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Abstract

Faced with a complicated task, some initial planning can
significantly increase the likelihood of success and increase
efficiency, but planning for too long before starting to act
can reduce efficiency. This paper explores the question of
when to begin acting for a resource bounded agent. Limita-
tions of an idealized algorithm suggested in the literature are
presented and illustrated in the context of a robot courier. A
revised, idealized algorithm is given and justified. The re-
vised idealized algorithm is used as a basis for developing a
new "step choice" algorithm for making on-the-fly decisions
for a simplified version of the robot courier task. A set of
experiments are used to illustrate the relative advantage of
the new strategy over always act, always compute and any-
time algorithm based strategies for deciding when to begin
execution.

Introduction

Faced with a complicated task, some initial planning can
significantly increase the likelihood of success and increase
efficiency. Conversely, sitting on one’s hands, considering
all possible consequences of all possible actions does not
accomplish anything. At some point, action is called for,
but when is this point reached?

The question of when to start executing the current best
action is crucial for creating agents that perform tasks effi-
ciently. The more time and resources spent creating and op-
timizing a plan, the longer the actions of the plan are delayed.
The delay is justified if the improvement in the plan more
than offsets the costs of delaying execution. This tradeoff
is basic to creating resource bounded rational agents. An
agent demonstrates resource bounded rationality if it per-
forms optimally given its computational limits.

Deciding when to begin execution is complex. There
is no way to know how much a plan will improve with a
given amount of planning. The best that can be achieved
is to have some type of statistical model as is done in the
anytime planning framework (Dean & Boddy 1988). 
addition, the decision should take into account the fact that
it may be possible to execute one part of the plan while
planning another,

Approaches

The classical AI planning approach to deciding when to
begin execution is to run the planner until it produces a plan
that satisfies its goals and then to execute the plan. This
approach recognizes that finding the optimal plan may take
too long and that using the first plan that satisfied all the
consa’aints may produce the best results (Simon & Kadane
1974). It also relies on the heuristic that a planner will
tend to produce simple plans first and simple plans tend to
be more efficient and robust than unnecessarily complex
plans.

In contrast to the classical AI approach, the reactive ap-
proach is to pre-compile all plans and to always perform
the action suggested by the rules applicable to the current
situation. The answer to the question of when to begin act-
ing is always "now". This approach is applicable when it is
possible to pre-compile plans and in dynamic environments
where quick responses are required.

A third approach is to explicitly reason about when to start
execution while planning is taking place. Using informa-
tion about the task, the current state of the plan and expected
performance of the planner, the decision to execute the cur-
rent best action is made on-the-fly. This allows execution
to begin before a complete plan is created and facilitates
overlapping of planning and executicm. This approach also
allows execution to be delayed in favour of optimizing the
plan, if the expected improvement so warrants.

Idealized Algorithm

Making on-the-fly decisions about when to begin execution
can be modeled as a control problem where a meta-level
controller allocates resources and time to the planner and
decides when to send actions to the execution controller
for execution. The control problem is to select actions and
computations that maximize the expected utility. An ide-
alized algorithm that has been suggested by a number of
researchers, selects an item from the set {a, CI,..., Ct}
which has highest expected utility(Russell & Wefald 1991 ).
In this list, a is the current best action and the Cis repre-
sent possible computations. The utility of each computation
must take into account the duration of the computation by
which any act it recommended would be delayed. Of course,
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this ideal algorithm is intractable and any real implementa-
tion can only approximate it.

Revised Idealized Algorithm
The idealized algorithms ignores the fact that most agents
can act and compute concurrently. A better control question
to ask is whether the agent should compute or compute and
act. The corresponding control problem is to select from the
list {(a, Ct) .... , (~, Ct), (q~, Ci),..., (~b, C~)} where 
ordered pair represents an action to perform and a compu-
tation to do. ~b represents the null action corresponding to
computing only.

Considering pairs of actions and computations allows the
controller to accept the current action and focus computation
on planning future actions. This can be advantageous even if
more computation is expected to improve the current action.
For instance, I may be able to improve the path r m taking
to get to my next meeting that saves me more time than the
path planning takes. However, I might be better off if I go
with the current plan and think about what I’m going to say
when I get to the meeting instead.

It is not the case that an agent should always consider both
acting and computing. The original idealized algorithm is
applicable for agents that play chess. In such a context it
is not a good idea to sacrifice expected improvements in
the current move in order to compute during moving. The
utility of computing after a move and before the opponent
has responded is relatively low. Considering both acting and
computing only complicates the control mechanism and can
reduce the overall performance of the agent. One property
of chess that contributes to the low utility of computing
while acting is that each action is irrevocable. There is in
effect an infinite cost for undoing a move.

Using the revised idealized algorithm, I have been inves-
tigating the question of when an agent should begin to act.
In the rest of this paper, I’ll discuss the results in the context
of a simple robot courier domain. I will first present a situa-
tion where there are improvements to be had by judiciously
overlapping planning and execution. I then present a more
formal analysis of a particular problem and use the analysis
as a basis for generating some preliminary empirical results.

Robot Courier
In his thesis, Boddy introduces a robot courier task where
a robot is required to visit a set of locations (Boddy 1991).
The robot’s environment is represented as a grid where each
grid cell is either free or blocked. The robot is located in
one cell and can attempt to move to one of the four adjacent
cells. If the neighbouring cell is free, the move succeeds.
Otherwise it fails and the robot remains in the same cell.
Both successful and unsuccessful moves require time. The

robot is provided with a map that can be used for doing
route planning. The robot’s objective is to visit the given
locations, in any order, in the least amount of time possible.

The planning problem consists of two parts; ordering the
visits and planning paths between locations. The purpose of
planning is to reduce the amount of time needed to complete
the set of visits. The initial ordering of locations could be
used as the tour plan. Tour planning make the tour more
efficient. Similarly, the agent has an execution controller
that can dead-reckon between locations and will eventually
make its way to any reachable location. Path planning
can reduce the amount of time needed to travel between
locations. The controller can also make use of partial plans
to improve its efficiency.

For Boddy’s robot, planning is done using a pair of any-
time planning algorithms. Path planning is done by a heuris-
tic search that yields increasingly complete paths between
locations. Tour improvement is done using two-opt (Lin 
Kernighan 1973). The expected improvement for each al-
gorithm is a function of the amount of time spent planning.
The performance of the two-opt algorithm can be character-
ized by a curve that exponentially approaches an asymptote
(Equation 1). Path planning initially improves at a fixed rate
umil a cutoff point after which there is no further expected
improvement.

Let’s examine the first example presented in the thesis
where the robot must go from its current location, 10, and
visit two locations, (11,/2), in sequence. The distances from
10 to It and from !1 to/2 are 100 units. The problem is to
create a deliberation schedule for allocating path planning
time to each of the two paths.

In creating deliberation schedules, the assumption is
made that the planner can only plan a path between loca-
tions before the robot begins to move between them. This
assumption avoids the problem of how to do communica-
tion and co-ordination between the planner and the execu-
tion controller when both are working on getting the robot
to the next location. It also reduces the complexity of the
deliberation scheduler.

The deliberation plan given in the thesis entails the robot
initially doing path planning for the first leg of the trip and
then overlapping path planning for the second part of the
trip with the execution of the first leg of the trip. The plan is
parameterized by the time spent path planning each leg of
the trip: plan Timel ,2 and planTime2,3. The plan is optimal
when the time to follow the first path equals the expected
time to plan the best path for the second part of the trip. The
expected path length as a function of the distance between
points and the amount of time spent planning are given
in equation 2. Figure ! gives the set of parameter values
used in the thesis. The total expected time for visiting both
locations, given an optimal amount of initial planning, is
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Time to perform one planning step.
Distance between first two locations.
Distance between second two locations.
Speed of the robot.
The time cost for taking a step that fails.
The probability that a given location is occupied.
Time spent planning the trip from a to b.
Expected time to plan the optimal trip from a to b.

Let

Figure 1: Robot Courier Parameters

E(TravelTime(distl,2,planTimel,2)) planTime~,3 = 133.0

Then E(Time(plan I)) planTimel,2 + planTime~,3

+ E( TravelTime( dist2,3, plan Time 2,3 

= 122.6+ 133.0+ 117.5

= 373.16

(3)

(4)

E(Time(plon2)) = P(occupied)(E(Time(plan 1)) + 
n

( i - P(occupied))(planTime1,2 
+ planTime~,3 + E(TravelTime(dist2,3,planTime2,3)))

= 0.25.(373.1¢~+2)+0.75.(120.553+ 133+ 117.5)
= 372.08

given in equation 4i .
Suppose we maintain the assumption that the path planner

cannot be working on the path that the execution controller
is currently executing. However, we remove the implicit
assumption that the path planner can only be used to plan
paths between the end-points of a path. Making use of
the fact that an anytime algorithm can be interrupted at
anytime and the results either used or thrown away, we can
construct other possible deliberations schedules. Consider
a plan where the robot attempts to take one step towards the
first location and uses a deliberation schedule that assumes
the robot started that one step closer. If the step succeeds,
then the robot ends up one step closer to the location and
the size of the path planning problem has been reduced. Of
course, the step may fail. In which case, the planner could
be interrupted and restarted using the original deliberation
schedule. The cost of failure is the time it takes to discover
that the step failed.

Equation 5 gives the expected time for the modified plan.
For the parameters used, the expected time for this modified
plan to visit both sites is about one time unit less than the
original plan.

Why does the modified plan do better? One contributing
factor is that the environment is relatively benign. Even
if the robot tries a faulty step, the penalty for recovery is
relatively low, 2 unit step times. Another important factor
is that the rate of execution is the same order of magnitude
as the rate at which the planner can improve the plan. If the
robot was infinitely fast, then always acting would be the
right thing to do. On the other hand, if the rate of computa-

~Tbese numbers are slightly different from those in the thesis
which were truncated.

(5)

tion was infinitely fast, doing full planning would always be
the best thing to do. In between these two extremes, over-
lapping planning and execution offers potential efficiency
improvements. However, blind overlapping of computation
and execution, even in a benign environment, is not always
the best thing to do. Suppose the processor on the robot
was slightly faster. There is a critical point beyond which
it makes sense to wait for the planner to finish rather than
attempt the first step. In the example above, if the time for
one planning step, Tpp, falls below 0.315 time units, then
the original plan has the lower expected time to completion.
Similarly, if the penalty for a bad step rises to 6.34/v, the
original plan is better.

Finally, note that for this example, the modified delib-
eration plan is not optimal. In most cases, there are two
directions on the grid that reduce the distance to the goal.
We could modify the the plan again so that if it fails on
the first step, it tries the other direction that leads towards
the goal. This would improve the expected times slightly.
In the limit, a system where the planner and the execution
controller were more tightly coupled would likely produce
the best result for this example. See (Dean et al. 199 I) for
an example.

Tour Planning

How should an agent decide when to begin acting? For
a more formal analysis, let’s consider only the problem of
ordering locations to visit for the robot courier. To simplify
the analysis, consider the case where the distance between
locations is proportional to the actual time to travel between
them. Let’s also assume that utility is linear with respect to
the time needed to complete all the visits. In this situation,
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the control choice for the robot is whether to execute the
next step in its current plan while continuing to optimize
the rest of the plan or to just do the optimization. The
optimization that is available is to run the two-opt algorithm
on the unexecuted portion of the plan.

The expected improvement in the tour as a function of
computation time for the two-opt algorithm is described by
equation 6. In the equation, t is the computation time, n is
the number of locations and A and B are parameters that
can be determined empirically.

One approach to making the meta level control algorithm
efficient is to use a simple greedy algorithm as suggested
by Russell and Wefald (Russell & Wefald 1991). This
algorithm selects the option that gives the highest expected
rate of task accomplishment. For the robot courier, there
are two ways of making progress on the task: optimizing
the tour and moving.

Anytime Approach

Given the characterization of the two-opt tour improvement
algorithm given in equation 6, any anytime deliberation
schedule can be created. At first, it might seam obvious
that the robot should compute until the expected rate of tour
improvement falls below the rate at which the robot can
execute the plan. This is not optimal though. Such a delib-
eration schedule is based on the initial idealized algorithms
and ignores the fact that the robot can both execute a step
while optimizing the rest of the plan. Basing a delibera-
tion schedule on the revised idealized algorithm, the robot
should wait at most until the rate of improvement falls be-
low twice the rate of execution before it begins to act. This
allows the robot to better overlap planning and execution. A
mathematical justification will be given in the next section.

Step Choice Algorithm

For on-tbe-fly decision making, an action should be taken
whenever the expected rate of task accomplishment for both
performing the action and optimizing the rest of the plan
exceeds the expected rate of task accomplishment by only
optimizing.

(n + l)~(t, n) 2Rexe
n

(10)

Computing with an anytime algorithm can be treated as
a continuous process. However, moving between locations
is more discrete. Each move will be treated as an atomic
action that, once started, must be completed. The rate of
tour improvement for computing alone is given in equation
7. When the agent chooses to act and compute, the agent
is committing to the choice for the duration of the action.
The appropriate rate to use when evaluating this option is
not the instantaneous rate but the average rate over the du-
ration of the action. Equation 8 gives the average expected
rate of accomplishment for acting and computing. In this
equation, At is the duration of the action. Equating 7 and
8 and solving for At gives an expression for the time du-
ration of a move the agent would be willing to accept as
a function of time spent computing. Unfortunately, the re-
sulting expression has no closed form solution2. If instead,
the integral in equation 8 is replaced by a linear approxi-
mation, an expression for At can be found (Equation 9).
The linear approximation over estimates the rate of compu-
tational improvement for the move and compute option and
biases the agent towards moving. Equation 6 characterizes
the expected performance of the two-opt algorithm on the
original problem. Using it in equation 9 under estimates
the effect of reducing the size of the optimization problem.
Since two-opt is an O(n2) algorithm per exchange, reducing
the problem size by 1 has more than a linear affect. This
tends to cancel out the first approximation.

Examining the form of equation 9, it is clear that At is
infinite if the argument to the lnO function reaches zero.
This corresponds to an expected rate of tour improvement
about twice the rate of path execution (Equation 10). 
this point, the marginal rate of only computing is zero and
the robot should execute any size step remaining in the
plan. For this reason, the anytime strategy should wait only
until the rate of improvement falls below twice the rate of
executions. In fact, the wait should only be long enough for
At to be larger than the expected time for the next step.

In the range where At is defined, increasing the rate of
execution (Rexe) increased the size of an acceptable step.

2The result involves solving the omega function
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Figure 2: Performance relative to Anytime 2 Control. Less Time is better.

Similarly, increasing the rate of computation (B) decreases
the size of the acceptable action. In the limit, the acceptable
step correctly favours either always computing or always
acting.

Does it make sense to perform an action even when the
optimizer is currently improving the plan more than twice as
fast as the robot can execute it? It does if the action is small
enough. The amount of potential optimization lost by taking
an action is limited by the size of the action. At best, the next
step in the tour could be reduced to zero time (or cost). Per-
forming small actions does not present a large opportunity
cost in terms of potential optimizations lost and allows the
optimizer to focus its efforts on a smaller problem. Taking
actions that fall below the acceptable action size also allows
the agent to be opportunistic. If at any point in the tour
improvement process, the current next move is smaller that
the acceptable action size, then the agent can begin moving
immediately. In this way, the agent takes advantage of the
optimizer’s performance on the given problem rather than
only on its expected performance.

Implementation
In order to empirically evaluate the utility of the control
strategy given above, I have implemented a version of the
simplified robot courier simulator and have performed an
initial set of experiments. The six control strategies given
in figure 3 were each run on a sample of 100 randomly
generated problems each with 200 locations to be visited.
The experiments were performed on a DECstation 3100

Always Compute : Complete the entire two-opt algorithm
and then begin execution.

Always Act : Always perform the next action and run the
two-opt algorithm in parallel.

Anytime1 : Run the two-opt algorithm and start execution
when the expected rate of tour improvement falls below
the rate at which the robot can execute the plan.

Anytime2 : Same as anytimel except start execution when
the expected rate of tour improvement falls below twice
the rate at which the robot can execute the plan.

Anytime Expected : Same as the anytime I strategy, except
start execution when the acceptable step size equals the
expected distance between cities.

Step Choice : Run the two-opt algorithm. Whenever the
next move is smaller than the acceptable step size, take it.

Figure 3: Tour improvement Meta-Level Control Algo-
rithms.

using the Mach 2.6 operating system. The code is written
in C and all calculations, except calculating the acceptable
step size, are done using integer arithmetic.

Since each exchange in the two-opt algorithm is O(n2)

where n is the number of locations considered and since the
size of the optimization problem shrinks as execution pro-
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ceeds, each optimization step can’t be treated as a constant
time operation as was done by Boddy (Boddy 1991). For
these experiments, I measured the CPU time used.

The graph in figure 2 shows the total time of each strategy
relative to the anytime2 control strategy. Points below the x-
axis indicate better performance. The graph covers a range
of robot speeds where sometimes always acting dominates
always computing and sometimes the converse it true.

The performance of the always act and the always com-
pute strategies at either extreme are as expected. The any-
time strategies and the step choice algorithm perform well
for the entire range of speeds. At relatively fast robot
speeds, these strategies correctly emulate the always act
strategy. At relatively slow speeds, they correctly emu-
late the always compute strategy. Between these extremes,
the anytime2 strategy outperforms the anytime I strategy by
starting execution earlier and better overlapping execution
and optimization. For some ranges of execution speed, the
always act strategy does better than either of these any-
time strategies. These strategies don’t take full advantage
of the potential for overlapping planning with execution.
The expected anytime strategy does better because it starts
execution sooner.

The step choice algorithm produces the best results over
the full range of execution speeds. It outperforms the
anytime strategies by opportunistically taking advantage of
small initial steps in the tour plan to begin execution ear-
lier. It is interesting to note that even at relatively fast robot
speeds, the behaviour of the always act and the step choice
strategy are not identical. The step choice algorithm will
occasionally pause if the next action to be taken is large.
This allows the optimizer an opportunity to improve the
next step before it is taken. The affect of this is to reduce
the average length of the tour slightly while maintaining the
same performance.

None of the algorithms made full use of the computa-
tional resources available. For the methods that overlap
computation and acting, the computation completed before
the robot reached the end of the path. The computational
resource was then unused for the rest of the duration of run.
This extra computation resource could have been used to
apply more complex optimization routines to the remaining
tour to further improve performance.

Future Work
The greedy recta-level control algorithm works for the sim-
plified robot courier because the cost of undoing an action
is the same as the cost of performing the action. In fact,
because of the triangle inequality, it is rare that the action
has to be fully undone. The shortest route proceeds directly
to the next location. At the other end of the spectrum are
domains such as chess playing where it is impossible to
undo a move. In between, there are many domains with
a distribution of recovery costs. Consider as an example
leaving for the office in the morning. Let’s assume that it
is your first day at work, so there is no pre-compiled opti-
mized plan yet. The first step in your plan is to walk out the
door and then to the car. Suppose while you are walking,

your plan optimizer discovers that it would be more optimal
to bring your brief case. The cost of recovery is relatively
cheap. Just walk back in the house and get it. On the other
hand, if you forgot your keys, you may now be locked out
of the house. In this sort of environment, a greedy control
algorithm may not be the best choice to use when deciding
when to begin acting.

Related Work
In resent work, Tom Dean, Leslie Pack Kaelbling and oth-
ers have been modeling actions and domains using Markov
models (Dean et al. 1991). Plans for these representations
are policies that map states to actions. Planning consists of
modifying the envelope of the current policy and optimizing
the current policy. Deliberation scheduling is done while
acting in an attempt to provide the highest utility for the
agent. Work has also been done on deliberation schedul-
ing when the agent has a fixed amount of time before it
must begin acting. Such work has not directly addressed
the question of when the agent should begin acting. It is
assumed that the agent is given a arbitrary deadline for start-
ing to execute. Techniques developed in this paper could be
adapted to decide when to start execution, eliminating the
need for an arbitrary start deadline.

Other related work includes Russell and Wefald’s work
on Decision Theoretic A* (Russell & Wefald 1991). This
algorithm makes use of the initial idealized algorithm and
is applicable to domains such as chess.
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