
Dynamic Distributed Constraint Reasoning

Robert N. Lass, Evan A. Sultanik and William C. Regli
Drexel University

Department of Computer Science
3141 Chestnut St.

Philadelphia, PA 19104
{urlass, eas28, regli}@cs.drexel.edu

Abstract

What local action can agents take, without the benefit of
global knowledge, to produce the best global solution? Many
dynamic distributed systems can be modeled using tech-
niques from distributed constraint reasoning, however, exist-
ing work in the distributed constraint reasoning community
does not address the true dynamism inherent in many real-
world systems.

Introduction
When deploying a dynamic distributed system, one must al-
ways weigh the latency incurred by network communica-
tion against the algorithmic benefit of using a centralized ap-
proach. In some cases, the problem may be changing so fast
or the communications overhead so expensive that a central-
ized algorithm will not be able to maintain stability due to
dynamism and the fact that the system state is distributed
across the network (Dijkstra 1974). It is therefore impera-
tive to emphasize local decision making and autonomy over
a centralized analogue, insofar as it is possible.

Sensor networks, for example, often communicate over a
ad-hoc networks. Such networks suffer from high amounts
of bit and frame errors, requiring constant retransmission of
data. Moreover, mobile ad-hoc networks (MANETs) suf-
fer high packet losses and frame error rates, resulting in
less than 50% of the theoretical maximum throughput being
achieved (Xylomenos et al. 2001). Since MANET network
topology is inherently in flux, the additional messaging over-
head of a centralized control approach can have a significant
negative effect on the controllability, stability, and overall
robustness of the system.

As a motivating scenario consider a series of networked
sensors, as depicted in Figure 1. The sensors are fixed in po-
sition (i.e. guarding the perimeter of a building or the length
of a national border) and they may even have been randomly
dispersed, as in an ad-hoc sensor network (Perkins 2000).
Each sensor has limited rotational degrees of freedom and
has a limited sensing range. Various events can occur that
may dynamically change the situation: an object such as
an automobile could partially or totally obstruct a sensor;
a sensor might fail; a new sensor might become available; a

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Border

Target

Car
c2

c1

c3

c4

Figure 1: An ad-hoc sensor network guarding a border must
reorient after a car blocks c2’s view of the target.

subset of the sensors might have locomotion (e.g. mounted
on a moving vehicle); or the attention of multiple sensors
might be required to investigate a target. How can the sen-
sors coordinate to maximize coverage in spite of any such
events? The purpose of this paper is to formalize dynamic,
distributed, constraint reasoning (DDCR) problems such as
these, and the types of cooperative strategies that could be
used to solve them—ultimately challenging the community
with this problem domain.

Background
Constraint programming (CP) is a paradigm in which prob-
lems are solved by satisfying constraints between variables
rather than executing a series of statements. There are two
primary methods for handling problem dynamism in CP. Of-
ten, the static representation of the problem is updated and
completely re-solved. At the other end of the spectrum,
Assumption-based Truth Maintenance Systems (ATMS) (de
Kleer 1986) are used to handle dynamic CP problems. In
the middle (polynomial space) is the technique of Nogood
Recording (NR) (Schiex & Verfaillie 1993). The primary
shortcoming of these approaches is that they are designed
for centralized computation. It is not obvious how to exe-
cute these algorithms distributedly, nor how to handle agents
with temporally incompatible views of the problem.

Distributed constraint reasoning generally refers to dis-
tributed constraint satisfaction (DisCSP) and distributed
constraint optimization (DCOP). DisCSP was formalized

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

1466



in (Yokoo et al. 1998) and (Zhang & Mackworth 1991).
DCOP is analogous to DisCSP, but allows the constraints to
take on any cost (rather than just a binary cost), and tries
to minimize the total cost of the solution. An early algo-
rithm that has been employed to solve distributed constraint
reasoning problems is self-stabilizing distributed branch and
bound (Yahfoufi & Dowaji 1996).

Petcu has evaluated Dynamic DCOPs in a few recent
works (Petcu & Faltings 2005a; 2005b) as a way to miti-
gate the latency inherent with a centralized solution. Petcu
proposes that self-stabilization, as proposed by Dijkstra (Di-
jkstra 1974), is a fundamental property needed for DD-
COP (Petcu & Faltings 2005b). Self-stabilization is a prop-
erty of an algorithm that is able to start in an arbitrary
state and eventually reach a so-called “good” state. Pre-
sented is an method composed of three self-stabilizing al-
gorithms: DFS, utility propagation, and value propagation.
Petcu also defines a distributed continuous time combinato-
rial optimization problem and proposes an algorithm based
on SDPOP for solving the problem based on the notion of
taking into account the cost of transitioning to a new solu-
tion versus the benefit provided by the new solution (Petcu
& Faltings 2005a). The algorithm is also resilient to vari-
able dynamism, and assignments that are irreversible after
a specified time. In these formalizations of the problem, it
is simply stated that the sets of agents, variables, and con-
straint relation functions can vary over time. An issue with
the DPOP variants is that they implicitly assume that knowl-
edge of such set variances is available to all agents.

In the field of discrete event systems (DES) techniques
have also been developed to generate decentralized con-
trollers in certain cases (Kozak & Wonham 1995). There
exists work that suggests some multiagent systems planning
problems can be solved using DES (Seow, Ma, & Yokoo
2004), but it is still unclear as to whether there is applica-
tion in distributed constraint reasoning problems. Two com-
mon methods for modeling DES are finite automata and petri
nets. Methods have been investigated for representing de-
centralized control (Kozak & Wonham 1995) and constraint
reasoning (Portinale 1997) problems using these modeling
techniques, however, the resulting models grow exponen-
tially with respect to the number of variables and domain
size, thus rendering them infeasible.

Problem Definition & Formalization
Although there has been much interest in the burgeoning
field of distributed constraint reasoning (Zhang & Mack-
worth 1991; Yokoo et al. 1998; Modi et al. 2003;
Petcu & Faltings 2004) and even the dynamic variant of our
focus (Petcu & Faltings 2005b; 2005a), there is no widely
used theoretical framework for distributed constraint reason-
ing (dynamic or not) that takes into account the fact that each
agent may not have perfect knowledge. Constructing such a
framework requires separately modeling each agent’s belief
of the world, which may not be the same as the global view
or what an omniscient entity would know.

Definition 1. There are four components to a Distributed
Constraint Reasoning Problem (DCR): a set of agents, a set

of variables that are to be assigned values by the agents, a set
of domains that contain the values that may be assigned to
said variables, and a set of constraints over the variables’ as-
signments. The objective is to have the agents assign values
(taken from the domains) to their variables such that some
metric over the resulting constraints’ values is either satis-
fied, minimized, or maximized.

Definition 2. Functionally, events are all composed from the
following primitives: Increase the cost of a constraint; De-
crease the cost of a constraint; Give Ownership of a vari-
able to an agent; Add a value to the domain of a variable;
and Remove a value from the domain of a variable. For
example, removal of a variable is functionally equivalent to
removing all of the elements from its domain. Likewise,
deleting an agent is functionally equivalent to giving own-
ership of its variables to another agent. The algorithm used
by agents to solve the problem will add other events, like
those used in DCR algorithms such as value update mes-
sages from Adopt (Modi et al. 2003), or VALUE messages
in DPOP (Petcu & Faltings 2004).

Definition 3. A Context is an assignment of values to vari-
ables for a DCR problem. Essentially, a context is a (possi-
bly partial) solution to a problem. Contexts may be repre-
sented one of two ways, depending on which is more suc-
cinct for the problem being represented:

1. a set of ordered pairs, such as {〈v1,5〉,〈v2,9〉}, meaning
that variable v1 has been assigned value 5 and variable v2
has been assigned value 9; or

2. a function mapping the set of all variables to the set of all
possible values (also including the possibility of a variable
not receiving assignment).

Definition 4. Two contexts are said to be Compatible if they
do not disagree on the assignment of any variables. This is
the standard definition of context compatibility in terms of
static DCR, and is usually caused by one agent proposing
a variable assignment based upon an inaccurate or out of
date belief of another agent’s assignment. In dynamic DCR,
however, contexts can additionally be rendered incompatible
due to any of the problem-altering events listed above. We
shall call this temporal incompatibility.

Definition 5. Each agents’ view of the “Dynamic Dis-
tributed Constraint Reasoning Problem” (DCRP) can
be formalized as a tuple ai ≡ 〈Ai,Vi,Di, fi,αi,σi〉 :

ai this agent;
Ai is an ordered set of agents about which ai knows;
Vi is an ordered set of variables, {v1,v2, . . . ,v|Vi|}

about which ai knows;
Di is an ordered set of domains, {D1,D2, . . . ,D|V |},

where each D∈Di is a finite and/or ordered set con-
taining the values ai believes the associated variable
in Vi may be assigned;

fi is a function mapping all possible contexts (i.e. par-
tial solutions) to a cost. The costs could be in any
metric space.

Two important special cases exist (1) if the costs are bi-
nary, this is a dynamic distributed constraint satisfaction
problem (DDisCSP) (2) if the costs are in N0 ∪∞, the prob-

1467



lem is a dynamic distributed constraint optimization prob-
lem (DDCOP). These are analogous to the well-known static
DisCSP and DCOP problems (see Definition 1). When the
context is represented as a set of ordered pairs, fi can be
formalized as follows:

fi :
⋃

S∈P(V )
∏
vi∈S

({vi}×Di)→ M,

where “P(V )” denotes the power set of V and “∏”, “×”
represent the Cartesian product and M is some metric space;

αi is a function αi : Vi → Ai mapping variables to their
associated agent. αi(vi) 7→ a j implies that it is agent
a j’s responsibility to assign the value of variable vi.
Note that it is not necessarily true that αi is either an
injection or surjection; and

σi is an operator that aggregates the fi costs for all
combinations of assignments in a given context. In
the special cases of DDCOP and DDisCSP, this is
summation and conjunction, respectively.

When an event is sensed by an agent, it processes the
event. The event may change any of the items listed in Def-
inition 2. For example, if ai senses an event indicating that
agent, a j no longer has one of the previous values in its do-
main, it will remove that value from D j ∈Di.

Research issues that arise are (1) Knowledge and informa-
tion about changes must be disseminated to relevant agents.
(e.g. If a sensor goes down, when will other agents find out?)
If all agents start off with a global view of the problem, then
∀〈ai,a j〉,ai ≡ a j. Once an event occurs that not all agents
see, ∃〈ai,a j〉,ai 6≡ a j. In this situation, temporally incom-
patible contexts (see Definition 4) may force the agent who
sensed the event to forward it to agents it is exchanging mes-
sages with. (2) The state may change so rapidly that the al-
gorithm never stabilizes (Dijkstra 1974). For example, how
well can the agents monitor the border if the sensors go up
and down every few seconds? If events occur more rapidly
than they can be sent or agents can send messages, no algo-
rithm will be able to optimally solve the problem. (3) Agents
may be able to predict events. (e.g. Agents may know that
sensors have a certain maintenance schedule, during which
time they are unavailable.) If agents are able to predict the
occurrence of events in advance, they may be able to solve
for periods of rapid change before they actual occur, thus
making an intractable problem tractable. (4) Events will
change the optimal solution. If an agent has a stable solu-
tion, and processing the event does not make the solution
inconsistent, no further action is neede. We will call this a
neutral event. If an agent has a stable solution and process-
ing the event makes the solution inconsistent, then we call
this as disruptive event. If the event creates a situation where
the agent must restart its algorithm (i.e. it cannot re-use any
of the previous computation), then we call this a destructive
event.

Example Formulation & Analysis
For each sensor, ci ∈ C, create an agent ai ∈ A and give it
ownership of one variable vi ∈V . The domain of each vari-

Messaging
PERFECT IMPERFECT

Event PERF. SDPOP Adopt Variant
Sensing IMPR. DDCR Adapter DDCR Adapter

Table 1: A possible partitioning of DDCR algorithms

able is the set of all pairs 〈θx,θy〉, where each θ is between
0 and 360 in steps of 15.

The cost function, f , for a given sensor, c, is the sum of
all targets within the range of c that are not in view of any
sensor. In a practical system, there are at least two obvious
ways this could be implemented. First, each target could be
equipped with a simple networked computing device. The
sensors could notify targets when they are looking at them
periodically. If a target did not receive any messages after
a fixed length of time, it would know it is unmonitored. To
calculate f , each sensor could query each target in range. A
second method, useful when the targets are adversarial, is to
have each sensor communicate with every other sensor that
can see each target in its own range.

α and σ remain as defined in the formalization at the be-
ginning of this section.

How well can an algorithm perform, given these restric-
tions? If a system changes slowly enough, one approach is to
use an algorithm from the DCR community to re-solve the
problems every time it changes. If privacy and bandwidth
are not a concern, each agent could send its partial prob-
lem to a central location and employ an algorithm from the
CP community. If the problem is small enough, techniques
from DES could be used to compute an optimal distributed
controller. In any of these cases, this would guarantee an
optimal solution.

In some environments, such as communication over a
wired enterprise network, agents may be able to freely in-
terchange messsages. In other environments such as mo-
bile ad-hoc networks with poor link quality, however, mes-
sage interchange may be very expensive. In mobile robotics
with limited battery power, changing the solution may be
costly. What types of environments are suited to which algo-
rithms? Given that the best algorithm is often a function of
the agent’s environment, the measure of effectiveness must
be tied to the measures of performance when evaluating the
algorithms. Certain levels of performance may preclude an
optimal level of effectiveness.

One way of classifying algorithms is based on the as-
sumptions that need to be satisfied in order for the algorithm
to function properly. For example, as depicted in Table 1 the
space of algorithms could be divided based on whether or
not the algorithm assumes events are instantaneously sensed
by all participating agents, and whether or not the algorithm
assumes perfect message delivery.

There are a number of trade-offs that an agent functioning
in a dynamic environment may have to make. As an exam-
ple using the border guarding scenario, consider the situa-
tion where an agent, a is constrained with an agent, b. The
sensor controlled by b is viewing a busy road, and is con-
stantly changing its position due to obstruction by moving

1468



Out

In

Reset

DCR Algo.

Adapter

Out

In

Reset

DCR Algo.

AdapterM
es

sa
ge

Message

Message

M
essage

Message

Message

Network

Figure 2: The DDCR ADAPTER approach to solving dy-
namic distributed constraint reasoning problems.

automobiles. a is constrained with several other variables
with relatively stable values. It might be best for a to ignore
its constraint with b, rather than change its value rapidly, up-
setting the other agents with which it is constrained, causing
a chain-reaction of instability across the network.

Proposed Solution & Future Work
In this section we propose a simple extension to existing
DCR algorithms to cover the southern quadrants of Table 1,
which there are currently no known algorithms for. This al-
gorithm is proposed as a starting point for the community,
and we do not mean to imply that this is the best solution.

The algorithm, DDCR Adapter (Figure 2), is similar to the
adapter design pattern used in software engineering (Gamma
et al. 1995). Consider an interface to a known DCR algo-
rithm, such as Adopt, that has some knowledge about the
internals of the algorithm. When any message is received,
such as an event or a standard Adopt message, the interface
acts as a filter, and takes appropriate action. If it is a neu-
tral event, no action is required. If it is a disruptive event,
it will modify the algorithm in the appropriate fashion. For
example, if the cost of a constraint increases, the adapter can
notify Adopt of the cost increase, and Adopt can handle the
event naturally (i.e. it can update fi to use the new cost, and
continue execution). If it is a destructive event, the interface
“presses a reset button,” effectively starting the algorithm
over again. This requires relaying a restart message between
all of the adapters, so that other agents will know that they
must restart the algorithm as well. Determining on which
iteration of the algorithm could be accomplished by times-
tamping messages using Lamportian clocks, but the actual
implementation is outside the scope of this paper.

This paper introduced a type of problem called dynamic,
distributed constraint reasoning. This problem draws largely
from the field of distributed constraint reasoning, but adds
the complicating factor of dynamism. We partitioned the
space of possible DDCR algorithms into four possible cat-
egories, and presented a simple extension to existing DCR
algorithms, DDCR Adapter, to cover to two categories for
which no current algorithm existed.

This paper presents a challenge to the community, and

DDCR Adapter as a starting point. Future work includes bet-
ter techniques and algorithms for solving DDCR problems,
as well as new applications of DDCR to existing, real-world
problems. Another challenge is to measure the performance
of existing algorithms in different environments, which has
proved challenging in the DCR community.

References
de Kleer, J. 1986. An assumption-based truth maintenance
system. Artificial Intelligence 28(2):127–162.
Dijkstra, E. W. 1974. Self-stabilizing systems in spite of
distributed control. Comms. of the ACM 17(11):643–644.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley Longman Publishing.
Kozak, P., and Wonham, W. 1995. Fully decentralized
solutions of supervisory control problems. IEEE Trans. on
Automatic Control 40(12):2094–2097.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M.
2003. An asynchronous complete method for distributed
constraint optimization. In Proc. of AAMAS, 161–168.
Perkins, C. E. 2000. Ad Hoc Networking. Addison-Wesley.
Petcu, A., and Faltings, B. 2004. A distributed, complete
method for multi-agent constraint optimization. In Pro-
ceedings of the Fifth International Workshop on DCR.
Petcu, A., and Faltings, B. 2005a. R-DPOP: Optimal solu-
tion stability in continuous-time optimization. In Proceed-
ings of the Sixth International Workshop on DCR.
Petcu, A., and Faltings, B. 2005b. S-DPOP: Superstabi-
lizing, fault-containing multiagent combinatorial optimiza-
tion. In Proceedings of AAAI, 449–454.
Portinale, L. 1997. Modeling and solving constraint satis-
faction problems through petri nets. In Proceedings of the
18th International Conference on Application and Theory
of Petri Nets, 348–366. Springer-Verlag.
Schiex, T., and Verfaillie, G. 1993. Nogood recording for
static and dynamic constraint satisfaction problems. Tools
with Artificial Intelligence 48–55.
Seow, K.-T.; Ma, C.; and Yokoo, M. 2004. Multiagent
planning as control synthesis. In Proceedings of AAMAS,
972–979. IEEE Computer Society.
Xylomenos, G.; Polyzos, G.; Mahonen, P.; and Saaranen,
M. 2001. TCP performance issues over wireless links.
IEEE Communications Magazine 39(4):52–58.
Yahfoufi, N., and Dowaji, S. 1996. A self-stabilizing dis-
tributed branch-and-bound algorithm. The IEEE 15th An-
nual Phoenix Conf. on Computers and Comm. 246–252.
Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K. 1998.
The distributed constraint satisfaction problem: formaliza-
tion and algorithms. IEEE Transactions on Knowledge and
Data Engineering 10(5):673–685.
Zhang, Y., and Mackworth, A. K. 1991. Parallel and dis-
tributed algorithms for finite constraint satisfaction prob-
lems. In Proceedings of the IEEE Symposium on Parallel
and Distributed Processing, 394–397.

1469




