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Abstract

This paper describes an extension to the RAP system
task-net semantics and representation language to en-
able the effective control of continuous processes. The
representation addresses the problems of synchroniz-
ing plan expansion with events in the world, coping
with multiple, non-deterministic task outcomes, and
the description of a simple form of clean-up task.
It is also pointed out that success and failure need no
special place in a task network representation. Success
and failure are really messages about the execution
system’s knowledge and do not explicitly define that
system’s flow of control.

Introduction
Recently, AI researchers have proposed several dif-
ferent mechanisms for programming robots reactively.
These include collections of behaviors (Brooks 1986),
schemas (Arkin 1987), routines (Gat 1992), and 
flexes (Payton 1986). Many details differ between
these proposals, particularly in the area of philosophi-
cal commitment, but they share the common idea that
the actual behavior of the robot at any given moment
is the result of a set of interacting processes acting on
input from the environment. Thus, the behavior of
the robot (i.e., its apparent immediate goal) can 
changed by changing the set of active processes. This
idea has been discussed by several authors and it allows
some aspects of robot control to be described in terms
of concurrent processes while other aspects are de-
scribed in terms of discrete, symbolic steps that enable
and disable those processes (Firby 1992; Slack 1992;
Gat 1991; Firby & Swain 1991; Payton 1990).

Given that a desired robot action is obtained by en-
abling an appropriate set of processes, there is still the
problem of telling when a particular goal has been at-
tained or when a situation has arisen that prevents
that goal from being attained. Often the processes
themselves can detect important states of the world,
particularly those in which the process is not function-
ing properly. It will also often be necessary to use
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processes to detect transient conditions reliably. We
assume that when processes detect various conditions,
either good or bad, they will generate asynchronous
signals. Depending on the programming model used,
signals might be generated by processes directly, they
might correspond to particular values appearing on
wires connecting behaviors, or they might occur when
a particular process is invoked. In all cases, however,
signals will be fairly low-level messages from some pro-
cess that. does not always know the goals it will be used
to achieve.

The Animate Agent Architecture
The Animate Agent Architecture attempts to integrate
these ideas using the interface between reactive exe-
cution and continuous control illustrated in Figure 1.
The RAP system takes tasks and refines them into com-
mands to enable appropriate sensing and action pro-
cesses for the situation encountered at run time. Typi-
cally, processes will be enabled in sets that correspond
to the notion of discrete "primitive steps" that will
reliably carry out an action in the world over some
period of time. Slack has dubbed such collections of
processes "reactive skills" (Slack 1992). The RAP sys-
tem produces goal-directed behavior using this idea by
refining abstract plan steps into a sequence of different
configurations for a process-based control system.

Controlling Processes with the RAP
System
Once a set of processes has been started up, the RAP
system relies on signals to tell it when the desired ac-
tivity is complete and how it came out. Since the rea-
son for invoking a set of processes is not known to the
processes themselves, the RAP system must interpret
signals in context. The same signals might mean dif-
ferent things in different plans. For example, a process
for approaching a given target might be used to move
up to a fixed object in the world or it might be used
to follow a moving target around. A signal saying that
the target has been reached means the task is complete
when approaching but it means the object is too close
when following.
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Figure 1: The Animate Agent Architecture

Thus, a RAP task description must:

1. Allow concurrent threads of execution so that mul-
tiple control processes can be started up together.

2. Represent when to proceed to the next subtask in
a method given that the task must wait, for certain
signals to do so.

3. Describe methods for a task that allow different next.
steps when different signals ~tre received.

This paper discusses these issues and presents a new
task method representation language for the RAP sys-
teln.

The RAP System
The RAP system is designed for the reactive execution
of syxnbolic plans. A plan is assumed to include goMs,
or tasks, at a variety of different levels of abstraction
and the RAP system attempts to csrry out each task
in turn using different ,nethods in different situations
and dealing with comrnon problems and simple inter-
r.ptions.

In the RAP system a task is described by a RAP which
is effectively a context sensitive program for carrying
out tim task. The RAP can also be thought of as de-
scribing a variety of plans for achieving the task in
different situation. For the purposes of this paper, the
important aspects of a RAP task description are the
SUCCEED and METtleD sections.

For example, the following RAP describes how to pick
something up in the simulated delivery world used in
initial RAP system development (Firby 1989: Firby
IIanks 1987):

(define-rap (arm-pickup ?arm ?thing)
(succeed (ARM-HOLDING ?arm 7thing))
(method

(context (not (TOOL-NEEDED ?thing ?tool true)))
(task-net

(tl (arm-move-to ?arm ?thing) (for 
(t2 (arm-grasp-thing ?arm ?thing)) 
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(method
(context (T00L-NEEDED ?thing ?tool true))
(task-net

(tl (arm-pickup ?arm ?tool) (for 
(t2 (arm-move-to ?arm ?thing)(for 
(t3 (arm-grasp-thing ?arm ?thing) )) 

’this RAP has two methods for achieving the goal.
The SUCCEED clause is a predicate checked against
memory to see if the overall task is complete. Each
MET’IIOD specifies a plan, or TASK-NET. for achieving
the SUCCEED condition in a given CONTEXT. [,iko the
SUCCEED clause, each CONTEXT is a predicate to be
checked in memory. This paper is about writing a’ASK-
.~,TS that link subt.asks, process invocations, and sig-
nal interpretation into a coherent plans.

The RAP system (Firby 1987; 1989) carries out tasks
using the following algorithm. First, a task is selected
for execution and if it represents a primitive action, it
is executed directly, otherwise its corresponding RAP

is looked qp in the library. Next. that RAP’s check for
success is used as a query to the situation dcscription
and, if satisfied, the task is considered complete and
the next task can be run. IIowever, if the task has
not yet been satisfied, its method-applicability tests
arc checked and one of the methods with a satisfied
test is selected. Finally, the subtasks of the chosen
method are queued for execution iu place of the task
being executed, and that task is suspended until the
chosen method is complete. When all subtasks in the
metimd hav,, been executed, the task is reactivated
and its completion test is checked again. If all went
well the completion condition will now bc sat isfied and
execution can proceed to the next ta,sk. If not, method
selection is repeated anti another method is attempted.

Task/Goal Semantics
An important aspect of representing and cxec, ting a
plan is the meaning of a subgoal or subtask. The
RAP system was originally written assuming that RAP
method subtasks can be treated as atomic. From the
point of view of the method using a subtask, it will ei-
ther succeed or fail, and it will not complete until that
s.cccss or failure is known.

Fail

¢
Approao. T0rgo, ..-Soc0ood

(task-net
(t I (approach-target ?target)))

Figure 2: A Symbolic, Discrete Task

For example, the t,ask network shown in Figure 2
contains one suhtask and once that suhtask is spawned
by the interpreter, further processing of the method
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will stop until the subtask completes. It is assumed
that the subtask will either succeed, in which case the
interpreter should continue processing the task net-
work after the task (from the black dot in the figure)
or it will fail, in which case the method as a whole
should fail and all of its subtasks should be terminated
(in this example there aren’t any).

This representation and semantics for a subtask (or
method, or plan), assumes that it is appropriate to ex-
ecute the next step in a method as soon as a subtask
completes. This assumption is pervasive in the liter-
ature and it makes perfect sense when subtasks are
truly atomic. In fact, one of the motivating ideas be-
hind the RAP system is to try and make this property
hold by working on each task until it is known to have
succeeded.

This semantics also embodies another, more subtle
assumption. It assumes that a subtask actually has
a well-defined finish and will know when it has suc-
ceeded or failed. This assumption also makes sense
when actions are atomic. In fact, this assumption is
what makes actions primitive or atomic.

Continuous Tasks and Signals

Unfortunately, given the low-level robot control system
used in the Animate Agent Architecture, neither of
these assumptions holds. Goals are achieved by sets
of processes that must be enabled independently and
detecting goal completion depends on the appropriate
interpretation of signals from those processes. Thus,
RAP methods must explicitly define which signals mean
a subtask has succeeded and which signals mean it has
failed.

When robot activity is controlled by enabling and
disabling sets of processes, time must pass while the
activity is underway. If the RAP system does the en-
abling and disabling explicitly, methods must have a
way to let time pass and synchronize further task ex-
pansion with process progress.

We have adopted a task net annotation that tells
the interpreter to WAIT-FOR a given signal before pro-
ceeding to the next subtask in a method (this idea
is closely related to McDermott’s notion of blocking
a task thread while waiting for a fluent (McDermott
1992)). For example, a method to approach a fixed
target might look like that shown in Figure 3.

This method executes the subtask approach-target
and then waits for either an (at-target) signal or 
(stuck) signal. If the (at-target) signal is received
first, then this subtask succeeds and if (stuck) ar-
rives first, this subtask fails and other subtasks in the
method are terminated.

The diagram shows WAIT-FOR clauses as gating con-
ditions for letting the interpreter proceed with execut-
ing the method. The black dots correspond to the more
traditional interpretation of when the subtask has com-
pleted.

Fail (Terminate)

Stuck--~
, F At Target

¢] Approach Target~Succeed
~ (Proceed)

(task-net
(tl (approach-target ?target)

(salt-for (at-target) :proceed)
(wait-for (stuck) :terminate)))

Figure 3: Waiting for A Signal to Proceed

Concurrent Tasks

The RAP task net representation has always supported
non-linear methods with parallel threads of execution.
This ability to support concurrent tasks is critical when
the RAP system is being used to enable and disable
processes in concurrent sets. For example, consider
the method shown in Figure 4.

Fail (Terminate)

Stuck--~
. FAt Target

Approach Target ~ Succeed
(Proceed)

Track Target

Lost Target---~
Camera Problem --~ V

Fail (Terminate)

(task-net
(tl (approach-target ?target)

(wait-for (at-target) :proceed)
(wait-for (stuck) :terminate))

(t2 (track-target ?target)
(wait-for (lost-target) :terminate)
(wait-for (camera-problem) :terminate)
(until-end tl)))

Figure 4: A Simple Concurrent Task Net

Both of the primitive processes approach-target
and track-target must be active to get the robot to
visually servo to a selected fixed object. The task net
does not order these tasks and the interpreter follows
two threads of execution. Choosing one thread to fol-
low first, the interpreter starts the indicated process
and then blocks that thread until receipt of one of the
indicated signals. While that thread is blocked, the in-
terpreter follows the other thread, enabling the other
process and blocking that thread while waiting for one
of its signals. The until-end annotation in the task
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net tells the interpreter that subtask t2 should be ter-
minated whenever subtask tl completes. The only way
this method can complete successfully is to receive the
(at-target) signal from process approach-target.I

The critical step in concurrent RAP task process-
ing when primitive actions start processes rather than
achieve goals is not getting concurrent task expansion
to work, but rather, stopping expansion in the right
places to synchronize further processing with the ac-
tual progress of the task in the real world. This syn-
chronization is achieved using WAIT-FOR clauses.

The ability of a plan representation formalism to ex-
plicitly allow both concurrency and synchronizing ex-
ecution with events in the world is crucial if the plans
are to be used to control a real-time system made up
of composable, concurrent processes.

Success and Failure: Red Herrings

Another deeply ingrained assumption in task represen-
tation is that a given task will have only two outcomes:
success or failure. Tile original RAP system again tried
to enforce this assumption by giving each task a suc-
cess clause that must be satisfied before it stops try-
ing various methods to achieve its goal. However, as
has already been illustrated in Section , it isn’t very
meaningful to say that a task to enable a control pro-
cess succeeds. Such tasks will invariably succeed by
starting the process in motion. What matters are the
signals that are generated by the process while it is
running. Some signals will mean success and some will
mean failure. Hence, WAIT-FOR annotations include
the appropriate outcome to use for the task as a wholc
when the signal is received.

ltowcver, grouping the initiating of a process and its
termination signals (both good and bad) into a logical
unit using WAIT-FOR clauses is too limiting. In fact.
the whole idea of success and failure is too limiting.

The Problem of Cleanup Tasks

Consider the problem of local cleanup tasks. When
an activity requires enabling a variety of processes and
then waiting for some event in the world, forcing the
mcthod defining the activity to either succeed or fail o,l
the event makes it very difficult to cncodc steps in the
method to "clean up" the situation when a failure oc-
curs. For example, let’s assume that the track-target
process used previously requires that the robot’s cam-
era be turned on first. It is a simple matter to include
a task that comes before the track-target task to
turn the camera on, but where should thc correspond-
ing task to turn the camera off go? Placing it after
receipt of the (at-target) signal makes sense if ev-
erything works out. IIowever, if the target is lost and

1Don’t worry about the arguments to approach-target
and track-target. In reality processes like these must
know how to exchange target information in real time below
the level of the RAP system.
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the (lost-target) signal is received, the method will
fail and terminate before ever reaching the task to turn
the camera off.

Forcing the interpretation of signals as success and
failure prevents coding methods that include actions
to be taken regardless of what happens. In the RAP
system, and most other planning systems in the liter-
ature, when a subtask fails, all other subtasks in the
same method are assumed no longer valid and termi-
nated.

The problem of cleanup tasks is well known in the
literature (Gat 1991; McDermott 1991) and the nat-
ural inclination is to start trying to represent explicit
cleanup or failure recovery plans. However, a closer
look at the problem shows that the whole idea of suc-
cess, failure, and recovery is a red-herring. The real
problem is that tasks have multiple outcomes. The
track-target task doesn’t succeed or fail, it might
continue to track, it. might lose the target, it might
suggest a better tracking method, the camera might
fail, or a whole host of other possibilities. Each of
these outcomes may require a different interpretation
and a different course of action.2

Non-Deterministic Task Networks

What we really need is a task net representation that
explicitly recognizes when subtasks have multiple out-
comes and allows a different thread to be followed for
each one. Given such a representation, success and
failure are possible outcomes, like signals, that can be
used to change the flow of control. Success and failure
in themselves mean nothing.

This idea is incorporated into RAP task nets using
the WAr,’-FOR clause introduced above. As already
hinted at in the examples, the third argument can be
: proceed or : terminate or the tag of the next task to
execute when the signal occurs. Consider the method
defined by the task net show,l in Figure 5.

In this method, each WAIT-FOR clause points to the
next subtask to execute upon receipt of the appropri-
ate signal. Notice that :success is treated as a sig-
nal instead of a result. The RAP system also uses the
FOR clause to specify the next step in a plan which,
given the semantics of success as a signal, is really just
a short form for (wait-for :success t6s/¢). Thc
UNTIL-START annotation is similar to UNTIL-END, spec-
ifying that both task tl and t2 should terminate when
task t3 starts. Thus, if either 1;1 or t2 completes and
passes control to t3, the other will stop.a

2This mechanism only ax:counts for a very simple type
of cleamlp task. The problem of cleaning up a situation
before dealing with an interruption is much more difficult.
One approach is to use POLICY and PROTECTION triggered
tasks as suggested by McDermott (McDermott 1992) but
the general problem requires making complex tradeoffs be-
tween courses of action at runtime.

~Don:t worry about the fact that not turning
off the camera but terminating the method on a
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Stuck
At Target

J Approach [~
. /]. T~get I~:A

camera I,/ Camera k

Camera Problem’---"

(task-net
(tO (camera-on) (wait-for :success tl) (for 
(tl (approach-target ?target)

(wait-for (at-target) 
(wait-for (stuck) t3)
(until-start t3))

(t2 (track-target ?target)
(wait-for (lost-target) 
(eait-for (camera-problem) :terminate)
(until-start t3))

(t3 (camera-off)))

Figure 5: A Complex Task Net

It is also important to note that there is no longer
any notion of failure. Should the (camera-problem)
signal be received while task t2 is active, the method
as a whole is terminated; terminating all of its active
subtasks. The previous semantics given to task failure
is subsumed by an explicit directive to terminate the
method. Of course, it is possible to use :fail as a
signal to be caught from the subtask so that if it ex-
plicitly fails, control can be passed to an appropriate
followup subtask. By default, all subtasks are assumed
to have an implicit (wait-for :fail :terminate)
annotation unless an explicit WAIT-FOR failure is in-
cluded. This default assumption leaves previous RAP
task nets with their original semantics.

Related Work

The Reactive Plan Language proposed by Mcdermott
is particularly relevant to the issues addressed in this
paper (McDermott 1991). The RPL system includes
mechanisms for making tasks wait until particular sig-
nals arrive and for multiple threads of plan execution.
A goal of that work is to define a language and inter-
preter that allows plans for arbitrary processes so that
the same language used to describe tasks and plans can
be used to describe low-level feedback loops aa well.

With the addition of signals and multiple outcomes,
the similarity between RAP task networks and finite
state automata becomes more compelling. RAP task
networks don’t explicitly describe finite state automata

(camera-problem) signal makes no sense. This example
is intended simply to illustrate the ideas.

because tasks don’t correspond directly to states of
execution but the similarity suggests connections to
control theory and work that attempts to bridge the
gap between AI and control theory. In partic’ular, sub-
sumption based robots use behaviors described by fi-
nite state automata (Brooks 1986) and the CIRCA sys-
tem reasons about plans as finite state automata to
construct provably safe control loops (Musliner, Dur-
fee, & Shin 1993).

Discrete event system theory is directed toward
building and understanding control plans for systems
that can be described as finite state automata (Ka-
madge & Wonham 1987). These ideas have been used
to build simple control systems for vision-based robot
navigation problems (Kosecka & Bajcsy 1993). The
Animate Agent project uses aa underlying control sys-
tem that can be reconfigured into different states, and
RAP task networks are plans for sequencing those states
in response to changing goals and events. Thus, in
some sense, RAP task networks are control plans for a
discrete event system. Currently, RAP task networks
axe intended to cover a broad range of behavior but do
not attempt to guarantee controllability or stability
over all task goals. We will be exploring tighter con-
nections between the RAP system and discrete event
control theory in the future.

Conclusions
The symbolic planning notion of primitive, atomic ac-
tions cannot readily be used to control the enabling
and disabling of processes that must act together over
time to achieve goals in the world. When primitive ac-
tions start processes in motion and the same processes
can be used in different combinations to achieve differ-
ent goals, the planning system can no longer assume
that primitive actions will have their own well-defined
end points.

This paper proposes an extension to the RAP sys-
tem task-net representation and semantics to enable
the effective control of such continuous processes. In
particular:

¯ The RAP task net’s ability to represent concur-
rent subtasks can be used to enable many sub-
tasks/processes simultaneously. This allows a
method to individually enable all of the processes re-
quired to carry out a particular activity in the world.

¯ RAP task nets are extended to include WAIT-FOR
clauses between plan steps. A WAIT-FOR clause spec-
ifies a condition that must be tru.e in the world be-
fore the interpreter can move on to the next task
in the method. This allows the expansion/execution
of subtasks to be synchronized with events in the
world. Synchronization was previously assumed to
be inherent in the success of primitive actions.

¯ The WAIT-FOR clause is also used to allow different
threads of execution to proceed from different task
outcomes. Effectively, each WAIT-FOR represents a
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different possible task outcome and can specify the
next subtask to execute after the WAIT-FORs condi-
tion becomes true.

This task network representation has been imple-
mented and is being used to control a real robot do-
ing vision-based navigation tasks at the University of
Chicago.

This pap(:r also argues that success and failure have
no special place in a task network representation. Suc-
cess and failure arc interpretations placed oil certain
task outcomes based on what is desired. In fact, the
RAt’ system already has little use for explicit failure.
Whether a RAP method succeeds or fails, the task us-
ing the method does not succeed unless its explicit
success condition is true. Method success is simply
method completion and method failure means that all
subtasks in the method should be terminated. With
the explicit representation of multiple outcorncs for a
subtask, and the ability for an outcome to explicitly
terminate a method, failure and success are no long,:r
necessary.

The notion of a failure still exists in the RaP system
but it means exclusively that the system does not know
hen, to achieve the task. The only way a task can fail is
if all of its methods have been tried rcpeatcdly and its
siJccess condition has not been met: either no method
applies in the current situation or applicable melhods
appear to have no usefifl effect on the world. Thus,
failure is a signal about the planning knowledge of the
system and not about the execution result of a task.
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