
Flaw Selection Strategies for
Value-Directed Planning

Mike Williamson
The Robotics Institute

Carnegie Mellon University
mikew@ri, cmu. edu

Steve Hanks
Department of Computer Science and Engineering

University of Washington
hanks@cs, washington, edu

Abstract

A central issue faced by partial-order, cansal-link
(POCL) planning systems is how to select which flaw
to resolve when generating the refinements of a par-
tial plan. Domain-independent flaw selection strate-
gies have been discussed extensively in the recent lit-
erature (Peot ~ Smith 1993; Joslin & Pollack 1994;
Schubert & Gerevini 1995).
The PYRRHUS planning system is a decision-theoretic
extension to POCL planners that finds optimal plans
for a class of goal-directed value functions. Although
PYRRHUS uses a branch-and-bound algorithm instead
of best-first satisficing search, it is faced with the same
flaw selection decision as other POCL planners. This
paper explains why popular domain-independent flaw-
selection strategies are ineffective within an optimiz-
ing framework, and presents two new strategies that
exploit the additional value information available to
PYaam~s.

Introduction

Partial-order causal-link (POCL) planning algo-
rithms like SNLP(McAllester & Rosenblitt 1991) and
ucPop(Penberthy & Weld 1992; Barrett e1 ai. 1993)
are appreciated for their clarity and formal properties,
but their use has been limited by performance prob-
lems. The heuristic effectiveness of these algorithms
depends on two choices made at each stage of the plan-
ning process: which partial plan to refine next, and
which flaw in that partial plan to repair. Though the
latter choice is formally irrelevant (a solution plan can
be found regardless of the order in which flaws are ad-
dressed), it turns out to be crucially important in prac-
tice.

The choice of a flaw determines the offspring of
the current partial plan, and so defines the space the
planner must search. Experience has shown that the
flaw selection strategy can have a dramatic impact
on the performance of POCL planning algorithms,
and a growing body of work is devoted to finding
effective domain-independent techniques for flaw se-
lection (Peot & Smith 1993; Joslin & Pollack 1994;
Schubert & Gerevini 1995; Srinivasan & Howe 1995).

Another body of planning research devotes itself to
extending the expressive power of the planning algo-
rithms, extending their applicability to broader classes
of problems. SNLP, for example, has given rise to a
family of more powerful planning systems including
ucPoP, CNLP(Peot & Smith 1992), nURIDAN(Kush-
merick, Hanks, & Weld 1994; Draper, Hanks, &
Weld 1994), Knoblock’s parallel execution variant
of ucpoP(Knoblock 1994), Z~.No(Penberthy & Weld
1994), and Descartes(Joslin & Pollack 1995).

The PYRRHUS planning system (Williamson
Hanks 1994) is a decision-theoretic extension to SNLP.
PYRRHUS extends the SNLP action representation to
support metric resources (including time), and gen-
erates plans that are optimal according to a class of
goal-directed value functions. Although PYRRHUS uses
branch-and-bound optimization rather than satisficing
best-first search, the underlying space of partial plans
that it explores is very similar to the space generated
by a classical POCL planner, especially in that both
must address the plan-ranking and flaw-selection deci-
sions.

This paper investigates whether the flaw selection
strategies developed for other POCL planners (typi-
cally ucpov) can be used effectively by PYRRHUS’s
optimization algorithm. The following next briefly de-
scribes PYRRHUS in contrast to other POCL planning
systems. Section three describes several flaw selection
strategies found in the literature, and makes explicit
the aims of and assumptions underlying these strate-
gies. We also point out the significance of the "LIFO"
flaw-ordering policy adopted implicitly or explicitly by
some of the existing approaches. In section four we
discuss how the alms and assumptions underlying flaw
selection in an optimizing planner differ from the clas-
sical case. We suggest two new flaw selection strate-
gies that exploit additional information provided by
the value function. Section five evaluates the effective-
ness of the new and existing strategies in guiding the
generation of optimal plans.

Value-Directed Causal-Link Planning

Figure 1 shows an abstract version of a classical

WiUiamson 237

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Algorithm POCL (init, goal)
Let Horizon = { MakeInitialPlan(init, goal)
While Horizon is not empty do:

Choose a partial plan P from Horizon.
If P has no flaws then

Return P as a solution.
Else

Choose a flaw F from the partial plan P.
Add Refinements(P, F) to Itorizon.

l~turn failure.

Figure 1: An abstract goal-satisfying planning algo-
rithm

goal-satisfying POCL planning algorithmJ The func-
tion MakelnitiaIPlan returns a partial plan with two
dummy steps encoding the goal and initial state. The
function Refinements takes a partial plan and a flaw,
and returns a set of new partial plans which represent
all possible ways of fixing the given flag’. A partial
plan can have two kind of flaws:

¯ Open conditions (a.k.a. "goals" or "sub-goals") are
preconditions of steps in the plan which the planner
has not yet made a commitment to achieving. They
are repaired by adding a causal link from some new
or existing step. When a new step is added to the
plan, its preconditions become new open conditions.

¯ Threats (a.k.a. "unsafe links") axe possible viola-
tions of causal links by other steps in the plan. They
are repaired by adding step-ordering or variable-
binding constraints.

Implementations of this abstract algorithm differ in
the way they make the choices of which partial plan
to refine and which flaw to repair. The plan to re-
fine is typically chosen best-first according to a weak,
domain-independent heuristic measure such as the sum
of the number of steps and the number of flaws in the
partial plan.~ The choice of flaw to repair will be dis-
cussed in detail below.

The PYRRHUS planning algorithm

Figure 2 gives an abstract description of PYRRHUS.3
The primary difference between PYRRHUS and a clas-
sical planning algorithm is in the formulation of the
problem itself. Instead of just being given a formula

1 The description of POCL planning herein is necessarily
sketchy, omitting precise definitions of partial plans, causal
links, threats, etc. The reader is referred to (Weld 1994)
for a general introduction to the topic, or (Kambhampati,
Knoblock, & Yang 1994) for a detailed discussion of the
many possible variations on this basic algorithm.

2See (Schubert & Gerevini 1995) for a discussion of some
plan ranking heuristics of this kind.

3Again a cursory description. For more details see
(Williamson & Hanks 1994).

238 AIPS-96

Algorithm PYRRHUS (init, V)
Let incumbent = status quo (i.e. do nothing).
Let Horizon = { MakelnitialPlan(init, V)
While Horizon is not empty do:

Choose a partial plan P from Horizon.
If UB(V(P)) <])(incumbent) then discard P.
Else

If P has no flaws and
LB(])(P)) >])(incumbent) then

Let incumbent = P.
Else Choose a flaw F of the plan P.

Add Refinements(P, F) to Horizon.
lLeturn incumbent.

Figure 2: An abstract description of the Pyrrhus plan-
ning algorithm

describing a goal to achieve, PYRRHUS is given a goal-
directed value function 4 (Haddawy & Hanks 1993).
This value function extends the traditional conception
of a goal to include additional information like tempo-
ral deadlines, preferences over situations in which the
goal is only partially satisfied, and the value associated
with satisfying the goal and the cost of the resources
required to do so.

PYRRHUS finds an optimal plan with respect to the
value function by making tradeoffs between the impor-
tance of achieving the goal and the cost of resources
consumed in doing so. The value function provides a
rich, semantically grounded measure of plan quality.
Classical planning typically either makes the assump-
tion that all plans satistying the goal are equiprefer-
able, or uses an ad hoc and perhaps implicit measure
of quality such as the number of steps in the plan. But
PYRR.HUS i8 able to draw finer and more meaningful
distinctions between plans. In a delivery domain, for
example, the value function might lead PYRRHUS to
produce a plan which makes a delivery 20 minutes late
instead of one which makes the delivery on time but
uses more fuel to do so. In some cases, the optimal
course of action might be to do nothing at all (main-
tain the status qno), and PYRRHUS can often determine
this very quickly.

PYRRHUS can use the value function to construct
the initial plan for a plan space including all plans
possibly preferable to the status quo. But the most
important feature of the value function is that it al-
lows the calculation of bounds on the value of a partial
plan. If a partial plan has no flaws (is complete) its
precise value can be calculated. An incomplete partial
plan can be viewed as a compact representation of the
(possibly infinite) set of all complete plans that can

4 "Value functions" are different from ~utility functions"~

because they directly encode preferences over outcomes
rather than preferences over lotteries over outcomes (see
(Keeney & Raiffa 1976)). P~Rm.TS makes the classical
planning assumptions about certainty.

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

obtained by further refinement, and therefore the value
of a partial plan can be represented by an interval con-
taining the values of all possible completions of that
plan. In general there will be no lower bound on the
value of an incomplete plan, since subsequent refine-
ments might make the plan arbitrarily bad. An upper
bound on value can be calculated by considering the
resources consumed by the plan so far and the great-
est possible degree to which the plan might satisfy the
goal. Refinement of a partial plan partitions its possi-
ble completions among the offspring, so each offspring
must have an upper bound on value no greater than
its parent.

PYRRHUS’s branch-and-bound optimization algo-
rithm is much like the refinement search procedure
used by POCL planners. They both explore a space of
partial plans with similar structure. 5 PYRRHUS like-
wise uses a best-first strategy for selecting plans to
refine, but the ranking is based on value rather than
simple structural characteristics. Most notably, both
are faced with the task of choosing which flaw from
a given partial plan to use to refine that plan. The
similarity between the choices faced by the two algo-
rithms leads us to hope that flaw selection strategies
developed for classical POCL planners might be useful
for PYRRHUS as well.

Existing Flaw Selection Strategies
In this section we describe a number of flaw selection
strategies found in the literature, formalize the aim
of these strategies, and expose certain underlying as-
sumptions. We also discuss precondition-order sensi-
tivity, an important aspect of flaw selection strategies
that has received little attention.

T/O-LIFO The published SNLP and ucPoP algo-
rithms resolve all threats before working on any open
conditions. Formally, the algorithms were described
nondeterministically and so were mute on the issue of
which particular threat or open condition to resolve.
In practice, the most widespread implementations of
these algorithms process both threats and open con-
ditions in a LIFO manner. The LIFO aspect of this
strategy can have significant performance implications
(see below), although we suspect this strategy was
originally adopted more by accident than by design.
(This strategy has been referred to as ~SNLP" and
"UCPOF" in the literature. We call it "T/O-LIFO"
to avoid confusion with other aspects of those algo-
rithms, and to make the LIFO policy explicit.)

DUnf Peot and Smith (Peot & Smith 1993) exam-
ine the question of whether threats should always be

Sin PYRRHUS the definition of open conditions and
causal links has been generalized to support metric re-
sources like fuel level as well as logical propositions, but
that difference is not relevant here.

resolved before open conditions, both from a theoret-
ical and an experimental standpoint. They consider
various strategies for "delaying" certain threats, i.e.
choosing to resolve any existing open conditions be-
fore the postponed threats. One promising strategy
they develop is that of delaying "unforced" threats,
that is, those for which refinement leads to more than
one offspring.

With respect to open condition selection, they in-
dicate that in their experiments they considered three
different strategies: LIFO, FIFO, and a "least-commit-
ment" approach that selects open conditions in order
to minimize the number of offspring. However, they do
not provide detailed analysis of how these various open
condition selection strategies affect performance. We
consider two of these variations on the "delay unforced
threats" strategy: DUnf-LIFO chooses open conditions
in LIFO order, while DUnf-LCOS chooses open condi-
tions to achieve least commitment.

LCFlqt Joslin and Pollack (Joslin & Pollack 1994)
offer a closer examination and generalization of Peot
and Smith’s least-commitment strategy. Suggesting
that the benefit of DUnf derives from minimizing the
branching factor of the search space, they propose al-
ways choosing a flaw that minimizes the number of
offspring, regardless of the threat/open condition dis-
tinction. They call this strategy "least-cost flaw re-
pair" (LCFR), and compare it experimentally to both
Dunf-LIFO and Dunf-LCOS as well as the original
T/O-LIFO strategy. They found that LCFR and Dunf-
LCOS performed much better than the other strategies
on many problems in a variety of domains.

ZLIFO Schubert and Gerevini (Schubert & Gerevini
1995) consider the question of open condition selection,
and propose a hybrid strategy. Their technique is to
first choose those open conditions which give rise to ei-
ther zero or one offspring, which can be considered to
be "zero-commitment" or deductive decisions. If there
are no zero-commitment open conditions, then choose
from the remainder in LIFO order. They demonstrate
on problems from several domains that this ZLIFO
strategy is generally superior to T/O-LIFO.

Their discussion of other strategies is limited, but
they compare ZLIFO to LCFR on a few problems.
They report that the strategies perform comparably on
the easier problems, but that on the harder problems
(from the Towers of Hanoi domain), ZLIFO’s perfor-
mance was considerably superior to LCFR.

Flaw selection: aims and assumptions
Why does flaw selection play such an important role in
planning efficiency? A common belief is that judicious
flaw selection improves planner performance by reduc-
ing the size of the search space. But this isn’t quite
right; in most cases, the potential search space is in-
finitely large, regardless of the flaw selection strategy

Williamson 239

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

employed. Rather, judicious flaw selection improves
performance by reducing the size of the space seal~:hed.
This depends not only on the flaw selection strategy,
but also on the way the algorithm chooses partial plans
to refine.

Obviously the ultimate aim of a flaw selection pol-
icy is to minimize the expected future planning effort
required to find a solution plan. In POCL planners,
the amount of effort is directly related to the number
of partial plans that must be generated and evaluated
before a solution is found. The flaw selection policy
determines both the minimum depth (number of re-
finements) at which a solution plan can be found as
well as the total number of partial plans (nodes in the
search tree) up to that depth. If this tree were searched
breadth-first by number of refinements, all the nodes at
the solution depth or above would have to be searched.
Lacking the ability to predict how flaw choice affects
solution depth, a reasonable heuristic for minimizing
the total number of nodes would bc to favor the [law
with the least number of direct offspring, thus mini-
mizing the tree’s immediate branching factor.

In fact, the best-first search used by many POCL
planners can be viewed as "approximately" breadth-
first in that the standard ranking flmctions simply tend
to favor plans with fewer commitments, thus explain-
ing the effectiveness of fewest-offspring strategies such
as ZLIFO and LCFR.

Precondition-order sensitivity

In light of the above analysis, we were puzzled by the
reported dramatic superiority of of ZLIFO to LCFR.
Since the two heuristics agree on which flaw to select
when the branching factor is less than two, the im-
provement must derive from cases where the "IJIFO"
part of ZLIFO selects a flaw with higher branching fac-
tor than LCFR would choose. Why is this LIFO flaw
selection beneficial?

Regarding LIFO, Schubert and Gerevini suggest
that,

Based on experience with search processes in AI in
general, such a strategy has much to recommend
it, as a simple default. It will tend to maintain
focus on the achievement of a particular higher-
level goal by regression ... rather than attempting
to achieve multiple goals in breadth first fashion.
(Schubert & Gerevini 1995.. p. 9)

While this comment about the regression-oriented
character of LIFO search strategies is undoubtedly cor-
rect, it misses the mark with respect to POCL plan-
ning. The true value of LIFO flaw sclection ~ is that
it allows the introduction of domain-specific flaw selec-
tion policies into the planning process. Thc order in
which new open conditions are resolved will depend not
just on the order that steps are added to the plan, but

eAt least with respect to the widely available UCPOP
implementation.

240 AIPS-96

far more significantly, on the order in which precon-
ditions are specified in the operator description. This
precondition-order sensitivity (POS) can have an over-
whelming effect on performance.

To demonstrate the precondition-order sensitivity of
ZLIFO, we created six versions of the single-operator
Towers of Ilanoi domain (T-of-H1) used by Schu-
bert and Gerevini. These domains differ only in the
permutation of the three main preconditions of the
move-d£sk operator. Running UCPOP with ZLIFO7

on the three disk problem in each of these six domains
resulted in greatly varying numbers of plans explored,
as shown in Table 1.

This experiment clearly shows that the performance
of ZLIFO (like any other strategy which employs LIFO
flaw selection) depends crucially on the ordering of pre-
conditions in the operator descriptions. The strong
performance of ZLIFO (in that domain formulation
where its performance is strong) is more properly as-
cribed to the domain-specific flaw selection knowledge
encoded in the operator descriptions than to ZLIFO
itself. It would be unfair to compare such results to
the performance of a flaw selection strategy that did
not exhibit such precondition-order sensitivity.

We argue that precondition-order sensitivity is a se-
rious shortcoming of the LIFO-based flaw selection
stratcgies. It scverely undermines the process of engi-
neering domain knowledge, since the putatively declar-
ative domain descriptions can have such an impact
on tractability. If one does believe that search con-
trol information should be encoded in the domain
description, then it should be done through explicit
and well-defined mechanisms such as filter precondi-
t,ions or other condition types (Currie & "rate 1991;
Collins & Pryor 1992; Tate, Drabble, & Dalton 1994).

Eliminating precondition-order sensitivity can be
difficult, though, since many strategies (including
LCFR) underspecify the choice of flaw. In practice the
decision must somehow bc made, but the performance
of most naive deterministic methods like LIFO will be
sensitive to the order in which operator preconditions
are declarcd.

Value-directed Flaw Selection

We now turn to the problem of flaw selection in the
context of PYRRIIUS:s optimizing planning algorithm.
As in goal-satisfying planning the overall aim of flaw
selcction is to minimize the amount of search required
to find a solution, but in the optimization case the
means to this end are different. Whereas the goal-
satisfying algorithm can stop when it finds a success-
ful plan, PYRRHUS must at least implicitly consider
the entire search space. On the other hand, the goal-
satisfying algorithm cannot eliminate a partial plan
from consideration until it is proven to be infeasible,
but thc optimizing algorithm can eliminate a partial

rWe also used the S+OC plan selection heuristic.

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Order of Nodes]] Order of Nodes
preconditions explored preconditions explored

(on ?disk ?below-disk) (clear ?new-below-disk)
(clear ?disk) 186 (on ?disk ?below-disk) 29046
clear ?new-below-disk) (clear ?disk)
on ?disk ?below-disk) (clear ?disk)

(clear ?new-below-disk) 1834 (clear ?new-below-disk) 100000+
clear ?disk) (on ?disk ?below-disk)
clear ?disk) (clear ?new-below-disk)

(on ?disk ?below-disk) 7816 (clear ?disk) 100000+
(clear ?new-below-disk) (on ?disk ?below-disk)

Table 1: Planning difficulty for ZLIFO on variations of the T-of-tfl domain.

plan as soon as the upper bound on its value is lower
than the value of the incumbent (see Figure 2).

Thus, PYgRHUS’s effectiveness is improved by in-
creasing the rate at which partial plans are pruned,
which can be accomplished in two ways:

1. Quickly find a better incumbent. This corre-
sponds roughly to goal-satisfying planning, and
is achieved by trying to reduce the size of the
search space leading to a complete feasible plan.
We might thus expect existing strategies such as
LCFR to be effective in this regard.

2. Generate partial plans with tighter upper bounds.
The choice of flaw can improve the quality of value
bounds over the offspring, allowing them to be
pruned earlier. This approach has no real ana-
logue in classical planning.

The problem is that these two approaches tend to con-
flict. Often, better bounds on the value of a partial
plan are obtained by making exactly the kinds of com-
mitments that a strategy such as LCFR tries to avoid.

As an illustration of this point, consider the simpli-
fied drive operator from the Tmckworld (Hanks, Pol-
lack, & Cohen 1993) domain (Figure 3). The amount
fuel consumed by a drive action is determined by the
function fuel-consumed-function, which is called dur-
ing the planning process with the current bindings of
the parameters of the operator. If any of the param-
eters are unbound (because of commitments not yet
made in the planning process), then this function re-
turns an interval providing upper and lower bounds on
the change in fuel level.

Now, imagine that some partial plan contains
the partially instantiated step (drive ?from Paris
?speed). Consequently, the plan would also contain
at least the two open conditions (road-connecting
?from Paris) and (speed ?speed). These could
both be closed by making links to the initial state.
Resolving the former flaw might cause ?from to be
bound to one of {Berlin, Vienna, Rome, Madrid,
Moscow}, while resolving the latter would cause ?speed
to be bound to one of {Slow, Fast}. LCFR would
prefer to resolve the latter flaw, since it generates

fewer offspring. But from the standpoint of branch-
and-bound optimization, resolving the former flaw is
much more important. Knowing where you are driv-
ing from allows calculation of a much tighter bound
on the amount of fuel consumed, and consequently a
better upper bound on the value of each resulting par-
tial plan. In short, the choice of flaw affects not only
the branching factor of the search space, but also the
amount of knowledge one has about the value of a par-
tial plan.

Strategies for improving value bounds

We would like to develop flaw selection strategies that
generate partial plans with better upper bounds on
value. But it’s not clear what "better" means, since
resolving a flaw can result in many offspring, each with
its own upper bound on value. Consider Figure 4 which
shows a partial plan P1 with two flaws F1 and F2, each
giving rise to two offspring. The numbers are the upper
bounds on value for each partial plan.

Which flaw will lead to the most future pruning if
it is repaired next? We start only with the supposi-
tion that the value of the incumbent will increase as
the refinement process proceeds and better complete
plans are found. One intuition suggests that flaw F1
would be preferable: since the bound on its highest
offspring is lower than the bound on F2’s highest off-
spring, all of Fl’s offspring could be pruned earlier.
But another line of reasoning suggests F2: although
the offspring with a bound of 0.7 will be pruned later
than either of the offspring generated by F1, the other
offspring (with a bound of 0.2) will be pruned much
earlier. Since deciding between these two alternatives
would require additional (and unavailable) information
about how the incumbent’s bound might improve, we
developed the following two flaw selection strategies
and compared them empirically.

LUBV If one advantage to refining a partial plan is
that doing so can improve upper bounds on the vab
ues of the offspring, then an obvious heuristic to con-
sider is choosing the flaw that gives the most such im-

WiUiamson 241

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

(operator (drive ?from 7to ?speed)
:precondition (:and (truck-at 7from)

(road-connecting ?from ?to)
(speed ?speed))

:duration duration-function
:resources ((fuel-level :precondition fue~reqnired-fnnction

: change fue~consumed-function))
:effect (:and (:not (truck-at ?from))

(truck-at ?to)))

Figure 3: The drive operator from the Truckworld domain.

P1 UB=0.9 [

UB=0.6 [

I
Resolve F1 I Resolve F2

m

Figure 4: The effect of flaw choice on upper bounds on value

provement. The "least upper bound on value" (LUBV)
strategy chooses a flaw such that the maximum upper
bound on value over its offspring is minimized. This
stragegy would choose flaw F1 in the above example.
One interpretation of this strategy is that it favors the
flaw whose repair gives the greatest increase in knowl-
edge of the value of the partial plan.

SUBV LCFR. and LUBV can be seen as two ex-
tremes. While the former tries only to minimize
branching factor, the latter tries only to maximize im-
provement of value bounds. The "sum of uppcr bounds
on value" (SUBV) strategy strikes a balance between
these two extremes, choosing the flaw that minimizes
the sum of the upper bounds on value over the plan’s
offspring. Whereas LUBV considers only the single
offspring with maximum value bound, and LCFR con-
siders only the number of offspring.. SUBV can be inter-
preted as a count of the number of offspring weighted
by their value bounds. SUBV would favor flaw F2 in
the above example.

Empirical evaluation

We implemented the five existing and two new flaw
selection strategies described above in PYRRIIUS and
evaluated them on a collection of problems drawn
from a transportation planning domain inspired by the
Truckworld simulator(Itanks, Pollack, & Cohen 1993}.
These problems involved delivering cargo between mul-
tiple origins and destinations with varying partially-
satisfiable (soft) deadlines. There were four operators

in the domain, and the world consisted of six locations
intcrconnected by seven roads. The planner had to
reason about whcre fuel was available, which routes to
take, how fast to drive, and even which deliveries were
worth making. T~adeoffs existed between the amount
of fuel consumed, the amount of money spent (on toll
roads), and the degree to which the deadlines were met.
Sohltion plans varied in length from no steps (in cases
where the status qno was optimal), to 8 steps.

Our first experiment tested the existing strategies on
some classical goal-satisfying problems in this domain,s

As researchers have found in other domains, LCFR,
ZLIFO, and DUnf-LCOS all strongly outperformed
T/O-LIFO, with LCFR providing the best overall per-
formance. This experiment suggested that LCFR is a
good general heuristic for goal-satisfying planning in
this domain.

Our main experiment was to evaluate all seven
strategies on a suite of 20 optimization problems. A
search limit of 10000 partial plans was imposed. Fig-
ure 5 shows the number of partial plans explored by
five of the flaw selection strategies on each problem.9

The problems are shown ordered roughly according to

s PYRRHUS can perform both goal-satisfying and value-
optimizing planning. In the former role it functions much
like ucPoP, but with extensions to handle time and metric
resources.

9The performance of DUnf-LCOS was uniformly very
close to LCFR, and the performance of DUnf-LIFO was
similarly close to T/O-LIFO. The two DUnf strategies are
therefore omitted.

242 AIPS-96

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

difficulty for the SUBV strategy. Note that the hori-
zontal axis of the graph contains 20 discrete problems
rather than a continuous progression; the lines in the
graph are only an aid to visualization.

The strategies that worked hardest to reduce com-
mitment (i.e. minimize branching factor), LCFR and
DUnf-LCOS, performed the worst on most problems.
The strongly LIFO oriented strategies, T/O-LIFO,
ZLIFO, and DUnf-LIFO exhibited better performance
on most problems, but as described above, this is due
to flaw selection knowledge encoded in the operator
descriptions (which had been hand-tuned for accept-
able performance under T/O-LIFO during their devel-
opment). The best overall performance was obtained
by SUBV. By explicitly working both to minimize the
branching factor and to maximize improvement of the
bounds on partial plan value, SUBV dominated all
other strategies.

Some final experimentation was performed to eval-
uate the precondition-order sensitivity of the SUBV
strategy, since it uses LIFO to break (infrequent) ties
between flaws. We developed an alternative version,
SUBV-R, which chooses randomly between tied flaws
and so completely avoids precondition-order sensitiv-
ity. SUBV-R was used to solve each problem ten times.
It exhibited little variance between runs on each prob-
lem. In no case was the performance of SUBV signifi-
cantly different from the mean performance of SUBV-
R, thus indicating that SUBV is deriving no benefit
from precondition ordering.

Absolute performance In practice, the benefit of
more sophisticated flaw selection strategies is dimin-
ished by the additional computation required in select-
ing flaws. In our experiments SUBV required about
40 times as much CPU time per node as T/O-LIFO.1°

This overhead is related linearly to the average number
of flaws per plan. But as Peot and Smith point out,
on harder problems this cost will be dominated by the
reduction in the number of plans explored. Our experi-
ments reinforce that conclusion, with SUBV effectively
solving problems that were beyond the reach of other
strategies. Joslin and Pollack present an approxima-
tion to their LCFR strategy which obtains comparable
results at a much lower per node overhead. A similar
approximation technique might be used for SUBV.

Conclusion
This paper has investigated the problem of flaw se-
lection as it arises in PYRRHUS, an optimizing plan-
ner, in contrast to goal-satisfying POCL planning al-
gorithms. We have described how the optimization
algorithm places different demands on a flaw selec-
tion strategy. This analysis led to the development of

1°Which is approximately the same computational over-
head noted by ~oslin and Pollack (3oslin & Pollack 1994)
for LCFR.

SUBV, a powerful new flaw selection strategy for value-
directed planning. We have also pointed out that the
performance of many existing flaw-selection strategies
is highly sensitive to the ordering of operator precon-
ditions; the absence of a domain-independent theory
of how to order these preconditions compromises the
claim that these strageties are in fact domain indepen-
dent.

Acknowledgements
This work was funded in part by a NASA Graduate
Research Fellowship and by NSF grant IRI-9008670.
Many thanks to Dan Weld, Marc Friedman and Neal
Lesh for constructive feedback on this work.

References
Barrett, A.; Golden, K.; Penberthy, J.; and Weld, D.
1993. UCPOP user’s manual, (version 2.0). Technical
Report 93-09-06, University of Washington, Depart-
ment of Computer Science and Engineering. Available
via FTP from pub/ai/at ftp. cs. washington, edu.

Collins, G., and Pryor, L. 1992. Achieving the func-
tionality of filter conditions in a partial order planner.
In Proc. lOth Nat. Conf. on A.I.
Currie, K., and Tate, A. 1991. O-plan: the open
planning architecture. ArtificialIntelligence 52(1):49-
86.
Draper, D.; Hanks, S.; and Weld, D. 1994. Proba-
bilistic planning with information gathering and con-
tingent execution. In Proc. 2nd Intl. Conf. on A.I.
Planning Systems.

Haddawy, P., and Hanks, S. 1993. Utility Models for
Goal-Directed Decision-Theoretic Planners. Techni-
cal Report 93-06-04, Univ. of Washington, Dept. of
Computer Science and Engineering. Submitted to Ar-
tificial Intelligence. Available via FTP from pub/ai/
at ftp. cs. washington, edu.
Hanks, S.; Pollack, M. E.; and Cohen, P. R. 1993.
Benchmarks, testbeds, controlled experimentation,
and the design of agent architectures. AI Magazine
14(4).
Joslin, D., and Pollack, M. 1994. Least-cost flaw
repair: A plan refinement strategy for partial-order
planning. In Proc. l~th Nat. Conf. on A.L

Joslin, D., and Pollack, M. 1995. Passive and active
decision postponement in plan generation. In Proceed-
ings of fhe Third European Workshop on Planning.

Kambhampati, S.; Knoblock, C.; and Yang, Q. 1994.
Planning as refinement search: A unified framework
for evaluating design tradeoffs in partial order plan-
ning. Department of Computer Science and Engineer-
ing TR-94-002, Arizona State University. To appear
in Artificial Intelligence Special Issue on Planning and
Scheduling.
Keeney, R. L., and ILaiffa, H. 1976. Decisions with
Multiple Objectives: Preferences and Value Tradeoffs.

WiUiamson 243

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

I0000

o

a° 1000

0

100

10
0

I VWl-/ /!
:- ; ¯ .c-----g~: }

I .~ ; :x,. :: ..~x: ,"
¯ " ’. i ~," ".. ~ : s : < . a, ~ *¢

]~ ..’/ "~ F’~ +/. ~ ’4 ~ 4: ,,." " . ,
iX .. ’. ." , : ’.. ¯ / ; ," ’. ; t"

/- ... ¯ . ; : :, / .,- . :.,
[] ... # ~... ,, /)(:)(4, , ¯ ¯

/ i ! ";, ,./ " ,,.---";..... o .,.
I~.~" ’, - [: ~ : ." .*"
I¢ /x ",, "....’ i ..." ’. .’ .-."
/~~-’."’ ’." .-

~j,l:~’ ~’---,r ZLIFO --I---
/ T/O-LIFO -E3--

[,i LUBV ..M
! SUBV -~-’-

".&._._.~(

f I # I
5 10 15 20

Problem number

Figure 5: Performance of various strategies on optimization problems (search truncated at 10000 partial plans
explored)

John Wiley and Sons. Republished in 1993 by Cam-
bridge University Press.

Knoblock, C. 1994. Gcnerating parallel execution
plans with a partial-order planner. In Proc. "2nd Intl.
Conf. on A.L Planning Systems, 98-103.

Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An
Algorithm for Probabilistic Least-Commitment Plan-
ning. In Proc. l~th Nat. Conf. on A.I.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. 9th Nat. Conf. on A.I.,
634-639.

Penberthy, J., and Vqeld, D. 1992. UCPOP: A sound,
complete, partial order planner for ADL. ht Proc.
3rd Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning, 103-114. Available via FTP
from pub/ai/ at ftp. on. washington, edu.

Penberthy, J., and Weld, D. 1994. Temporal planning
with continuous change. In Proc. l~th Nat. Conf. on
A.L

Peot, M., and Smith, D. 1992. Conditional Nonlinear
Planning. In Proc. 1st Intl. Conf. on A.L Planning
Systems, 189-197.

Peot, M., and Smith, D. 1993. Threat-removal strate-
gies for partial-order planning. In P1w’. 111h Nat.
Conf. on A.L, 492-499.

Schubert, L., and Gerevini, A. 1995. Accelerat-
ing partial order planners by improving plan and

goal choices. Technical Report 570, University of
Rochester, Dept. of Computer Sciencc.

Srinivasan, R., and Howe, A. 1995. Comparison of
rncthods for improving search efficiency in a partial-
order planner. In Proceedings of the l~th Interna-
tional Conference on AL
Tare, A.; Drabble, B.; and Dalton, J. 1994. The use
of condition types to restrict search in aa ai planner.
In Proceedings of the Twelfth National Conference on
A1.
Weld, D. 1994. An introduction to least-comnaitment
planning. A1 Magazine 27--61. Available via FTP
from pub/ai/at ftp. ca. washington, edu.
Williamson, M., and Hanks, S. 1994. Optimal plan-
ning with a goal-directed utility model. In Proc. ~nd
1nil. Conf. on A.I. Planning Systems.

244 AIPS-96

From: AIPS 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

