1 shows regions R1. . .R10 in Beijing. A
pizza shop in the center of R1 is delivering pizzas to the Im-
perial Palace Museum. The shop guarantees delivery in 40
minutes and wants to reason about the probability of deliver-
ing the pizza on time. Delivery boy db leaves at time 0 from
region R1, giving the PST-atom: (db,R1, 0, [1, 1]). R6 is
water-logged, making it impossible for db to be there: so we
have the atoms (db,R6, 0, [0, 0]), . . . , (db,R6, 40, [0, 0]).
We expect the delivery boy to be in region R5
at times 10 to 25 with 45 − 55% probability:
(db,R5, 10, [0.45, 0.55]), . . . , (db,R5, 25, [0.45, 0.55]).
We are almost certain that the delivery boy
will not enter the museum, giving the atoms
(db,R9, 1, [0, 0.01]), . . . , (db,R9, 40, [0, 0.01]). Sometimes
db plays hooky and visits the park: (db,R10, 30, [0, 0.2]).
We use KBeijing to denote these PST-atoms.

A reachability definition RD, is a set of atoms of the form
reachable(id, p1, p2) indicating that id can go from point p1

to point p2 in one unit of time. Reachability definitions can
account for different types of moving objects (e.g. planes
vs. bicycles) and different terrain conditions. Moreover,

RD does not need to be explicitly stored - it can be im-
plemented through a call to a piece of software code (e.g.
Google Maps) that merely returns “true” or “false” when in-
voked with a triple (id, p1, p2). We assume that for every id,
the transitive closure of RD is true for every pair of points –
no two points are allowed to be completely disconnected.
Example 2. Given each object’s maximal speed v+

id, we
define a reachability predicate which requires the object
to move at a rate less than v+

id: reachable(id, p1, p2) iff
(d(p1, p2) < v+

id).
Definition 2 (PST-KB). A PST-knowledge base is a pair
(K, RD) where K is a finite set of PST-atoms and RD is a
reachability definition.

Given a PST-KB K, we use the notation Kid,t to denote
the set of all PST atoms of the form (id,−, t,−) in K.
Throughout this paper, we assume the existence of an ar-
bitrary, but fixed reachability definition, RD — hence, we
will abuse notation and simply refer to K as a PST-KB. We
define semantics through worlds.
Definition 3 (World). A world w is a function, w : ID ×
T → S such that for all objects id, points p1, p2, and
time point t if w(id, t) = p1 and w(id, t + 1) = p2 then
reachable(id, p1, p2) ∈ RD. W is the set of all worlds.

An interpretation assigns a probability to each world.
Definition 4 (Interpretation). An interpretation I is a prob-
ability distribution over W .

Intuitively, I(w) is the probability that w describes the
actual locations of the objects.
Example 3. Two paths the delivery boy may take are shown
in Fig. 1 as dotted lines W1 and W2. These are potential
worlds where the dots give the delivery boy’s locations at
successive time points. An example interpretation I assigns
probability 0.9 to world W1, probability 0.1 to world W2,
and probability 0 to any other world.

The definition of satisfaction of a PST-atom by an inter-
pretation is as follows.
Definition 5 (Satisfaction/Entailment). Interpretation I sat-
isfies (id, r, t, [`, u]) (denoted I |= (id, r, t, [`, u])) iff:∑

w∈W,w(id,t)∈r

I(w) ∈ [`, u].

I satisfies knowledge base K (denoted I |= K) iff I satisfies
all a ∈ K. K entails knowledge base K′ (or atom a) iff all I
satisfying K also satisfy K′ (resp. a).
K is consistent iff there is an interpretation I that satisfies

it. K and K′ are equivalent (denoted K ≡ K′) iff for all
interpretations I , I |= K iff I |= K′.

A PST-atom atom a is consistent with PST-KB K iff K ∪
{a} is consistent.
Example 4. The atom (db,R7, 15, [0.75, 0.75]) is not con-
sistent with the knowledge base KBeijing from Example 1
because according to KBeijing db is in region R5 at time 15
with probability in [0.45, 0.55] and R1 is disjoint from R7.
The total probability of db on the map at time 15 would then
exceed 1.
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However, (db,R7, 15, [0.45, 0.55]) is consistent with
KBeijing – consider for instance an interpretation that gives
to the delivery boy probability 0.51 to be in region R7 and
0.49 to be in region R5.

Consistency Checking
We can check consistency by solving a linear program. Be-
cause linear programs can be solved in time polynomial in
their input, consistency checking will run in polynomial time
when the number of time points is bounded a priori.

The linear program we use contains variables of the form
vid,t,p,q, each representing the probability that object id will
be at point p at time t and then at point q at time t + 1.
While this may seem overly complicated, less complicated
variable schemes – such as ones where each variable repre-
sents the probability that a given object is at a given location
at a given time, used in (Parker, Subrahmanian, and Grant
2007) were not easily extendable to handling the intricacies
of the reachability predicate.

For convenience, let minT (K) be the minimum time
point referenced in K and maxT (K) be the maximum time
point referenced in K. Note that when the bounded time as-
sumption is made, we have a priori bounds for minT (K)
and maxT (K). We will use an extra timepoint maxT (K)+
1 for ease of presentation.
Definition 6 (LP(K)). We let the linear constraints for K be
the set LP (K) containing exactly the following constraints
for all id referenced inK, and all integers t s.t. minT (K) ≤
t ≤ maxT (K):
• For all (id, r, t, [`, u]) ∈ K:

◦ ` ≤
∑
p∈r

∑
q∈S

vid,t,p,q and u ≥
∑
p∈r

∑
q∈S

vid,t,p,q

• For all id, t:
∑
p∈S

∑
q∈S

vid,t,p,q = 1

• For all p, q ∈ S and all id, t: vid,t,p,q ≥ 0
• For all p, q ∈ S and all id, t such that
¬reachable(id, p, q): vid,t,p,q = 0.

• For all p ∈ S and id, t:
∑
q∈S

vid,t,q,p =
∑
q∈S

vid,t+1,p,q

Theorem 1. LP (K) has a solution iff K is consistent.

Proof. Proof sketch:
(⇒): Let θ be a solution to LP (K). To construct a satisfy-
ing interpretation I , let α[id, t, p] be the probability that id
is at p at time t. This can be computed from θ as follows:
α[id, t, p] =

∑
q∈S vid,t,p,qθ. Define I for all w ∈ W s.t.

I(w) =
∏maxT (K)

t=minT (K) α[id, t, w(id, t)]. I is a valid probabil-
ity distribution over W because each

∑
p∈S α[id, t, p] = 1.

I also satisfies K: consider for (id, r, t, [`, u]) ∈ K:∑
w(id,t)∈r

I(w) =
∑
p∈r

α[id, t, p] =
∑
p∈r

∑
q∈S

vid,t,p,q

Since any solution to LP (K) enforces that ` ≤∑
p∈r

∑
q∈S vid,t,p,q ≤ u it follows that ` ≤∑

w(id,t)∈r I(w) ≤ u.

(⇐): Let I be an interpretation satisfying K. Let θ be an
assignment to the variables v such that, for all id, t, p, q:

vid,t,p,qθ =
∑

w(id,t)=p∧w(id,t+1)=q

I(w). (1)

θ is also a solution to LP (K). Consider for each
(id, r, t, [`, u]) that ` ≤

∑
w(id,t)∈r I(w) ≤ u implies

` ≤
∑

p∈r

∑
q∈S vid,t,p,qθ ≤ u. That

∑
q∈S vid,t+1,p,qθ =∑

q∈S vid,t,p,qθ follows from algebraic manipulation. That∑
p∈S

∑
q∈S vid,t,p,q = 1 for any id, t follows from the fact

that
∑

w∈W I(w) = 1. That θ solves the rest of the con-
straints in LP (K) is straightforward.

The theorem yields a straightforward consistency check-
ing algorithm: simply check if LP (K) has a solution using
standard linear programming solvers.

To determine the running time of this algorithm, we count
the number of variables and equations in LP (K). The num-
ber of variables is dependent upon the number of IDs in the
knowledge base, which is at most |K|, the number of points
in space, which is constant, and the number of time points
nt = maxT (K)−minT (K). This gives an upper bound of
O(|K| · nt) variables. The number of constraints in LP (K)
is 2 × |K| for the constraints from the atoms, plus one con-
straint per id and t, plus |S|2 constraints per id and T , plus
|S| constraints per id and t giving O((|K| ·nt)2) constraints
(since |S| is constant and since the number of ids is bounded
by |K|). Since linear programs are solvable in polynomial
time (L.G.Khachiyan 1979), and the input to our linear pro-
gram solver will be a polynomial in O((|K| · nt)3). nt is, in
general, unbounded. However, if we make the bounded time
assumption (for example, assuming a bound of 1000 years
may be more than enough for most government and busi-
ness applications, but not enough for certain applications in-
volving astronomical bodies), then consistency checking is
polynomial in the size of the input knowledge base.

Some belief revision strategies
We now present AGM-style postulates (Alchourrón,
Gärdenfors, and Makinson 1985) for revising PST-KBs. A
revision operator u is a binary function that takes a PST-KB
and a PST-atom as input, and produces a PST-KB as output.
u is required to satisfy the AGM axioms2 expressed in our
framework.

(A1) K u a is PST-KB.

(A2) K u a |= a.

(A3) (K ∪ {a}) |= (K u a).
(A4) If a is consistent with K then (K u a) |= (K ∪ {a}).
(A5) K u a is inconsistent iff {a} is inconsistent.

(A6) If a ≡ a′ then K u a ≡ K u a′.

The reader can easily see that the revision of a PST-KB
K with a PST-atom a may be handled in many different

2As PST-KBs are atomic, we do not discuss AGM axioms in-
volving negation and disjunction.
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ways when K ∪ {a} is inconsistent. For example, we could
change the t part of a PST-atom, or the r part of a PST-
atom, or the [`, u] part of a PST-atom.3 We could also study
maximal consistent subsets (Baral, Kraus, and Minker 1991;
Fagin, Ullman, and Vardi 1983).

Maximal Consistent Subsets
We can define a revision operator um based on maximal
consistent subsets as follows. For this section, we assume
the time points available to be bounded to some fixed, finite,
set of integers T .

Definition 7. Suppose K is a PST-KB and a is a PST-atom.
Then K′ ∪ {a} accomplishes the revision of K by adding a
via the subset strategy iff K′ is a subset of K and K′ ∪ {a}
is consistent.
K′ ∪ {a} optimally accomplishes the revision of K by

adding a via the max-subset strategy iff it accomplishes the
revision of K by adding a via the subset strategy and there
is no other K′′ ∪ {a} that accomplishes the same revision
such that K′ ( K′′.

We use the notation K um a to denote a K′ ∪ {a} that
optimally accomplishes the revision ofK by adding a via the
max-subset strategy. 4

We verify that um satisfies the AGM axioms.

Proposition 1. Any function um that optimally accom-
plishes the revision via the max-subset strategy satisfies the
AGM axioms.

Unfortunately, computing um is intractable.

Theorem 2. Determining if K′ ∪ {a} optimally accom-
plishes the revision of K by adding a via the max-subset
strategy is coNP-complete under the bounded time assump-
tion, and coNP-hard otherwise.

That this problem is in coNP under the bounded time
assumption follows from the polynomial time consistency
checking algorithm. A witness K′′ which is a strict super-
set of K′ and for whom K′′ ∪ {a} is consistent proves the
given K′ does not optimally accomplish the revision of K′
with a via the max-subset strategy. As consistency checking
of PST-KBs is polynomial under the bounded time assump-
tion, this establishes membership in coNP.

To see why it is coNP-hard, consider the coNP-
complete case of the knapsack problem defined by (W =
{wi}, c, X = {xi}) with n items where item j has weight
wj , all items have value 1 and item j is included in the knap-
sack when xj = 1 and not included when xj = 0. Decid-
ing if X = {x1, . . . , xn} maximizes

∑n
j=1 xj subject to∑n

j=1 wjxj ≤ c, with xj ∈ {0, 1} is coNP-complete. This
decision problem reduces to deciding optimal max-subset
revision. Construct a max-subset revision problem instance

3Another option is to allow changes to the id part of a PST-
atom. We do not study this possibility due to space constraints.

4There is some non-determinism in this definition. A strict total
ordering OT can be induced on all K′ satisfying the above defini-
tion and the minimal element of the strict total ordering can be
picked in order to induce determinism. Throughout the rest of
this paper, we assume such a strict total ordering is available.

using a space composed of n + 1 points {p1, ..., pn, pn+1}
a knowledge base K = {(id, {pi}, t, [ wiP

i wi
, wiP

i wi
])|1 ≤

i ≤ n}, a revising atom a = (id, {pi|1 ≤ i ≤
n}, t, [0, cP

i wi
]), and a revised knowledge base K′ =

{(id, {pi}, t, [ wiP
i wi

, wiP
i wi

])|xi = 1}. X solves the given
knapsack problem iffK′∪{a} optimally accomplishes revi-
sion of K with a via the max-subset strategy.

Minimizing Spatial Change
One may think that we can revise K by changing the spa-
tial component r of PST atoms in K. A spatial revision
of PST-atom a = (id, r, t, [`, u]) is an atom of the form
a′ = (id, r′, t, [`, u]). The distance dS(a, a′) is given by
abs(|r ∪ r′| − |r ∩ r′|). A spatial revision of PST-KB K is
a knowledge base K′ containing at most one spatial revision
of each atom in K. The distance between a PST-KB and
its spatial revision (dS(K,K′)) is the sum of the distances
between the individual atoms and their associated spatial re-
vision.

Definition 8. A spatial revision K′ of K w.r.t. an inserted
PST-atom a is optimal iffK′ ∪ {a} is consistent and there is
no other spatial revisionK′′ ofK w.r.t. a such thatK′′ ∪ {a}
is consistent and dS(K,K′′) < dS(K,K′). We useKus a to
denote an optimal spatial revision K′. (As in the case of the
max-subset strategy, there may be multiple optimal spatial
revision strategies, see footnote 4).

Unfortunately, in general, as the following example
shows, there may be cases where no spatial revision satis-
fies AGM axioms (A1) and (A5).
Example 5. Suppose ID = {id} and S = {p1, p2}.
Let K = {a1} where a1 = (id, {p1}, 0, [0.5, 0.5]). Let
a = (id, {p1}, 0, [0, 0]). By (A1), Kus a must be a PST-KB.
However, K ∪ {a} is inconsistent and K must be revised.
There are 2 possible spatially revised KBs depending on
which subset of {p1, p2} is used as the spatial component of
a1: (id, {p2}, 0, [0.5, 0.5]) and (id, {p1, p2}, 0, [0.5, 0.5]).
None of these atoms is consistent with a. Hence, Axiom (A5)
is violated.5

Notice that the above example holds both for bounded and
unbounded sets of timepoints.

Minimizing Temporal Change
In this section, we study what happens when we re-
vise a PST-KB K = {a1, . . . , an} by changing ai =
(idi, ri, ti, [`i, ui]) to a′i = (idi, ri, t

′
i, [`i, ui]). In other

words, the only change allowed in a PST-atom is to mod-
ify the time stamp. Given a PST-KB K of the above form,
we call such a revised PST-KB a temporal variant of K.

The distance between a temporal variant {a′1, . . . , a′n} of
a PST-KB K = {a1, . . . , an}, denoted dT (K,K′) is given
by

∑n
i=1 |ti − t′i|.

K′ is called a temporally optimal variant of K w.r.t. an
inserted PST-atom a iff (i) K′ ∪ {a} is consistent, (ii) K′

5Note that this example does not depend upon how the distance
function dS is defined.

514



is a temporal variant of K and (iii) there is no other tempo-
ral variant K′′ of K such that K′′ ∪ {a} is consistent and
dT (K,K′′) < dT (K,K′). As in the case with the previous
two revision strategies, there can be multiple temporally op-
timal variants - see footnote 4. We denote this temporally
optimal variant of K w.r.t. atom a by ut.

In this section, we do not make the bounded time as-
sumption. Should we make the bounded time assumption,
a counter-example similar to example 5 would make AGM-
compliant temporal revision impossible in the general case.

Theorem 3. Suppose K is a PST-KB and a is an insertion.
Checking ifK′ is a temporally optimal variant ofK is coNP-
hard.

Proof. For space reasons, we only sketch the proof.
We show a reduction from a special coNP-complete deci-

sion version of the knapsack problem specified by (W =
{wi}, c, X = {xi}) where we are given n items with
weights w1, . . . , wn and values of 1. Determining if an as-
signment X = {xi|1 ≤ i ≤ n ∧ xi ∈ {0, 1}} maximizes∑n

j=1 xj subject to
∑n

j=1 wjxj ≤ c is coNP-complete. We
show a reduction from a problem instance (W, c,X) to an
instance (K, a,K′) of the temporally optimal variant prob-
lem. Let S = {p1, . . . , pn+1}, and let there be one object
id. We will use two time points: 0 and 1, and the reach-
ability predicate is always true. Let tot =

∑n
j=1 wj and

let K =
{(

id, {pi}, 1,
[

wi

tot ,
wi

tot

])∣∣ 1 ≤ i ≤ n
}

. The revi-
sion atom will be a =

(
id, {p1, . . . , pn}, 1,

[
0, c

tot

])
. Let

K′ = {(id, {pi}, xi, [ wi

tot ,
wi

tot ])|1 ≤ i ≤ n}. Since X max-
imizes

∑n
j=1 wjxj subject to

∑n
j=1 xj ≤ c iff K′ ∪ {a}

is a temporally optimal variant of K via a, this problem is
coNP-hard.

The TemporalRevision(K, a) algorithm works via unary
temporal variants. (id, r, t′, [`, u]) is a unary temporal vari-
ant of (id, r, t, [`, u]) iff abs(t − t′) = 1. The algorithm
creates a search tree - each node N in the search tree has
an N.KB field. The root of the search tree is initialized to
Root.KB = K. Every child C of a node N is just like
N except that exactly one PST atom in N.KB is replaced
by a unary temporal variant. Further, each child knowledge
base is required to be further (according to dT ) from K than
its parent. When visiting a node N , the algorithm checks
if N.KB ∪ {a} is consistent. By creating and visiting this
tree in breadth first order, we are guaranteed that the first
node that satisfies this consistency check is an optimal tem-
poral variant of K that accomplishes the insertion of a.

Theorem 4. Algorithm TemporalRevision is correct, i.e.
TemporalRevision(K, a) returns a temporally optimal vari-
ant of K that accomplishes the insertion of a as long as a is
consistent. It returns “error” iff a is inconsistent. Moreover,
TemporalRevision(K, a) satisfies the AGM axioms.

Minimizing Probability Change
In this section, we propose a belief revision operator that
replaces PST-atoms of the form (id, r, t, [`, u]) inK by PST-
atoms (id, r, t, [`′, u′]) where [`, u] ⊆ [`′, u′]. In other
words, this belief revision operator expands the probability

Algorithm 1 TemporalRevision(K, a) Search over potential tem-
poral changes to K.

If {a} is inconsistent, return “error”.
Get new node Root. Set Root.KB = K;
TODO = [ Root ]. {TODO is an ordered list.}
while True do

Let nextTODO be an empty list.
{iterate over TODO in order.}
for N in TODO do

if N.KB ∪ {a} is consistent return N.KB ∪ {a}.
Insert each child of N into nextTODO.

end for
Let TODO=nextTODO.
sort TODO with strict total ordering OT (see footnote 4).

end while

bounds of PST atoms in K in order to retain consistency
when a is added. Obviously, we want to minimize the ex-
pansion of the probability interval [`, u] to [`′, u′].
Definition 9. Suppose a = (id, r, t, [`, u]) is a PST-
atom and [`, u] ⊆ [`′, u′]. Then the PST-atom a′ =
(id, r, t, [`′, u′]) is called a weakening of a. The distance,
dP (a, a′) between a and a′ is defined as (`− `′) + (u′− u).

A PST-KB K′ is called a weakening of a PST-KB K iff
there is a bijection β from K to K′ such that for all a ∈ K,
β(a) is a weakening of a. The distance dP (K,K′) between
K and K′ is defined as Σa∈KdP (a, β(a)).

In most cases, β can be derived directly by manipulating
the probability bounds associated with a PST-atom a ∈ K.
In the sequel we assume β is known.
Definition 10. SupposeK is a PST-KB and a is a PST-atom.
A weakening K′ of K is called an optimal weakening of K
w.r.t. the insertion of a iff: (i) K′ ∪ {a} is consistent and (ii)
for every other weakening K′′ of K such that K′′ ∪ {a} is
consistent, dP (K,K′) ≤ dP (K,K′′).

We can find an optimal weakening of PST-KBs by set-
ting up a linear program with variables vid,t,p,q each repre-
senting the probability of an object id being at location p at
time t and at location q at time t + 1. We limit the range of
id to those objects mentioned in the database and the range
of t to the bounded set T provided a priori (we assume a
bounded set of timepoints T for probabilistic revision). For
each PST-atom ai = (idi, ri, ti, [`i, ui]) in K, we also in-
clude variables lowi and upi for the atoms’ modified lower
and upper bounds.
Definition 11 (Probability Revision Linear Program
(PRLP)). Let PRLP (K, a) contain only the following:

1. For each ai = (idi, ri, ti, [`i, ui]) ∈ K:

(a) 0 ≤
(∑

p∈ri

∑
q∈S vidi,ti,p,q

)
− lowi

(b) 0 ≥
(∑

p∈ri

∑
q∈S vidi,ti,p,q

)
− upi.

(c) `i ≥ lowi, lowi ≥ 0, ui ≤ upi, and upi ≤ 1
2. For a = (id′, r′, t′, [`, u]):

(a) ` ≤
∑
p∈r′

∑
q∈S

vid′,t′,p,q and u ≥
∑
p∈r′

∑
q∈S

vid′,t′,p,q
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3. For each id in the knowledgebase and each t in T

(a) For all p, q ∈ S, vid,t,p,q ≥ 0.

(b)
∑
p∈S

∑
q∈S

vid,t,p,q = 1

(c) For all p, q ∈ S, if ¬reachable(id, p, q): vid,t,p,q = 0

(d) For all p ∈ S:
∑
q∈S

vid,t,q,p =
∑
q∈S

vid,t+1,p,q

We now compute an optimal weakening of K by mini-
mizing the distance function Σai∈KdP (ai, β(ai)) subject to
PRLP (K, a). As in the case of all our revision strategies,
when there are multiple solutions to this linear program, we
assume there is a mechanism to deterministically pick one.
We are now able to define a probabilistic revision strategy.
Definition 12 (Probabilistic Revision). SupposeK is a PST-
KB and a is a PST atom. Let θ be a (deterministically) se-
lected solution of the linear program minimize Σai∈K((`i−
lowi) + (upi − ui)) subject to PRLP (K, a). Return the
PST-KB, denoted K up a defined as

{ (idi, ri, ti, [lowiθ, upiθ])| (idi, ri, ti, [`i, ui]) ∈ K}∪{sa} .

Since the number of points in space and times points is
constant, only the number of objects mentioned in K and
the number of atoms in K affect the number of variables in
PRLP (), which is O(|K|). The number of constraints is
similarly limited by O(|K|). Thus the size of the entire lin-
ear program created by PRLP is polynomial in |K|. Since
solving linear programs is also polynomial (L.G.Khachiyan
1979), and we can assume our mechanism for picking a so-
lution deterministically runs in polynomial time6; hence the
above procedure computes K u a in polynomial time.

This polynomial time probabilistic revision strategy also
satisfies the requisite AGM axioms.
Proposition 2. K up a satisfies (A1)-(A6).

Related Work and Conclusion
There is much work on spatio-temporal logics (Gabelaia et
al. 2003; Merz, Wirsing, and Zappe 2003) in the litera-
ture. These logics extend temporal logics to handle space.
There is also much work on qualitative spatio-temporal the-
ories (for a survey see (Cohn and Hazarika 2001; Muller
1998)). (Shanahan 1995) discusses the frame problem when
constructing a logic-based calculus for reasoning about the
movement of objects in a real-valued co-ordinate system.
(Rajagopalan and Kuipers 1994) focuses on relative position
and orientation of objects with existing methods for qualita-
tive reasoning in a Newtonian framework.

In contrast to these works, we focus on the problem of be-
lief revision in spatio-temporal logics with uncertainty (not
handled in past work). We first build on the framework of
(Parker, Subrahmanian, and Grant 2007) in order to include
the realistic requirement that vehicles have movement con-
straints and velocity constraints and we show how to han-
dle consistency checking in this setting. We then develop

6Such mechanisms clearly exist: consider a strict total order-
ing over the variables which tells the order with which the linear
program solver should minimize variables.

analogs of the AGM axioms to handle insertions into PST-
KBs and evaluate different ways of accomplishing these re-
visions. We show that the max-consistent subset and tem-
poral revision strategies satisfy the AGM axioms, but re-
spectively lead to coNP-complete and coNP-hard problems.
Spatial revisions do not satisfy the AGM axioms. Our final
result shows that probabilistic revision satisfies the AGM ax-
ioms and is polynomially computable making it (to our mind
at least), the preferred option.

Future work will need to focus on how to incorporate
insertions into PST KBs efficiently. This is complex
because in applications involving GPS sensors, updates
occur continuously, leading to a large volume of updates.
Taming this complexity will be quite a challenge and will
perhaps need methods that are even more efficient than the
polynomial strategy of minimizing probability change.
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bile systems. In Pezzè, M., ed., FASE, volume 2621 of
Lecture Notes in Computer Science, 87–101. Springer.
Muller, P. 1998. Space-Time as a Primitive for Space and
Motion . In FOIS, 63–76. Amsterdam: IOS Press.
Parker, A. J.; Subrahmanian, V.; and Grant, J. 2007. A
logical formulation of probabilistic spatial databases. IEEE
TKDE 19(11):1541–1556.
Rajagopalan, R., and Kuipers, B. 1994. Qualitative spatial
reasoning about objects in motion: Application to physics
problem solving. In IJCAI’94, 238–245.
Shanahan, M. 1995. Default reasoning about spatial occu-
pancy. Artif. Intell. 74(1):147–163.

516




