The NERO Video Game

Kenneth O. Stanley
School of Electrical Engineering and Computer Science, The University of Central Florida, Orlando, FL 32816 USA
kstanley@cs.ucf.edu

Igor Karpov and Risto Miikkulainen
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712-0233 USA
{ikarpov, risto}@cs.utexas.edu

Aliza Gold
Digital Media Collaboratory, IC² Institute, The University of Texas at Austin, Austin, TX 78705 USA
aliza@icc.utexas.edu

Abstract
In the NeuroEvolving Robotic Operatives (NERO) game, the player trains a team of virtual robots for combat against other players’ teams. The virtual robots learn in real time through interacting with the player. Since NERO was originally released in June, 2005, it has been downloaded over 50,000 times, appeared on Slashdot, and won several honors. A significant update was released in November, 2005, including improved performance, new battle mode options, and faster learning. The virtual robots learn using the real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method, which can evolve increasingly complex artificial neural networks in real time as a game is being played. The live demo will show how agents in NERO adapt in real time as they interact with the player in the new, updated game. In the future, rtNEAT may allow new kinds of educational and training applications through interactive and adapting games.

Description
Machine learning can potentially both increase the longevity of video games and decrease their production costs (Fogel, Hays, & Johnson, 2004). Yet machine learning is both one of the most compelling yet least exploited technologies used in interactive digital entertainment. Thus, there is an opportunity to make video games more interesting and realistic, and to build entirely new genres. Such enhancements may have applications in education and training as well, changing the way people interact with their computers.

In the video game industry, the term non-player-character (NPC) refers to an autonomous computer-controlled agent in the game. This demonstration will focus on training NPCs as intelligent agents, and the standard AI term agents is therefore used to refer to them. The behavior of such agents in current games is often repetitive and predictable. In most video games, simple scripts cannot learn or adapt to control the agents: Opponents will always make the same moves and the game quickly becomes boring. Machine learning could potentially keep video games interesting by allowing agents to change and adapt. However, a major problem with learning in video games is that if behavior is allowed to change, the game content becomes unpredictable. Agents might learn idiosyncratic behaviors or even not learn at all, making the gaming experience unsatisfying. One way to avoid this problem is to train agents to perform complex behaviors offline, and then freeze the results into the final, released version of the game. However, although the game would be more interesting, the agents still cannot adapt and change in response to the tactics of particular players.

If agents are to adapt and change in real-time, a powerful and reliable machine learning method is needed. This demonstration will introduce such a method, a real-time enhancement of the NeuroEvolution of Augmenting Topologies method (NEAT; Stanley & Miikkulainen, 2002, 2004). NEAT evolves increasingly complex neural networks, i.e. it complexifies. Real-time NEAT (rtNEAT) is able to complexify neural networks as the game is played, making it possible for agents to evolve increasingly sophisticated behaviors in real time. Thus, agent behavior improves visibly during gameplay. The aim is to show that machine learning is indispensable for an interesting genre of video games, and to show how rtNEAT makes such an application possible.

In order to demonstrate the potential of rtNEAT, the Digital Media Collaboratory (DMC) at the University of Texas at Austin initiated, based on a proposal by Kenneth O. Stanley, the NeuroEvolving Robotic Operatives (NERO; Stanley, Bryant, & Miikkulainen, 2005a,b) project in October of 2003 (http://nerogame.org). The idea was to create a game in which learning is indispensable, in other words, without learning NERO could not exist as a game. In NERO, the player takes the role of a trainer, teaching skills to a set of intelligent agents controlled by rtNEAT. Thus, NERO is a powerful demonstration of how machine learning can open up new possibilities in gaming and allow agents to adapt.

The learning agents in NERO are simulated robots, and
Scenario 1: Enemy Turret
Scenario 2: 2 Enemy Turrets
Scenario 3: Mobile Turrets & Walls

Figure 1: A turret training sequence. The figure depicts a sequence of increasingly difficult and complicated training exercises in which the agents attempt to attack turrets without getting hit. In the first exercise there is only a single turret but more turrets are added by the player as the team improves. Eventually walls are added and the turrets are given wheels so they can move. Finally, after the team has mastered the hardest exercises, it is deployed in a real battle against another team.

Figure 2: Successfully navigating a maze. The agents spawn from the left side of the maze and proceed to an enemy at the right. They learn to navigate mazes through gradual training on increasingly difficult wall configurations.

the goal is to train a team of these agents for military combat. The agents begin the game with no skills and only the ability to learn. In order to prepare for combat, the player must design a sequence of training exercises and goals. Ideally, the exercises are increasingly difficult so that the team can begin by learning basic skills and then gradually build on them (figure 1). When the player is satisfied that the team is well prepared, the team is deployed in a battle against another team trained by another player, making for a captivating and exciting culmination of training. The challenge is to anticipate the kinds of skills that might be necessary for battle and build training exercises to hone those skills.

Behavior can be evolved very quickly in NERO, fast enough so that the player can be watching and interacting with the system in real time. The game engine Torque, licensed from GarageGames (http://www.garagegames.com/), drives NERO’s simulated physics and graphics. Agents can learn diverse skills that are useful for battle while interacting with the player. Skills that players have taught the agents include avoiding an enemy, dodging turret fire, and navigating complex mazes (figure 2) without any path-planning algorithm, that is, agents learn to navigate mazes on their own.

NERO creates new opportunities for interactive machine learning in entertainment, education, and simulation. This demonstration will present both rtNEAT and the newest version of NERO, which has been substantially updated from its original release last year. The new version includes enhanced performance, a new sensor editing utility, and new gameplay features such as multiplayer battle queuing on the internet and a smite option for ejecting poorly-performing robots by hand. Learning has also been accelerated. This fully-playable version is available for free on the internet, and the demonstration will exhibit its novel AI capabilities.

Website with Free Download
The main website for the NERO project is http://nerogame.org. In addition to downloading NERO, visitors can find project information, screenshots, credits for the numerous volunteers who have contributed work, and movies.

References