From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Testing Incremental Adaptation

D. M. Lyons and A. J. Hendriks
Philips Laboratories
Philips Electronics, North America Corporation
Briarcliff Manor NY 10510

Abstract

A robot system operating in an environment in which
there is uncertainty and change needs to combine the abil-
ity to react with the ability to plan ahead. In a previous
paper we proposed a solution to the problems of integrat-
ing planning and reaction: cast planning as adaptationof a
reactive system. In this paper, we present our first exper-
imental results from the planner-reactor architecture, and
compare the approach with other work in the planning and
learning literatures.

Introduction

The importance of integrating deliberative (“plan-
ning”) capabilities and reactive capabilities when
building robust, ‘real-world’ robot systems is be-
coming widely accepted [Bresina & Drummond 1990,
McDermott 1991]. In [Lyons & Hendriks 1992a] we
proposed a solution to this integration: cast planning
as adaplation of a reactive system. Here we present our
first performance results, using our approach to con-
struct a robot kitting workcell.

We begin with a brief review of our application do-
main and the necessity for developing our approach. We
then present summaries of the planner-reactor architce-
ture we have developed to implement of our approach,
and the kitting robot application domain. Subsequent
sections provide more details of our implementation and
present our experimental results. We conclude with a
comparison of our approach to similar work in the plan-
ning and learning communities.

Background

Our application domain is the kitting robot: a robot
system that puts together assembly kits — trays con-
taining all the necessary parts from which to build a
specific product. We consider this application to be
exemplary of domains that demand the integration of
reaction and deliberation. A reactive controller will al-
low the kitting robot to handle the uncertainty in the
quality and quantity of the raw materials stream and
downstream automation. However, a deliberative com-
ponent is still necessary to ‘program’ the robot to han-
dle different kits/parts or mixes of kits, as well as to

116 REVIEWED PAPERS

Goale

fj=—==—" - T-T-=-==== [I |
; PLANNER | ! REACTOR : | WORLD

'

: : ! ! actors : :
) 1 ! Shucare ‘:—_—’I)
| i ! wdelew .) |
' r—““""""mumnl ' y
1 | commands Reacor 1 !
{] " Slructure v +— |
! | I bad Sensing | |
. . | segmonts Resuts |
| 1

r
1
t
|

Figure 1: The Planner-Reactor Architecture.

implement temporary strategies in the face of distur-
bances on the factory floor.

Some approaches to this class of integration prob-
lem have been suggested. Schoppers[Schoppers 1989)
amongst others has proposed an ‘off-line’ generator
for reactive systems. This approach works well only
when the deliberative component can be separated ‘off-
line’. We address the problems that arise when both
reactive and deliberative components need to be ‘on-
line’. Connell’s SSS [Connell 1992] addresses this inte-
gration for mobile robots. In SSS, though, the delib-
erative component is restricted to enabling/disabling
behaviors, while we need to be able also to gener-
ate new behaviors. Bresina & Drummond’s ERE
[Bresina & Drummond 1990] comes closest to our ap-
proach. A key difference is that our domain, kitting, is
a repelitive activity. Our concept of the improvement of
a reactive system exploits this repetition, whereas ERE
was designed for once-off activities.

The Planner-Reactor Architecture

A planner-reactor system is composed of two concur-
rent modules, a planner module, which is the deliber-
ative component of the system, and a reactor module,
which is the reactive action execution component of the
system (figure 1). The reactor contains a network of re-
actions: hard-wired compositions of sensor and motor
processes. The key property of the reactor is that it can
produce action at any time. Unlike a plan executor or
a hierarchical system of planner and reactive system,

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.or

our reactor acts asynchronously and independenily of
the planner. It is always actively inspecting the world,
and will act should one of its reactions be triggered.
A reactor should produce timely, useful behavior even
without a planner.

Rather than viewing the planner as a higher-level sys-
tem that loads plans into an executor, we see the plan-
ner as an equal-level system that continually tunes the
reactor to produce appropriate behavior. The interac-
tion between the planner and reactor is entirely asyn-
chronous. The planner continually determines if the
reactor’s responses to the current environment would
indeed achieve the desired goals. If not, then the plan-
ner makes an incremental change to the reactor config-
uration to bring the reactor’s behavior more into line
with the objectives.

In [Lyons & Hendriks 1992b] we formally defined the
reactor (using the RS language) as a set of concurrent
reactions and a well-defined interface for adding to or
deleting from that set. Such addition or deletion of re-
actions we call edaptation. In [Lyons & Hendriks 1993]
this formal treatement was extended to handle safe
adaptation, i.e. adaptation that does not interrupt re-
actions, that is guaranteed to finish, and that will not
produce intermediate behaviors.

In [Lyons & Hendriks 1992b] we also presented the
theory behind incremental improvement of the reactor.
We introduced the concept of the w-ideal reactor, a re-
active system that operates effectively as long as the
assumptions in the set w hold in the environment. We
proposed the following incremental reactor construction
strategy: w is initially chosen to allow the planner to
quickly produce a working reactor and then w is grad-
ually relaxed over time. In addition to this ‘normal’
relaxation sequence, the planner can also be forced to
relax assumptions. Whenever the planner builds a reac-
tor that depends upon a particular assumption holding,
it needs to embed a monitor process that can detect
whether the assumption actually holds in practice or
not. The monitor process triggers a ‘clean up’ action if
the assumption ever fails, and notifies the planner that
it needs to relax this assumption next.

The Kitting Robot Problem

A robot kitting scenario was used in
[Lyons & Hendriks 1992b, Lyons & Hendriks 1993] to
explain the planner-reactor approach. We continue the
example in this paper to explore the performance of a
planner-reactor system in practise.

The Kitting Task. Assembly components are fed from
stores to a kitting station on a conveyor belt. The kit-
ting station consists of one or more kitting robots. Each
kitting robot must take parts off the belt, place them
in the appropriate slots of a kitting tray, and then place
the kitted tray onto the belt. The trays are stored in a
stack in the robot’s workspace. The product we are kit-
ting is a small DC servomotor manufactured by Philips.
It has three parts: a cap, a motor and a body, all of
which have a number of variants.

g?{._AII_rights reserved,

itting Assumptions. The planner-reactor approach

provides a way to incrementally construct reactive sys-

tems with improving perforinance. At the heart of this
iterative mechanism is the concept of characterizing the
environment by a set of assumptions. The following are
four of the Snine in total) assumptions developed for the
kitting application. Some of the assumptions, such as
that of the quality and substitutability of parts, must
eventually be relaxed to get to a robust workcell. Some

other assumptions describe contingencies that make a

more versatile workcell, but are not generally necessary

for a robust system. Still other assumptions pertain to
unusual operating conditions, such as the assumption
of no downstream disturbances.

1. Assumption of Parts Quality (AQ): All the parts coming
into the kitting workcell are of good quality and do not
need to be tested.

2. Assumption of non-substitutability of parts (AS): Each
part has only one variant.

3. Assumption of no parts motion (AM): The kit parts do
not move around once delivered on the belt to the work-
cell.

4. Assumption of no downstream disturbance (ADD):
Downstream automation is always ready to receive fin-

ished kits.
The RS Model

We employ a language called RS to represent and anal-
yse the planner-reactor framework. RS [Lyons 1993)
was developed to represent and analyze the kind of
programs involved in sensory-based robotics. This lan-
guage allows a user to construct programs by ‘gluing’
together processes in various ways. This style of lan-
guage is called a process-algebra language. The lan-
guage is described extensively in [Lyons 1993] and here
we include only a short introduction.

In RS notation, P, {x} denotes a process that is an
instance of the schema P with one ingoing parameter m
and one outcoming result . Process networks are built
by composing processes together using several kinds of
process composilion operators. This allows processes
to be ordered in various ways, including concurrent,
conditional and iterative orderings. At the bottom of
this hierarchy, every network must be composed from a
set of atomic, pre-defined processes. The composition
operations are:
sequential A;B,do A then B.
concurrent A|B, do A and B concurrently.
conditional A:B, do B only if A succeeds.

negation "A, do A but fail if A succeeds and vice-versa.
disabling A#B, do A and B concurrently until one

terminates.
We use two recurrent operators:

e synchronous recurrent A :;B 2 A (B;(A :;B)) while A
succeeds do B. a

e asynchronous recurrent A ::B = A : (B| (A:: B)) while A
succeeds spawn off B.

Situations

Reactor situations are a mechanism to group related
reactions together in a hierarchical fashion. This mod-
ularity is important because it allows (human) designers

Lyons 117

e ASSERT, ... Assert situation s and initialize the sit-
uation parameters to p,.... This terminates when
the situation is terminated and stops or aborts de-
pending on whether FAIL or SUCCEED was used.

o FAIL,), Terminates instance k of situation s with

fail status. .
e SUCCEED, s Terminates instance k of situation s with

success status.

e SIT,(k,pl,p2,...) Terminates if an instance of situ-
ation s is currently asserted. k is the instance num-
ber and pl,p2, ... are the current values of the sit-

uation parameters.
e REASSERT, p, .. Assert s and whenever it ends with

fail status reassert it.
Table 1: Situation basic processes.

to more easily understand the reactor and diagnose any
problems that may occur; it provides the planner with a
unit around which to define safe changes to the reactor
structure [Lyons & Hendriks 1993]; and it provides a
way to give computational resources to those reactions
that currently need it, while ‘suspending’ others.

Intuitively: a situation being active expresses the ap-
propriateness for the reactor to enable the set of reac-
tions associated with that situation. Situations can be
nested hierarchically, and many situations may be ac-
tive at one time so that the execution of their reactions
will be interleaved. We introduce a small set of basic
processes with which to build reactor situations in RS
(table 1). For example, an instance of a situation is as-
serted by the execution of the ASSERT, i 52,... process,
where pl, p2,... are the values for the paramecters asso-
ciated with the situation. The SIT,({k,pl,...) process,
when executed, suspends itself until an instance of sit-
uation s is asserted. It then terminates and passes on
the details of the situation instance as its results.

We use the SIT, process to ensure that a reaction
associated with a situation is only ‘enabled’ when an
instance of that situation is asserted. For cxaniple,
let P1,...,P® be the reactions for situation s, then we
would represent this in the reactor as

PS = SIT, :;P' | SIT, :;P?|...| SIT, ::P"

‘The *:;’ operation ensures that as long as the situation
is active, then the reactions are continually re-cnabled.
Note that once enabled, a reaction cannot be disabled
until it has terminated. The asserting and termination
of instances of situation s happen as the side effects of
ASSERT, and FAIL, or SUCCEED, processes in reactions
in other situations.

Planning as Adaptation

This section outlines the principles of operation of the
planner, a detailed description of its architecture is
given in [Lyons & Hendriks 1992b].

Adaptation Increments. At every planner iteration ¢,
the planner generates what we call an expeciation, F;
an abstract description of the changes it expects to
make to the reactor to achieve the current goals G;.
The combination of the reactor model R; and the ex-

118 REVIEWED PAPERS

From: AIRS-1294 Proceedings-Copyright.© 1094 AAAL (wwnw.aaal.org)-All rights reserved.

pectation is always the w-ideal reactor (where w is the
current set of assumptions the planner is working with).

To reduce this expectation, the planner reasons
within a Problem Solving Context (PSC) consisting of
the relevant parts of the environment model, the action
repertoirc and the assumptions w. The outcome will
be a reactor adaptation AR, the rcactions necessary
to implement the expectation reduction AFE;. Given a
set of goals, the initial expectation reduction will be the
construction of an an abstract plan. This abstract plan
is incrementally transferred into the reactor by the in-
sertion of situations, and is also used for scarch control
in the planner itself. This has two advantages: firstly it
allows the planner to adapt the reactor partially, with
some of the reactor segments being a STUB, i.e., a pro-
cess that does nothing except notify the planner that
this particular segment has become active. Secondly
it allows modular refinements duc to, e.g., assumption
relaxation later on.

For the kitting robot domain, an initial abstract
plan would be a sequential composition of the situa-
tions AcquireTray, Filll'ray, and RemoveTray. Only
AcquireT ray needs 1o be concrete in order for the plan-
ner to adapt the reactor. The other situations can have
STUB reactions initially. The planner can refine thesc
while the reactor acquires a tray.

The process descriptions below show a reactor seg-
ment generated by the planner for this initial adap-
tation. Each reaction in the segment below is in
an if-then-else form ("(Cond : IfTrue) : Else). The
REASSERT process continually reasserts failing situa-
tions. PO is necessary to assert the topmost situa-
tion repeatedly. The process Move,y; 1o repositions a
grasped object obj to a location loc.

Barring any perceptions reccived from the reactor,
the planner will continue to incrementally flesh out ab-
stracl segments and adapt the reactor, until all the re-
actor segments arc made concrete, i.c., all the STUB
processes removed. ‘The planner has then (by defini-
tion) achieved an w-ideal reactor, and can procced to
relax the next assumption. If any segment relies on an
assumption then the adaptation will additionally con-
tain an assumption monitor for that assumption.

PO STOP :: ASSERT K veting
P1 SITxiteng{k) i (
“((REASSERT AcquireTray(z1) : REASSERTFitiTray,z1
: REASSERT FensenTray,z1) : SUCCEEDK tting,k)
: FAILI\'ilnﬂg.k)
SITAcqulreTray(k> H (
"(REASSERTFinaPrart (<!) : Moveri trayarea
H (UPDATE,\cqmrp:l'ray,k,zl H SUCCEEDAcquirCTray,k))
: FAIL AcquireTray.k)
SITFinuh']'ray (ka xrl)
(STUB#rrshTray © SUSPENDon0; FALL feneahTray k)

P2

P3

Forced Assumption Relaxation. Any of the assumption
montitors or stub triggers in the initial reactor segments
can potentially signal the planner and divert its atten-
tion from the a-priori established ordering of assumnp-
tion relaxation. Failure of a situation to successfully

con'1:;r> e 1ts reactions 1s I a perception.
These three sources of perceptual input have different
effects on the planner.

On receiving a stub trigger perception, the planner
redirects its focus of attention to that portion of the
plan containing the stub trigger. An assumption fail-
ure perception has a larger effect than simply refocusing
attention. This perception causes the planner to negate
the assumption in its PSC and begin to rebuild the ef-
fected portions of its plan. If a situation has failed that
relied on that assumption, that particular situation is
given highest priority for adaptation. This may cause
the planner to refocus on parts of the plan it had pre-
viously considered finished.

Apart from its cause, a forced relaxation or refine-
ment results in the same reactor segment and adap-
tation sequence as a normal relaxation or refinement.
Once the planner has achieved a complete w-ideal reac-
tor, it is ready again to select the next assumption for
normal relaxation.

Experimental Results

The kitting example described earlier was implemented
and several (15) experimental runs conducted on a
PUMA-560 based kitting workcell. Trace statistics were
gathered on each trial run. In each rum, the plan-
ner utilized all nine assumptions mentioned in scction .
However, only five of the assumptions were actually re-
laxed in these trials. The purpose of these experimental
runs was to begin to explore the behavior of a planner-
reactor system in practice. Results from the runs are
presented in the following subsections.

Initial Reactor Construction. Figure 2 contains trace
statistics for the startup phase on a typical experimen-
tal run of the kitting workcell. Graph (a) shows the
number of assumptions in use at any time in the work-
cell by the planner and by the reactor. Graph (b) shows
the number of adaptations issued (by the planner) and
the number of discrete changes to the reactor structure
(adaptations applied). Initially there is an empty reac-
tor in operation. After 26 seconds (in this example) the
planner is in a position to start to update the reactor.

The planner begins by sending adaptations to the re-
actor (adaptations issued). Each adaptation involves
one or more changes to the reactor structure. The con-
straints involved in safe adaptation can cause a time
lag in implementing changes. Active situations cannot
be interrupted -~ that would leave the reactor in an
undefined state — instead the adaptation waits for the
situation to end before applying the changes; the theory
behind this is presented in [Lyons & Hendriks 1993].
Thus the adaptations applied trace always lags the adap-
lations issued trace (fig. 2(b)). The lag time varies
depending on the activity of the reactor.

The first reactor is in place roughly 28s after startup.
Even though this reactor is not complete, the kitting
robot can now start kitting, carrying out the initial ac-
tions in the “plan”; its kitting actions are overlapped
in time with the further refinement of its kitting ‘pro-

: AIPS 1994 Proceedings. Copyright @ 1994, AAAI (www.aaai.org). All
2}, %ﬁso (% e ?o 9 T

g N Rie YeSetor is elaborated over the following 20s
until by 40s after startup the first complete reactor is
in place. This reactor employs all nine assumptions.

Assumption Relaxation. Now the planner begins to re-

Tax assumptions to incrementally improve the reactor.
It takes roughly 5s to relax the first assumption (the
length of the ‘plateau’ in the planner trace in figure
2(a)). Typically one or more adaptations are necessary
to relax any one assumption. Each adaptation will give
rise to one or more structural changes in the reactor,
again subject to the delays of the safe adaptation con-
straint. In the case of this first assumption relaxation,
it takes the reactor roughly 60s before it has been able
to implement the last structural change to relax the as-
sumption (the ’plateau’ on the reactor trace in fig.2(a)).
It takes the planner roughly 30s to relax the second as-
sumption; but the change is implemented in the reactor
almost immediately after the first relaxation.

In these experiments, we restricted the planner to
only relax two assumptions (AM, ADD). Having done
this, the planner will only relax other assumptions when
the environment forces their failure. For convenience of
presentation we have separated the two kinds of relax-
ation here.

Environment Forced Relaxation. Figure 3 shows trace

statistics for the ongoing operational phase of the kit-
ting workcell. Graph (a) displays the assumptions in
use by the planner and reactor, and graph(b) displays
the trace of adaptations issued and applied. Addition-
ally, fig.3(b) also shows the trace of assumption failure
perceptions. These are the perceptions that force the
planner to relax an assumption. The two forced as-
sumption relaxations in fig.3 are the no-motion (AM)
and downstream disturbance (ADD) assumptions. The
failure perception for AM is generated when the robot
fails to acquire a part it had identified in an initial vi-
sual image of the workspace. The failure perception for
ADD is manually invoked, and would normally be an
input signal from downstream antomation.

At 152s the AM assumption failure is signaled
(Fig.3(b)). The planner responds very quickly and be-
gins to issue adaptations by 155s, continuing for about
10s. There is little delay in the safe adaptation proce-
dure and the structural changes to the reactor lag the
adaptations issued by only about 1s. This is also ev-
ident from the assumptions trace in (b). One of the
changes in this adaptation is to remove the assump-
tion failure monitor for this assumption; thus, partway
into the adaptation (161s) the signals from the assump-
tion monitor cease. The total forced relaxation response
time — the time from failure to final change in the re-
actor — is roughly 11s. The ADD failure occurs at 215s
and proceeds in a similar fashion.

Reinstating Assumptions. In our theoretical analysis

[Lyons & Hendriks 1992b, Lyons & Hendriks 1993] we
did not address the problem of reasserting previously
failed assumptions. Nonetheless, this is convenient in
practice to model operating regimes, and therefore is

Lyons 119

Qraph (aa): Assumptions va. Time

Reactor Assmmrs

8 -
e — }
—_———— Plannear Assarnrns

o SsO
Time (seconds)

120

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Qraph (b): Adaptations va. Time

|
—— Adagtations |[lssued
- Adcartations Appllocr

340

Number of Adaplafons
N
o}
l 1

120
Time (seconds)

Figure 2: Startup phase statistics for one run of the Planner-Reactor based Kitting Robot.

one of our objectives. In the experimental run, at time
357s the ADD assumption was reinstated (fig.3(a.b)).
Upon relaxation of such reinstatable assumptions, the
planner adds a reactor monitor that will signal when the
assumption holds again. As the trace statistics show,
our implementation does indeed handle the reintroduc-
tion of assumptions. However, further theoretical work
is necessary to extend our convergence results to include
this case.

Discussion

ERE. The incremental strategies used in the ERE sys-
tem [Drummond & Bresina 1990] form a good point
of comparision with our assumption-based incremental
adaptation algorithm, even though the focus of their
work is on once-off activities while ours on repetitive
tasks.

In ERE, the reductor constructs a behavioral con-
straint strategy, a partial order on the behavior con-
straints (temporal goals), based on a causal theory de-
scribing the domain. The projecior uses these to per-
form a forward beam search from the initial situation to
a situation where the first behavioral constraint (BC) is
satisfied. This path is compiled into Situation Control
Rules (SCRs), IF-THEN rules of the following form:
IF situation-i AND behavioral constraint-j THEN do
action-i. These SCR’s are immediately sent to the reac-
tor, where they are the primary action selection mech-
anism. While the reactor selects and executes actions,
the projector continues from the final situation in the
path of the first BC to find a path that satisfies the
next one (their cut-and-commit strategy). If found, new
SCRs are generated and sent to the reactor. Once a
path is found for all applicable behavioral constraints,
the projector starts exploring side paths to increase the
robustness of the SCR controlled action selection in the
reactor.

The behavioral constraint strategy and our abstract
plan are comparable. We chose however to retain the
plan structure in the reactor, have all conflict resolu-
tion explicit, and have developed explicit ‘surgery’ pro-
cedures to retract or modify reactor segments in a safe
manner. In our system, sensing requires conscious ac-
tions and must be planned for. The reactor can start
new actions asynchronously, and multiple actions may
be in progress at one time. In contrast, ERE operates

120 REVIEWED PAPERS

with a select-execute-sense cycle, where an hidden sen-
sory subsystem keeps track of all information, even if it
were irrelevant for the current action selection.

The incremental strategies differ mainly in that we
use the reactor to guide the planner to the relevant
parts to be elaborated on. Through our implantation
of STUB ’s in the reactor, the planner is signalled that
the reactor is in nced of a segment that has not yet been
constructed. Together with the assumption monitors,
the planner is kept up to date to the most important
parts of the reactor to work on (in response to the par-
ticular manifestation of the environment), rather than
rely on a predetermined ordering. Through this infor-
mation flow back to the planner, it can focus on the
direct needs of the reactor, generating timely and re-
sponsive updates.

Learning. A number of systems in the learning lit-
erature have an architecture broadly similar to our
planner-reactor system: MDD [Chien et al 1991], ERE
[Kedar et al 1991], Dyna [Sutton 1990], and Sepia
[Segre & Turney 1992) amongst others. The viewpoint
from which we designed the planner-reactor system is
that there is no learning going on: The planner, which
knows implicitly all reactors up to and including the
ideal reactor, is simply choosing to express different re-
actors depending on its perception of the environment.
If, on the other hand, the planner’s world model was
refined over time (as, e.g., in [Kedar et al 1991]), then,
we would have argued, there is learning going on.

In retrospect, however, it is clear that the systemn does
contain some aspects of a learning system: the reactor is
being incrementally improved based on measurements
of the environment. From this viewpoint, the planner-
reactor system is similar to an event-based learning sys-
tem that learns from failure. SOAR [Laird 1990] and
MD are examples of other such systems. Failure in
our case, though, refers to an assumption failure, not a
planning impasse as in SOAR and not (necessarily) a
plan failure, as in MD. On this latter point, assumption
failures may cause action failures, but not necessarily.
They may also cause repeated action failures, unlike
most learning systems, because of the asynchronous link
between planning and reaction. For this reason, as in
MD, we assume that the cost of failures in our appli-
cation domain is much outweighed by the benefits of

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Graph (aa): Assumptions ve. Time

10
@ S -
- r
h -] - —
Planner Asasms
= ek emmeas Re=aactor Assm=s
- 2 -
o
125 185 245 305 ass

Time (sscondsa)

reactivity.

As shown in figure 3, the planner asynchronously
begins to refine the reactor when such an assump-
tion failure perception is received and, a short time
later, begins to adapt the reactor to its improved ver-
sion. The planner-reactor differes most from learn-
ing systems in its response to an assumption failure.
In the terminology expounded by Gratch & DeJong
[Gratch & DeJong 1992], the operationality criterion
that we espouse is based on a predefined linkage be-
tween actions and assumptions. When a failure per-
ception is received, the planner can use this predefined
linkage to immediately determine which parts of the
plan need to be transformed. In an EBL planner such
as MD, this is the point at which failure analysis would
step in.

Conclusions

In summary, we have reviewed our motivation and ap-
proach to casting planning as adaptation of a reactive
system and have presented the first performance results
of the approach, a first for integrated systems of this
kind.

These results show the feasibility of our approach.

The incremental reactor construction and assumption
relaxation strategy minimizes planning delays. The re-
actor can start kitting while the planner still is refining
later parts of the task. The asynchronous communica-
tion between planner and reactor allows the latter to be
real-time and not bogged down by the planner. The safe
adaptation algorithm guarantees at all times a correct
operation of the reactor, while avoiding interruption of
non-affected reactor segments.
Further work. We need to extend our theoretical results
to include assumption reinstating to model operating
regimes. In conjunction, quantitative comparisons with
other approaches to build integrated planning-reacting
systems are planned.

References

[Bresina & Drummond 1990] J. Bresina and M. Drum-
mond. Integrating planning and reaction. In J. Hendler,
editor, AAAI Spring Workshop on Planning in Uncer-
tain, Unpredictable or Changing Environments, Stanford
CA, Mar. 27-29 1990.

[Chien et al 1991] S. Chien, M. Gervasion, and G. DeJong.
On becoming decreasingly reactive: Learning to deliber-

>0 Giraph (b): Adaptations ve. Timae

Adap-aticns Iaau-dl
Adapations Apoliex!
——— Acsumptton Faiursse

[=le

SO

<40

30

10

Number of Adapadons

125 185 245

s (ssconds)

Figure 3: Forced relaxation statistics.

ate minimally. In 9th Machine Learning Workshop, pp.
288-292, 1991.

[Connell 1992] J. Connell. Sss: A hybred architecture ap-
plied to robot navigation. In IEEE Int. Conf. Robotics &
Automation, pp. 2719-2724, Nice, France, May 1992.

[Drummond & Bresina 1990]

M. Drummond and J. Bresina. Anytime synthetic pro-
jection: maximizing the probability of goal satisfaction.
In AAAI-90, pp. 138~-144, Jul. 29th — Aug. 3rd 1990.

[Gratch & DeJong 1992] J. Gratch and G. Delong. A
framework of simplifications in learning to plan. In
J. Hendler, editor, First Int. Conf. on AI Planning Sys-
tems, pp. 78-87. Morgan-Kaufman, 1992.

[Kedar et al 1991] S. Kedar, J. Bresina, and C. Dent. The
blind leading the blind: Mutual refinement of approxi-
mate theories. In 9th Machine Learning Workshop, pp.
308-312, 1991.

[Laird 1990] J. Laird. Integrating planning and execution in
soar. In J. Hendler, editor, AAAJ Spring Symposium on
Planning in uncertain and changing environments, Stan-
ford CA, Mar. 27-29 1990.

[Lyons & Hendriks 1992a] D. Lyons and A. Hendriks. A
practical approach to integrating reaction and deliber-
ation. In J. Hendler, editor, First Int. Conf. on Al Plan-
ning Systems, pp. 153-162. Morgan-Kaufman, 1992.

[Lyons & Hendriks 1992b] D.M. Lyons and A.J. Hendriks.
Planning for reactive robot behavior. In IEEE Int. Conf.
Rob. & Aut., Apr. 7-12th 1992.

[Lyons & Hendriks 1993] D.M. Lyons and A.J. Hendriks.
Safely adapting a hierarchical reactive system. In SPIE
Int. Rob. & Comp. Vis. XII, Sept. 1993.

[Lyons 1993] D.M. Lyons. Representing and analysing ac-
tion plans as networks of concurrent processes. IEEE
Trans. Rob. & Aut., 9(3), June 1993.

[McDermott 1991] D. McDermott. Robot planning. Tech.
Rep. YALEU/CSD/RR#4861, Yale, Aug. 1991.

[Schoppers 1989] M. Schoppers. Representation and Auto-
matic Synthesis of Reaction Plans. Tech. Rep. UIUCDCS-
R-89-1546, Dept of Comp. Sc., Univ. Illinois, 1989.

[Segre & Turney 1992] A. Segre and J. Turney. Sepia: A
resource-bounded adaptive agent. In J. Hendler, editor,
First Int. Conf. on AI Planning Systems, pp. 303-304.
Morgan-Kaufman, 1992.

[Sutton 1990] R. Sutton. First results with Dyna. In
J. Hendler, editor, AAAI Spring Symposium on Planning
in uncertain and changing environments, Stanford CA,
Mar. 27-29 1990.

Lyons 121

