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Abstract

Modern Bayesian Network learning algorithms are time-
efficient, scalable and produce high-quality models; these al-
gorithms feature prominently in decision support model de-
velopment, variable selection, and causal discovery. The
quality of the models, however, has often only been em-
pirically evaluated; the available theoretical results typically
guarantee asymptotic correctness (consistency) of the algo-
rithms. This paper describes theoretical bounds on the quality
of a fundamental Bayesian Network local-learning task in the
finite sample using theories for controlling the False Discov-
ery Rate. The behavior of the derived bounds is investigated
across various problem and algorithm parameters. Empirical
results support the theory which has immediate ramifications
in the design of new algorithms for Bayesian Network learn-
ing, variable selection and causal discovery.

Introduction
State-of-the-art BN-learning algorithms can reconstruct the
complete network representing the data distribution in prob-
lems with thousands of variables. Their empirical learning
quality has been determined by extensive experimentation
(Tsamardinos, Brown, and Aliferis 2006). For some of the
algorithms, theoretical guarantees of their asymptotic behav-
ior have been proven, e.g., they will converge to the correct
network in the sample limit. Unfortunately, there are limited
theoretical guarantees for their finite sample behavior. Boot-
strapping methods are possible but extremely computation-
ally consuming (see Related Work section for more details).
As a result, the practitioner who uses the algorithms is only
provided with a point estimate (i.e. a single network) with
no indication of how close it is to the true one (other than
perhaps its log-likelihood). The inability of algorithms to ac-
company their output with some measure of confidence has
arguably been a significant deterrent from using BN learn-
ing algorithms in many classical analysis settings.

One of the core problems in BN learning is that of iden-
tifying the neighbors of a target variable T in the (un-
known) network that represents the data distribution (lo-
cal learning). We denote the neighbors of T by NT . If
one is able to identify the NT sets efficiently and accu-
rately, then one could identify all edges in a Bayesian Net-
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work by estimating the neighbors for all variables. Sev-
eral BN-learning algorithms first identify and then piece to-
gether these neighbor sets, before proceeding with orient-
ing the edges of the network for the final result. Other
BN-learning algorithms use the neighbor sets to selectively
reconstruct parts of the network of particular interest, if
time does not allow complete reconstruction (Tsamardinos
et al. 2003; Peña, Björkegren, and Tegnér 2005). Two
state-of-the-art algorithms for identifying NT are MMPC
and HITON-PC (Tsamardinos, Brown, and Aliferis 2006;
Aliferis, Tsamardinos, and Statnikov 2003).

The set NT has the following important property: any
variable not in NT can be made probabilistically indepen-
dent of T conditioned on some variable subset of NT . In
other words, for any other variable V , there is a variable
context in which V carries no information for T . Intuitively
then, NT is an important set for the prediction of T . It has
been shown (Tsamardinos and Aliferis 2003) that NT is part
of the set of the strongly-relevant variables as defined by Ko-
havi and John and the Markov Blanket of T , i.e., the mini-
mum variable set required for optimal prediction of T . Suc-
cessful variable selection algorithms for prediction such as
HITON (Aliferis, Tsamardinos, and Statnikov 2003) depend
on first identifying NT in subroutines.

Finally, under some general assumptions, the NT has a
causal interpretation: the set of direct causes and effects
of T (Spirtes, Glymour, and Scheines 2000), where direct
means that no other variable measured in the data causally
intervenes between a variable in NT and the target T .

In this paper, we provide theoretical bounds on the quality
of neighbor identification, NT , from finite sample and for a
broad family of algorithms. Specifically, we provide a bound
on the expected proportion of false positives in the estimated

N̂T . The bound is based on theories of controlling the False
Discovery Rate (Benjamini and Hochberg 1995). The basic
idea of the method is threefold, to: (i) express a BN-learning
task as a multiple testing problem, (ii) approximate or bound
the p-value of a complex hypothesis by the p-values of prim-
itive tests independence, and (iii) use a statistical method for
bounding the multiple testing error. We accompany the the-
ory with corroborating empirical results and we investigate
the behavior of the derived bounds in terms of various prob-
lem and algorithm parameters.

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

1100



Background
We denote random variables as Vi except for the special vari-
able of interest that is denoted by T . Quantities related to a
variable Vi or T use i or T as an index, e.g., ENi. We de-
note sets of variables by upper-case, bold-face letters. We
use calligraphic fonts for special sets of variables such as
the set of all variables considered V . We denote the inde-
pendence of two random variables X and Y conditioned on
a set Z in the unknown data distribution P as I(X;Y |Z) and
the dependence as ¬I(X;Y |Z).
Definition 1. Let P be a joint probability distribution of the
random variables (interchangeably called nodes) in some set
V and G = 〈V, E〉 be a Directed Acyclic Graph (DAG).
We call 〈G, P 〉 a Bayesian network if 〈G, P 〉 satisfies the
Markov Condition: every variable is independent of any
subset of its non-descendant variables conditioned on its par-
ents (Spirtes, Glymour, and Scheines 2000).

The graph of a network in conjunction with the Markov
Condition directly encodes some of the independencies of
the probability distribution and entails others. The faithful-
ness condition below, asserts that the conditional indepen-
dencies observed in the distribution of a network are not ac-
cidental properties of the distribution, but instead due to the
structure of the network.

Definition 2. If all and only the conditional independencies
true in the distribution P are entailed by the Markov condi-
tion applied to G, we will say that 〈G, P 〉 is faithful, and G
is faithful to P (Spirtes, Glymour, and Scheines 2000). A
distribution P is faithful if there exists a graph, G, to which
it is faithful.

Notice that, there are distributions P for which there is no
faithful Bayesian network 〈G, P 〉 (however, these distribu-
tions are “rare”; see (Meek 1995) for details). Also, there
may be more than one graph faithful to the same distribu-
tion P . We define the set of neighbors of T in a graph G
as the set of variables sharing an edge with T and denote

it with NG
T . The following theorem (Spirtes, Glymour, and

Scheines 2000) is arguably the cornerstone of learning BNs
from data using tests of conditional independence:

Theorem 1. In a faithful BN 〈G, P 〉 on variables V: Vi �∈
NG

T ⇔ ∃Zk ⊆ V \ {Vi, T}, s.t. I(Vi;T |Zk)
From the above theorem, it is easy to see that if 〈G, P 〉

and 〈G′, P 〉 are two faithful Bayesian networks (to the same
distribution), then for any variable T , it is the case that

NG
T = NG′

T . Thus, the set of neighbors of T is unique among
all Bayesian networks faithful to the same distribution and
so we will drop the superscript and denote it simply as NT .

Single Tests of Independence
In the context of this paper, single hypothesis testing works
as follows. The null hypothesis of each test of independence,
denoted as Hi,k is that Vi is independent of T conditioned
on Zk, i.e., “Hi,k : I(Vi;T |Zk)”. Each such test, denoted as
T (Vi;T |Zk), computes a test statistic; for several algorithms
working on discrete i.i.d. data this is the G2 statistic; see
(Tsamardinos, Brown, and Aliferis 2006) for details. We

will denote with G2
i,k the statistic calculated during a test of

the form T (Vi;T |Zk) (for some indexing of the subsets of
variables Zk). G2

i,k is a random variable since it depends

on the random sample. We denote the observed value of
G2

i,k in the given sample with gi,k. For a test T (Vi; T |Zk)
the corresponding p-value pi,k of an observed statistic gi,k

is defined as:

pi,k = P (G2
i,k ≥ gi,k|Hi,k)

Intuitively, the p-value is the probability of observing a test
statistic as extreme or more extreme than the one observed
in the given data under the null hypothesis. If this probabil-
ity is lower than a specified significance level α, we reject
the null hypothesis I(Vi;T |Zk) and accept the alternative
¬I(Vi;T |Zk). Rejecting the null hypothesis when it is true
is called a Type I error or a False Discovery. Accepting the
null hypothesis when the alternative is true is called a Type
II error or a false negative. Thus, in the above setting the
probability of Type I error is less than α; we say that the
Type I error rate is controlled at the α level. To calculate a
p-value we need to know the distribution of the test statistic.
The G2

i,k when the corresponding independence holds is dis-

tributed with a χ2 distribution of certain degrees of freedom
that depend on the dimensionality of T , Vi and Zk.

When the null Hi,k cannot be rejected, this is either due to
the alternative (conditional dependence) holding, or insuffi-
cient statistical power. Most algorithms do not perform the
test T (Vi;T |Zk) unless they are confident about the power
of the test. In that case, default rules determine whether to
accept or reject the null without direct use of the data.

Multiple Tests of Independence
When testing multiple hypotheses, defining and measuring
the overall error rate becomes more complicated. An ap-
proach of increasing importance was proposed by Benjamini
and Hochberg (1995) and is based on what is called the False
Discovery Rate (FDR). FDR is the expected proportion of
false positive findings among all the rejected hypotheses.
Benjamini and Hochberg (1995) provided a sequential p-
value method to control the FDR. Their method works as
follows: consider testing H1, . . . , Hm with p-values in the
set P = {p1, . . . , pm}. Let p(1) ≤ . . . ≤ p(m) be the or-
dered p-values and A the desired level for controlling the
FDR. Define

F (P, A) = max{p(i) ∈ P, s.t. p(i) ≤ i

m
A}

Under certain broad assumptions, Benjamini and Hochberg
(1995) show that rejecting all hypotheses Hi, s.t., pi ≤
F (P, A) guarantees that the FDR ≤ A. We can invert the
procedure so that given a threshold t to reject the hypotheses,
it returns the minimum FDR level A guaranteed. We denote
this procedure with F−1(P, t). It is easy to see that for p(i)

the largest p-value less or equal to t, F−1(P, t) = p(i)
m
i .

Discovering the Set of Neighbors NT

Typical algorithms that identify the NT reject the indepen-
dence (null) Hi,k : I(Vi; T |Zk), if and only if pi,k ≤ α. For
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each node Vi ∈ V\{T} they search for a certificate of exclu-
sion from NT , i.e., a subset Zk such that the independence
I(Vi;T |Zk) holds. If one such subset is found, then accord-
ing to Theorem 1 above, Vi �∈ NT ; otherwise, Vi is assumed

to belong in NT . The estimated set of neighbors N̂T is then
returned. If all subsets Z ⊆ V \ {Vi, T} are tested for each
node, then by Theorem 1 an algorithm should return the cor-
rect NT assuming Hi,k ⇔ pi,k > α for all i, k.

An algorithm that considers all subsets Z ⊆ V \ {Vi, T}
requires performing an exponential number of tests for each
variable Vi. This implies that the procedure is prohibitively
computationally expensive on anything but very small prob-
lems. In addition, when sample is finite, the more tests one
performs the higher the probability a pi,k value will obtain
a large value even when the alternative hypothesis holds; in
turn this increases the probability of false negatives and low-
ers the statistical power. Thus, it is highly desirable for both
quality and time-efficiency purposes to minimize the num-
ber of tests required by such procedures. This is achieved
by the following theorem (Aliferis et al. 2007) (see Supple-
mental Material for proof at http://www.dsl-lab.org):

Theorem 2. Let ENT ,ENi be any subsets of variables
such that ENT ⊇ NT and ENi ⊇ Ni. Then,

Vi �∈ NT ⇔ ∃Zk ∈ 2ENT \{Vi,T} ∪ 2ENi\{Vi,T},
s.t. I(Vi;T |Zk)

The theorem dictates that we only need to search for cer-
tificates of exclusion within supersets of NT and Ni; we
call these supersets the extended neighbors (EN) sets. Ob-
viously, the smaller the sets ENT and ENi, the fewer tests
are required to use the above theorem and provide a final

estimated N̂T . In the worst case, ENT = V and there are
no savings relative to using Theorem 1. Typical and state-of-
the-art algorithms employ the theorem to return an estimated
neighbors’ set as shown in the general algorithmic template
of Algorithm 1 (Aliferis et al. 2007).

Algorithms following the template may differ in the

heuristics of initializing ̂ENT (Line 2), the way they al-
ternate between the steps in the loop, the way they search
for a certificate of exclusion (Line 4), and the way they se-

lect the next variable to insert to ̂ENT (Line 6). To see
that such procedures are correct (in the sample limit where
pi,k > α ⇔ I(Vi;T |Zk)), notice that in AlgENT , if

Vi ∈ NT , it will enter ̂ENT and never be removed, since
by Theorem 1 there exist no certificate of exclusion. Thus,

for the returned set it holds that ̂ENT ⊇ NT. Also, if

Vi ∈ ̂ENT , there is no certificate of exclusion within ̂ENT

(Line 4). If also T ∈ ̂ENi, there is no subset for which

I(Vi;T |Zk) for all Zk ∈ ̂ENi. Thus, there is no certificate

for exclusion for Vi in ̂ENT nor in ̂ENi. By Theorem 2, Vi

should belong in NT and so it is retained in N̂T , otherwise
it is removed (Line 15).

Bounding the FDR of Identifying the NT

In this section, we provide procedures for bounding the ex-
pected FDR of any algorithm AlgNT following the template

Algorithm 1 Identify NT

1: procedure AlgENT (T ,D, α)
Input: target variable T ; data D, significance level α.

2: Initialize ̂ENT ⊆ V \ {T}
3: repeat % Arbitrarily alternate steps (a) & (b)

(a) % Search for a certificate of exclusion

4: if ∃Vi ∈ ̂ENT ,Zk ⊆ ̂ENT , s.t., pi,k > α

5: ̂ENT ← ̂ENT \ {Vi} % Remove Vi

(b) % Insert one more variable into ̂ENT

6: ̂ENT ← ̂ENT ∪ {Vi}, where Vi has never

entered ̂ENT before.

7: until there is no change in ̂ENT and all variables

have entered ̂ENT at least once

8: return ̂ENT

9: end procedure

10: procedure AlgNT (T ,D, α)

11: ̂ENT = AlgENT (T ,D, α)

12: N̂T = ̂ENT

13: for Vi ∈ N̂T

14: ̂ENi = AlgENT (Vi,D, α)

15: if T �∈ ̂ENi then remove Vi from N̂T

16: return N̂T

17: end procedure

above. All constraint-based algorithms for identifying the
neighbor set, that we are aware of, belong in this class.

A False Discovery (of a neighbor) occurs when the hy-
pothesis “Hi : Vi �∈ NT ” holds, but it is falsely rejected.
This is a complex hypothesis, but it can be reduced to a log-
ical statement involving only primitive hypotheses of inde-
pendence “Hi,k : I(Vi;T |Zk)”: by Theorem 2 “Hi : ∃Zk ∈
2ENT \{Vi,T} ∪ 2ENi\{Vi,T}, s.t. I(Vi;T |Zk)”. Were we
able to calculate the p-values of such hypotheses, we could
then directly pass them to an FDR procedure. Unfortu-
nately, this calculation is a difficult task but the next theo-
rem bounds these p-values based on the p-values pi,k of the
primitive hypotheses:

Theorem 3. Consider the hypothesis “Hi : ∃Zk ∈ S, such
that I(Vi;T |Zk)”, where S is a set of subsets of variables
of V . Then, for the corresponding p-value pi it holds that:
pi ≤ p∗i , where p∗i = max{pi,k, s.t. Zk ∈ S}.
Proof. If we assume the null hypothesis Hi holds, there
exist at least one Zk ∈ S such that the independence
I(Vi;T |Zk) holds. Then, for any such k we get:

pi = P (G2
i,1 ≥ gi,1, . . . , G

2
i,n ≥ gi,n|Hi) (1)

≤ P (G2
i,k ≥ gi,k|Hi) (2)

= P (G2
i,k ≥ gi,k|I(Vi;T |Zk)) (3)

= pi,k (4)

or equivalently,

pi ≤ pi,k, for any k s.t. I(Vi;T |Zk)
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Algorithm 2 Find an FDR bound

1: procedure B-FDR(T , D, AlgNT , α)
Input: target variable T ; data D, method to find

neighbors of T , AlgNT , significance level α.

2: N̂T = AlgNT (T , D, α)

3: for each variable Vi ∈ N̂T

4: ̂ENi = AlgENT (Vi, D, α)
5: p∗i = max pi,k, for all

Zk ∈ 2N̂T \{Vi,T} ∪ 2dENi\{Vi,T}
6: FDR-bound = F−1({p∗i : Vi ∈ N̂T }, α)
7: return FDR-bound
8: end procedure

Thus, we could bound pi by the minimum of pi,k obtained
when conditioning on a subset Zk for which the indepen-
dence I(Vi, T |Zk) holds. Obviously however, we do not
know for which subsets the independence holds and we
are forced instead to use as a looser and more conserva-
tive bound the maximum pi,k over all possible subsets:
pi ≤ p∗i , p

∗
i = maxk pi,k

Based on this, we could use the bounds p∗i instead of the
actual unknown p-values and form the set P = {p∗i }. Sub-
sequently, we can provide a bound on the FDR based on the
p∗i ’s. Since, the latter ones are conservative, the FDR bound
should also be looser than had we used the actual p-values.
Algorithm 2 returns an FDR bound on the output of any al-
gorithm AlgNT following the template in Algorithm 1.

A few comments on the above procedures. AlgNT con-
trols the false discovery rate at the significance level α of
each primitive hypothesis of independence. It does not con-
trol the FDR of the complex hypotheses Hi : Vi �∈ NT .
B-FDR on the other hand, provides a bound on the FDR of
the complex discoveries Hi’s.

The algorithm B-FDR only calculates the p-value bounds

p∗i for the variables in N̂T and not for all variables in V .
The call to F−1 (Line 6) uses only these p-values. This is

justified as follows: Recall that F−1({p∗i : Vi ∈ N̂T }, α) =
p∗(i)

m
i , for the largest i s.t. p∗(i) ≤ α. Since, for all Vi �∈ N̂T ,

p∗i > α, there is no need to compute and include these p-
value bounds in the call of the F−1 procedure because we
would obtain the same answer.

The basic assumptions of the algorithms are that the data
distribution is faithful, the tests of independence return a p-
value, and the FDR procedure used is correct. There are no
assumptions regarding the shape of the distribution such as
normality.

Another important assumption is that there is enough sta-
tistical power at the α level, so that when Vi ∈ NT , pi,k < α

and so Vi will not be removed from ̂ENT . When this is true

we obtain that ̂ENT ⊇ NT and ̂ENi ⊇ Ni as Theorem 2
requires. In other words, the false discoveries (Type I error)
of the complex hypotheses “Hi : Vi �∈ NT ”, depend both
on the Type I error and on the Type II error of the underly-
ing primitive hypotheses “Hi,k : I(Vi;T |Zk)”. Algorithm

B-FDR guarantees the FDR only by assuming the Type II
error rate at level α is zero.

As already mentioned, to ensure enough power, algo-
rithms AlgNT typically do not perform the test T (Vi;T |Zk)
unless there is enough sample per degrees of freedom. Thus,
another assumption required for the bounds to be accurate is
that when Vi �∈ NT the independence I(Vi;T |Zk) holds
for a test that is actually going to be performed. For large
enough sample and sparse networks this assumption is typi-
cally true.

In terms of the time-complexity of the algorithm, notice
that all required pi,k values are computed during the exe-
cution of the algorithms AlgNT and AlgENT . Thus, with
smart caching of these values computing the maximums p∗i
requires no extra cost, while computing F−1 requires in the
worst case time linear to the number of variables. The time
complexity of AlgNT provided some smart optimizations

are in place is O(|V|·|EN|l+1), where l is the maximum size
allowed for any conditioning set Zk and EN the maximum-
size set of extended neighbors computed (see (Tsamardinos,
Brown, and Aliferis 2006) for details).

Experimental Results
For the experiments that follow we have selected the net-
works Alarm, Child, Insurance, Gene, and Pigs (37, 20, 27,
801, and 441 variables respectively) from real decision sup-
port systems. We have sampled 5 datasets from the distribu-
tion of each network and run B-FDR on all datasets targeting
every variable in the first three networks and 37 nodes ran-
domly chosen from the latter two for a total of 790 runs:
158 variables × 5 samplings. The underlying instantiation
of AlgNT is the algorithm MMPC (Tsamardinos, Brown,
and Aliferis 2006).

Figure 1 plots the average true FDR found for a variable
(over all samplings), i.e. the percentage of false positives

in N̂T , versus the average FDR bound returned by B-FDR
(158 points per graph). We expect the bound to be larger
than the observed FDR and so all points in the graphs to
fall below the diagonal, minus some statistical fluctuations.
Ideally, we would also desire the bound to be tight and for
each point to fall exactly onto the diagonal. Theoretically,
this is not expected to be the case, since we are unable to
compute the exact p-values of the complex hypotheses.

In the first set of experiments (first row, Figures 1(a)-(c))
the parameter α is set to 0.05, while the sample size ranges
in the set {10000, 5000, 1000}. In the second set of ex-
periments (second row, Figures 1(d)-(f) and Figure 1(b)) we
have fixed the sample size to 5000 and varied the α parame-
ter within the set {0.01, 0.05, 0.10, 0.15}.

Focusing on the first row, we see that in Figures 1(a) and
1(b), the FDR bound is indeed accurate and most points fall
below or close to the diagonal. Certain small deviations are
expected due to statistical fluctuations, since the theoretical
bounds regard the average (expected) behavior. For sample
size 1000 however, Figure 1(c) we see that the FDR bound
calculated fails on many cases. In close inspection of these
results we discovered that for several variables the algorithm
would not perform all necessary tests to remove variables
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Figure 1: The average true FDR vs. the average computed FDR bound returned by B-FDR for 158 variables from real BNs.
Minus statistical fluctuations, points should fall below the diagonal. In Figures (a)-(c) sample size varies. The assumptions
of the method are violated for sample size 1000 with a direct, visual degradation of performance. When the assumptions are
restored, the bound’s accuracy improves (Figure 2). In Figures (d)-(f) and (b) the α-threshold values of the underlying tests of
independence vary while sample size is held constant at 5000. The results are summarized numerically in Table 1.

from the neighbor set. This is due to MMPC determin-
ing that the sample is insufficient relative to the overall de-
grees of freedom of the test to obtain a reasonable statistical
power. Not performing all tests violates the assumptions of
the B-FDR algorithm. In such cases, the theory still holds
for a looser definition of a false discovery: a false discovery

regards a variable Vi ∈ N̂T that can be made independent

of T given a subset Z of either ̂ENT or ̂ENi for which the
test T (Vi;T |Zk) can actually be performed. When we keep
only the variables where all the required tests could be per-
formed, the situation is improved as shown in Figure 2.

There are other minor violations of the assumptions of
B-FDR. In all graphs shown, there are two nodes from the
Insurance network that are systematically above the diago-
nal (compare for example Figures 1(a) and 1(b); these are
the two points between 0.2 and 0.4 true FDR, and above the
diagonal in both figures). For these two variables we deter-
mined the existence of determinism in the Insurance network
and the violation of the faithfulness assumption.

The lower the value of α, the easier it becomes to accept
Hi : Vi �∈ NT and so, as we observe in the figures the true
FDR is lower for lower values of α. As α increases both
the true FDR and its bound increase; the cloud of points is
moving towards point (1,1) in the graph, while staying below
the diagonal.

While useful, the graphs of Figure 1 may be somewhat
misleading since several points fall onto each other, while
outliers visually stick out. We now present two statistics that
summarize and quantify the information in the graphs. Let

tFDR be the true FDR of a run of the B-FDR and bFDR
the FDR bound estimated. We define the average error of
the bound as the average max(tFDR − bFDR, 0) and the
average slack of the bound as the average max(bFDR −
tFDR, 0) over all 790 runs. The error and the slack is the
average underestimation and overestimation of the bound,
respectively. The results are in Table 1.

Both the graphs and the statistics indicate that, provided
the assumptions hold, the algorithm returns bounds that are
accurate across different sample sizes and values of the α
threshold. For example, within the scope of our experi-
ments, for sample size 5000, and α = 0.05 a practitioner
should expect on average overestimating the true FDR by
about 0.5% and underestimating it by 3.5%. Some obvious
trends observed in the table are that the slack decreases with
sample size and increases with α. In terms of computational

complexity, the average time over all runs to compute N̂T

and its bound is 33 seconds. The Pigs network was the most
demanding; excluding it, the average time drops to 12sec.

Related Work
Most early work on estimating errors in BN learning is based
on bootstrapping that is extremely computationally demand-
ing. In Listgarten and Heckerman (2007), an algorithm for
determining the FDR of edge detection in BNs is presented.
The method is based on permutation testing which is more
efficient than bootstrapping but still requires multiple learn-
ing rounds. In addition, the way permutation testing is per-
formed requires one to learn the complete network (global
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Figure 2: The average true FDR versus the average FDR
bound for sample size 1000 when variables violating the as-
sumptions are removed.

Table 1: Summary statistics. Number UE is the number
of runs (out of 790 = 158 nodes × 5 samplings) where the
bound in under-estimated.

Num Ave. Ave.
SS Alpha Fig. UE Error Slack

1000 0.05 1(c) 59 0.018 0.068
1000 0.05 2 26 0.009 0.068
5000 0.05 1(b) 18 0.005 0.034

10000 0.05 1(a) 22 0.006 0.025
5000 0.01 1(d) 12 0.006 0.005
5000 0.05 1(b) 18 0.005 0.034
5000 0.10 1(e) 20 0.006 0.064
5000 0.15 1(f) 16 0.004 0.087

learning) and the orientation of the edges, and is geared to-
ward search-and-score learning algorithms. The permuta-
tion testing procedure presented in the above paper has some
theoretical problems that lead to overestimation of the FDR.
Other related recent work includes (Peña 2008). The algo-
rithm in that paper learns a Markov Blanket of a variable T
(a superset of NT ), concerns only Gaussian Graphical Mod-
els, and finally, it requires conditioning on sets of size al-
most equal to the network area identified; the latter implies
that the general sample requirements of the algorithm are
exponential to the number of variables returned. Finally, in-
teresting related work is presented in (Nilsson et al. 2007).
The problem is to identify all multivariately differentially
expressed genes while controlling FDR and it involves only
unconditional statistical tests; nevertheless it employs sim-
ilar statistical techniques. We intend to further explore the
relations to the above algorithms in future work.

Discussion and Conclusions
We have presented an algorithm for bounding the False Dis-
covery Rate of identifying the set of neighbors of a variable
of interest T in any Bayesian Network faithful to a sam-
ple distribution. Preliminary empirical results corroborate
the theoretical properties of the algorithm across a range
of sample sizes and threshold values of the underlying in-
dependence test. One limitation empirically illustrated is
that the method’s accuracy degrades abruptly when the as-

sumptions are violated; this is due to the hard-heuristic rules
of MMPC and all similar constraint-based algorithms that
completely refuse to perform a test of independence unless
it passes some ad-hoc criteria for determining sufficient sta-
tistical power. The idea of the method could possibly be
extended to encompass other BN-learning algorithms and
tasks; it could also be augmented with techniques that bound
the false negative rate or a weighted average of Type I and
Type II errors using more advanced and recent statistical
theories. The algorithm presented has immediate applica-
tions in designing BN-learning algorithms, Markov-Blanket
based (constraint-based) feature selection methods for pre-
diction, and causal discovery methods that we intend to ex-
plore.
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