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Abstract

This paper describes a novel method to inter-
leave planning with execution in a dynamic en-
vironment. Though, in such planning, it is very
important to control deliberation: to determine
the timing for interleaving them, few research has
been done. To cope with this problem, we pro-
pose a method to determine the interleave timing
with the success probability, SP, that a plan will
be successfully executed in an environment. We
also developed a method to compute it efficiently
with Bayesian networks and implemented SZ~
system. The system stops planning when the lo-
cally optimal plan’s SP falls below an execution
threshold, and executes the plan. Since SP de-
pends on dynamics of an environment, a system
does reactive behavior in a very dynamic environ-
ment, and becomes deliberative in a static one.
We made experiments in Tileworld by changing
dynamics and observation costs. As a result, we
found the optimal threshold between reactivity
and deliberation in some problem classes. Fur-
thermore we found out the optimal threshold is
robust against the change of dynamics and obser-
vation cost, and one of the classes in which S2"P
works well is that the dynamics itself changes.

Introduction
To select an action for an agent in a dynamic environ-
ment, reactive planning recently has become a signif-
icant topic in artificial intelligence and robotics (Agre
& Chapman 1987)(Brooks 1986) (Georgeff & Lansky
1987). Some researchers argue no planning is neces-
sary to intelligent behavior. However, we obviously re-
quire planning for more intelligent behavior including
prediction, and need to integrate reactivity with de-
liberation. In this context, there is a significant issue:
how to control deliberation in a dynamic environment.
Unfortunately we have few promising solutions.

In this paper, we propose a novel method to inter-
leave planning with execution in a dynamic environ-
ment. For controlling deliberation: determining the
timing to switch planning to execution, a system uses
the success probability, SP that it successfully exe-
cutes a plan in an environment. A plan is represented

with a Bayesian network, and we have developed a
method to compute SP efficiently. Since SP depends
on dynamics of an environment, our system does reac-
tive behavior in a very dynamic environment, and be-
comes deliberative in a static one. Thus our approach
integrates reactivity with deliberation depending on
dynamics of an environment, and gives a solution to
the above issue.

We implemented the 8Z~ system for evaluating our
approach, and made various experiments in the simpli-
fied Tileworld by changing dynamics and observation
costs. As a result, we found the optimal threshold ex-
ists between reactivity and deliberation in some prob-
lem classes. Furthermore we found out the optimal
threshold is independent of the change of dynamics
and observation cost, and one of the classes in which
8Z~ works well is that the dynamics itself changes.

Elegant studies have been done on learning an op-
timal policy with time constraints in stochastic au-
tomata, and the envelop was proposed to speedup the
learning (Dean et al. 1993b)(Dean et al. 1993a).
Furthermore the agent does deliberation scheduling
for assigning the computational resource to mak-
ing envelopes and optimizing a policy (Dean et al.
1993b)(Dean et al. 1993a). However no goal changes
in an environment, and the time constraints are ex-
plicitly given to an agent. In a Tileworld where 8I~
is evaluated, goals constantly change and no explicit
time constraint is given. Since the time constraints
exist implicitly in an environment, an agent has to es-
timate them with observation.

Though McDermott first proposed the interleave
planning (McDermott 1978), he did not describe any
method to determine the timing of interleaving. Pol-
lack made experiments in a Tileworld for investigat-
ing an IRMA model (Pollack & Ringuette 1990), and
Kinny studied the relation between commitment and
dynamics (Kinny & Georgeff 1991)(Kinny, Georgeff, 
Hendler 1992). Unfortunately they did not deal with
controlling deliberation. Boddy proposed the anytime
algorithm which returns better answer as time passes
(Boddy & Dean 1989). However they focused on 
time restriction, and did not directly deal with envi-
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ronment dynamics. Subsumption architecture (Brooks
1986) tried to integrates reactivity with deliberation.
Unfortunately it did not provide a general procedure to
determine when a high-level process subsumed the low-
level ones. Drummond’s goal satisfaction probability
(Drummond & Bresina 1990) is similar to ours. How-
ever the operators are too simple to represent complex
causality.

Kirman investigated the prediction of real-time plan-
ner performance by domain characterization (Kirman
1994). Our work of characterizing the class in which
$7779 works well is concerned with his study. However,
since his framework is defined on the Markov decision
process and our domain including a Tileworld may not
satisfy the Markov property, we consider that his ap-
proach is not straightforwardly applied to our domain.

Our study is also concerned with real-time search.
RTA* (Korf 1990) is real time search which interleaves
planning with execution. Though RTA* is constant-
time planning, dynamics was ignored and no method
to determine the interleave timing. DTA* (Russell 
Wefald 1991) is a decision-theoretic search algorithm
interleaving planning with actions. It control delib-
eration by estimating the possibility that the further
search may overrule the current decision. In contrast
with DTA*, $2779 estimates the possibility that the cur-
rent plan execution will be success. Furthermore DTA*
dose not do modeling an environment. Ishida ap-
plied deliberation to improve the Moving Ta~et Search
(Ishida 1992). When an agent gets caught in the local
minima in the utility function, it begins deliberation
for escaping. The criterion for switching reactivity to
deliberation is far different from $7779, and no dealing
with dynamics.

Interleaving planning
with execution using SP

What is a criterion for determining the timing to switch
planning to execution in a dynamic environment? In
a very dynamic environment, we should switch them
in short intervals. In contrast, the intervals should be
longer in a more static environment. Thus we argue
that "When the success possibility of a plan execution
keeps high, planning should be continued. The planning
is stopped and the plan is executed when the possibility
falls below a certain value". We call the success prob-
ability SP, and a certain value an execution threshold.
We developed a planning procedure based on the above
claim, and call it $2779 (Success probability-based In-
terleave Planning).

A domain
First we define a dynamic environment. The prob-
lem definition is generalized from real-time knowledge-
based systems (Laffy et al. 1988) and the simplified
Tileworld (Kinny & Georgeff 1991).
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Definition 1 (a dynamic environment)
A dynamic environment where a S:Z’79 agent acts is
a problem space where goals appear and disappear ms
time passes. Each goal G~ has value Vi and a 37779
agent repeatedly tries to achieve a goal before it dis-
appears and obtains the value. The agent’s purpose is
to get as high total value as possible. []

Next we define operators and plans used in $7779.
Note that S7779 uses a single operator, called a goal
operator, for planning. In the followings, +P and -P
mean a true and a negation value of a propositional
variable P. -~P means negation of P.

Definition 2 (a goal-operator and plans) The
goal-operator 0 achieves a goal and gets the value. It
is a STRIPS-like operator consisting of a cond-list C, a
delete-list D and an add-list A. ai of Oi includes a sue-
cess literal si which means obtaining the vahle of Oi’s
goal. The operator also has an execution-time function
et(O) which returns the time taken for executing it. A
plan is a sequence of instantiated goal-operators, [O1,
..., O,,] describing order of goals to be achieved. A lit-
eral L in C~, Di, Ai of Oi are characterized with Lc~,
LD,, LA~. They are called a eond-literal, a delete-literal
and an add-literal. []

Concrete methods for executing a goal-operator like
path-planning are described depending on a domain
and given as input. In $7779, deliberation means plan-
ning with goal-operators: scheduling azl optimal goal
order to be achieve. Reactivity means reflective action
of an agent without such scheduling.

S277~: Interleave planning with SP
A SZ79 agent consists of an observer, an environment
nmdeler, a 87779 planner and a plan executor as shown
in Fig.1. An observer constantly obtains data from an
environment parallel to other modules, and gives the
state descriptions (literals) to an environment modeler
and a S7779planner. Using them, an environment mod-
eler estimates the persistence probabilities, and gives
them to 82779 planner. The SZ79 planner obtains state
descriptions from aal observer as an initial state, and
generates a plan.

Fig. 1 A SZ79 agent

The detailed 87779 procedure is shown in Fig.2. The
basic strateKv of planning is forward beam search with
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an evaluation function: expected value. First a 8Z~
system obtains initial states from an observer (Obser-
vation in Fig.2), and gets the persistence probabilities
from an environment modeler (Getting environment
structure in Fig.2). Next the planner applies goal-
operators to the current state, and expands all new
states. At every depth of planning, the planner com-
putes SP and the expected values of all the expanded
plans, and selects w plans with the highest expected
values, where m is width of beam search.

A procedure SIP(G. w. z 
(G: a goal state, w: a beam width, r: an execution threshold)
while true do

begin
Observation;
Getting environment structure;
CS e- {(the observed state, [ ])};
P ~ [ ]; % CS is a set ofsp-pair: (State, Plan).

MSP e-- 2;
while MSP > x ^ P is not a complete plan in CS do

begin
NS t-- all sp-pairs expanded from CS

with operator applications;
Computing SP and expected values for NS;
CS ~-- w sp-pairs with high expected values in NS;
MSP 4-- the success probability of the plan P

with the maximum expected value in CS
end

[01 ..... On] <’- P;
i ~--- i;
while i ~ n+l ̂  the literal s of Oi-i is achieved do

begin
executing Oi ;
i+-i+l

end
end

Fig. 2 A SZP procedure

If SP of an (locally) optimal plan which has the
highest expected value falls below an execution thresh-
old or any complete plan is generated, 8Z~ will stop
planning and execute the optimal plan. If not, the
selected w states will be expanded, and planning will
start again.

The plan executor executes operators in order of a
plan until any execution fails or all of them are suc-
cessfully executed. The above cycle is repeated. The
complete plan includes all of the observed goals, and
the partial plan is not complete one. Forward chaining
guarantees that any partial plan is executable in aa
initial state, and beam search reduces a search space.
w and an execution threshold are given to a system as
input. This procedure realizes our claim.

Planning depth is controlled by changing an execu-
tion threshold r E [0, 1]. When r is high, planning
depth becomes short and the behavior becomes reac-
tive, whereas when it is low, the planning depth is long
and the behavior becomes deliberative. For example,

Fig.3 shows the behavior of the optimal plan’s SP as
the plan grows. When an execution threshold is 0.8,
the plan is executed at 2 steps, and if it is 0.3, the
execution is done at 6 steps.

Fig. 3 SP and an execution threshold

The success probability of a plan
Vee define the success of an operator execution, a plan
execution and an expected value. In the followings,
Pr(A, B) means P’r(A A B).

Definition 3 (success of operator execution)
An execution of a goal-operator O~ is success iff the
O~’s success literal si becomes true in an environment
after the execution. A proposition Si means success of
Oi’s execution. []

Definition 4 (success probability) A plan execu-
tion is success iff all executions of operators in a plan
are success: $1 ̂  ... ^ Sn becomes true after a plan
[01,...,On] is executed. Pr(+S1, ..., +Sn) is success
probability SP of a plan. []

Note that Def. 4 is available for both a complete plan
and a partial plan. With an execution procedure in
Fig. 2, we define an expected value of a plan.

Definition 5 (expected value of a plan) An ex-
pected value E[V] of a plan [O1,..., O~] is Pr(+S1).V1
+ Pr(+Sl,+S2).$~ + ... Pr(+Sl, .. ., +S ~).I~,
where ~’~ is the value of Oi’s goal. []

The plan Bayesian networks
For representing probabilistic causality between events
and computing the success probability, we introduce
the plan Bayesian network.

Definition 6 (temporal proposition) (L, t) 
temporal proposition that means a literal L is true at
a time t in an environment. []

Definition 7 (causal relation and time points)
If Lcj is LA, added by Oi in a plan, there will be
a causal relation LA~ -< Lcj. For plan [O1 .... , O,~], to

is an execution start time of 01, t~ = to + ~-’]~=x et(Ok)
is an execution finish time of Oi, and t(L) is a function
returning the time when the observer observed that a
literal L became true in an environment. []
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SZT) needs the following input probabilities.

Definition 8 (input probabilities)

¯ Effect probability, E-Pr(Oi, L): A probability that
a~n Oi’s add-literal L becomes true in an environment
after executing Oi. This means the certainty of the
operator’s effect.

¯ Observation probability, O-Pr(L): A probability
that an observed literal L was really true in an en-
vironment. This means the certainty of information
obtained by the observer.

¯ Persistence probability, P-Pr(L,T): A probability
that a literal L is yet true when the time T has
passed from when it became true in an environment.
This means the degree of the change in an environ-
ment. []

Using a plan, time points and above input probabil-
ities, we completely construct the plan Bayesian net-
work, PBN. PBN is described with a Bayesian net-
work (Pearl 1988) widely used for representing proba-
bilistic causality.

Next we explain how to construct the PBN.
In the followings, V, E are sets of nodes and
edges, and e(vl,V2) 6 st ands fo r a di rected
edge V1 ~ v2. BEL(x) is a vector (Pr(+xle),
Pr(-zle)) (e is conjunction of evidences), and
a conditional probability assigned to e(x,y) is

( Pr( +y, + x) Pr(-y, + 
MyI= = Pr(+y I-z) Pr(-yl-x) . A propo-

sition Ob(L, t) means an observation that a literal L
became true at a time point t, and Ex(O) means that
an goal-operator O is executable in an environment.
The time point ti and t(L) were described in Def. ?.

Definition 9 (plan Bayesian network) The plan
Bayesian network, PBN, of a plan [O1 .... , O,] is
a directed acyclic graph consisting of V, E and M~f=
in the followings, where 1 < i < n.

¯ V and E:

( ezecution-node): ( Ex( O,), ti_x ) V.

(cond-node): <Lc,,ti-1} ¯ V, eC<L.c,,t,-1),
(Ez(Oi),ti-x>) ¯ E.

(add-node): (LA,,ti) ¯ V, e((Ex(Oi),ti-1),
<LA,,ti)) ¯ E.

(delete-node): (-~LD,,t~) ¯ V, e(<Ez(Od, 
<-~Lo,,ti>) ¯ E.

(observation-node): If (L, ti-,) was observed, then
<Ob(L),t(L)) and e((Ob(L),t(L)>, (L, 

(relation-edge): If LA, -< Lc~ exists, then e(<LA,, t~),
<Lc,,tj-1)) ¯ E. If LB, -< -~Lci exists, then
e(<-~LD,,t,), <’~Lc,,tj_,)) E.

¯ Conditional probabilities:
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(observation-p@ BEL(<Ob(L), t(L))) = (O-Pr(L),
1 - O-Pr(L)).

(effect-pr): If x -- <Ex(Oi),ti_;) and y is the child
node of x, then

Mu,= = ( E-Pr~O,,L) I-E-Plr(Oi,L ) ).

(persistence-pr): If x = < L A,, T, ) or ( Ob( L ), TI and
y = (Lc~, T2), then

- rl) P-Pr(L, 
1 r])).

(cond-pr): If an execution-node has cond-nodes
ei,. ¯ .,c,n, then

1 if+c]A..-AcmPr(+Ex[cl,...,c,~) = 0 otherwise

{ 0
if +cl A--. AcmPr(-EX[Cl ..., c,~) = otherwise []

We use two assumptions for the above definitions.

AI: Cond-nodes and add-nodes of the same operator
are mutually probabilistic independent.

A2: Execution-node is true iff all of its cond-nodes
are true.

Though the assumptions may slightly restrict rep-
resentation power of PBN, they make the com-
putation of SP very efficient as mentioned in
next section. Fig.4 shows a plan Bayesian net-
work constructed from a plan P = [O1, 02, O3]
= [([ac,,bc,],[CD,],[dA,]), ([dc2,’~ec2], [], [.fA2]),
([dca,fc3,’~cc3],[], [gA~])]- The causal relation is 
dA, -~ de3, eD, -~ "Cc3, fA2 "< fC.~ }.

(Ob(aq ),t(aq (Oh(be,),,(bc, 

(ac, ,t,,) ~. ./<bc,,t,,>
-t<E,(o,),,0)T

.,, > (Ob(-~eq ),,(-~eq )> (-~c,, 

<A,’,>

),,,>/"
(g.!t,)

Fig. 4 The plan Bayesian network
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Computing the success probability
Using a temporal proposition, the success of operator
execution, Si in Def.4, is described as <s~,ti). Thus,
with Def. 3 and Def. 4, we describe SP of executing a
plan P = [O1, ..., On] at time point to as SP(P, to) 

Pr(+<s1,t1>, ..., +<8n,tn>). The to is the start time
point to execute a plan.

SP(P, to) is expanded in the followings. Equation
(1) is obtained with a chain rule, where el +(sl,tx)
A ... A +(s~,t~>. Equation (2) and (3) are obtained
from a method developed in (Pearl 1988) under 
and A2. Describing the essence of the derivation, as
computing Pr(+<si,ti> l +(Sl,tl>, ..., +<8/-1,t/-1>),

the condition events +(sl,t,>, ..., +<s/-i,t~-l> block
all of the relevant loops and make the PBN singly-
connected. Consequently we can straightforward apply
an efficient and exact method (Pearl 1988) to compute
SP.

SP(P, to) = Pr(+(sl,tl),...,+<s,,t,,))

= II Pr(+<s,,t,>le,_l) (1)
i=l

PrC+(si,ti}lei-1)

=E-Pr( Oi, +(si, t,} )IXPr( +( Lc,, t,_l
LEC,

Pr(-I-(Lc., ti-- 1 } [ei-1 )

P-Pr(L, ti_ 1 -- th) (a)
= E-Pr(Oh,L). P-Pr(L, 1 -- th) (b) (3)

O-Pr(L) . P-Pr(L, ti-I -- th) (C)

(a) ~ (c) in equation (3) are in the foUowings, 
N is a parent node of <Lc,,t~-l> and th is the time
point.

(a): g is a node of a literal s of (Ex(O,), to} ".
<Ex(O,_,), t,-2 } or any cond-node of <Ex(O1), to} 

<Ez(Oi-,),t,-2} is a brother node of <Lc,,t,-1}.
(b): Not (a), and N is an add-node or a delete-node

of Ez(Oh, th) 
(c): Not (a), and N is an observation-node.
With equation (1), (2), and (3), SP is computed

incrementally as growing plans, and the time complex-
ity for one step of a plan is constant. Thus, the time
complexity to compute SP of a n step plan is O(n).
In contrast that the complexity for updating probabili-
ties in Bayesian networks is generally NP-hard (Cooper
1990), computing SP on PBN is very efficient. Fur-
thermore, since input probabilities depend on dynam-
ics and an observation cost, STP is able to deal with
them.

Experiments in the Tileworld
We made experiments in the simplified Tileworld
(Kinny & Georgeff 1991), a standard test-bed for a dy-
namic environment (Pollack & Ringuette 1990). The

simplified Tileworld is a chess-board-like grid in which
there are agents, obstacles and holes (see Fig.5). 
agent can move up, down, left or right, one cell at a
time. An obstacle is a immovable cell. A hole (a goal)
is a cell with a score (a value). By moving to the hole,
an agent obtains the score, and then the hole disap-
pears. Holes appears or disappear as time passes.

Q : An agent

: A hole

~: An obstacle

Fig. 5 A simplified Tileworld

One of the purposes of the experiments is to find out
the class of problems in which 8TP outperforms both a
reactive system and a deliberative one. In other words,
it is to find out the problems in which the optimal
execution threshold exists neither near to 0 nor 1.

The another purpose is to characterize the classes in
which 82:Pworks well. Since 82:P estimates the degree
of the dynamics on-line, it is adaptive to the change of
dynamics. Thus we attempt to characterize the class in
which S2:~ outperforms the interleave planning which
is not adaptive.

There is few experiments for examining the trade-
off between deliberation and reactivity, and the adap-
tation of planning to the change of dynamics. Thus
the experimental results are significant for designing
an agent in a dynamic domain.

Parameters and procedure

We characterize the simplified Tileworld using the fol-
lowing properties: (1) Dynamics of an environment,
(2) Uncertainty of actions including observations, (3)
Costs for planning and observations. We selected nec-
essary parameters for the properties and gave the de-
fault setting.

Parameters to be examined:

¯ Dynamics, d = 1, 2, ..., 8: The rate at which the
world changes for an agent.

¯ observation cost, c: The time taken for an observa-
tion.

¯ Ezecution threshold: r = 0, 0.1, ..., 1

Agent parameters:

¯ Execution time for a single moving: 2 (fixed)

¯ A goal-operators: This describes a move from a hole
to other holes. For path planning, an agent uses hill-
climbing with Manhattan distance as an evaluation
function.
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¯ Width of beam search, w = 4. We fixed it since no
significant change was observed by changing it.

¯ Input probabilities: Observation probability is 1 - u,
and effect probability that an agent moves suc-
cessfully for p Manhattan distance is (1 -u)p.

"~Ve use a simple persistence probability function,
1 (t < b)

P-Pr(L,t) = rt-rb+l (b<_t<b+ z) de-
0 (b + ~ _< t)

rived from holc life-expectancy1.

¯ Uncertainty, u = 0.01: The probability u that one-
step moving and an observation fails. Failure of mov-
ing means no moving. If an observation fails, the ob-
ject is observed randomly in one of the four neighbor
(up, down, left and right) cells on the true position.
Environment parameters:

¯ Grid .size: 20 x 20. No obstacle.

¯ Hole scores: Chosen from a uniform distribution for
[60, 100].

¯ Hole life-expectancy: The interval between an ap-
pearance and a natural disappearance of a hole.
Chosen from a uniform distribution for [1200, 5200].

¯ Hole gestation time: The interval between the ap-
pearances of successive holes. Chosen from a uni-
form distribution [100, 300].

¯ Initial holes’ positions: The initial holes positions
are randomly set.

Since the complexity for computing SP for one step
is constant, we defined a unit of agent-time as the time
for expanding a node in planning. The c time-units
are taken by one observation, and d environment-time
passes as one agent-time passes. For simplicity, we as-
sumed an agent knows true distance to a target hole,
thus rto obstacle was necessary. An agent actually
moves using hill-climbing. We used the scoring rate

obtained score
-- the max:mum possible score it could have achieved as

performance measurement. Through all experiments,
a terminal condition was that the standard deviation
of e converges to 0.01, and five results of the identical
parameters were averaged. In the following, problems
arc described with the difference from default setting.

Exp-A: Changing dynamics and an
observation cost
We investigated influence of dynamics and an observa-
tion cost on an agent’s performance, and attempted to
find out the optimal execution threshold was between
0 and 1: the most deliberative and the most reactive.
For simplicity, we gave persistence probabilities to a
SIT9 agent through these experiment. The environ-
ment modeler of ,.q2"~o will be implemented in the next
section.

i [b, b + ~] is equal to the range of hole life-expectancy,

[1200, 5200], mentioned later.
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Fist we changed an observation cost c for 5, 50, 100
and 200. Due to space constraints, the typical experi-
mental result (c = 100) is shown in Fig.6. The results
for c = 5, 50, 200 were almost similar to Fig.6. The
x-axis and y-axis stand for an execution threshold r
and a scoring rate e respectively. Through four obser-
vation costs, it is natural that a scoring rate decreases
as dynamic increases. In Fig.6, when an environment
is static (d = 1), the scoring rates are high indepen-
dent of an execution threshold. Howe~er, for d = 2,
3 and 4, the scoring rates near to 0 and 1 decrease.
Consequently we found out that the optimal execution
threshold existed between reactivity and deliberation
in some problems. Note that there is a single peak of
a scoring rate in most of the problems. This is impor-
tant for a hill-climbing method to search the optimal
execution threshold. We observed these properties also
in other results.

---4t---d=l --tt--d=4 ---e---d=7
---o~d= 2 --o---d=.5 ~. d=8
~d=3 a d=6

[ i i ~ i i i : : ~ ,

o.6’°’s
’ ’ ’ ’ ’i-’ :

i i i ! i i i i J

= O. ",’-"r’-"r ......

0.2 "~
,:lii !’

o
0 0.2 0.4 0.6 0.8

An execution threshold

Fig. 6 Changing dynamics (c : 100)

For c = 50, 100 and 200, there axe the peaks between
0 and 1, and the rank correlation coefficients of any
different dynamics pair in the same observation ctxst
are positive, 0.2-~0.5. Hence we consider the optimal
execution thresholds are robust against the change of
dynamics. Furthermore, since the peaks are around 0.7
in Fig.7 showing scoring rates averaged over dynamics,
it is robust also against the change of an observation
cost. These properties derives from SP is computed
depending on dynamics and an observation cost.

The environment modeler
We implemented the environment modeler for ad-
vanced experiments. In $I~o, the environment mod-
eling meaals the estimation of persistence probabilities
with data from the observer. The data include the ob-
served life-expectancies. The persistence probabilities
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0 ~c=200

i~ I I I II~L.

....

.~ 0.6 ...........
< 0.4~

^1" I i i I i i i i I
u 0

0.2 0.4 0.6 0.8
An execution threshold

Fig. 7 Averaged scoring rates to dynamics

significantly depend on dynamics of an environment.
A following equations (Dean & Kanazawa 1989) were
used for estimating d and r of P-Pr(L, t) described ear-
lier, and the modeling can be constantly done parallel
to planning, execution and observation. The input is
U: a set of last n samples of observed life-expectancies.
The modeler is able to update the estimated value be-
cause the sample is constantly updated. We assume
the agent knows the model of persistence probabilities
and can use a parametric method. If the assumption
is not hold, the error of estimation will increase.

d(U) th e mi nimum of U
- 0.5

~(~) =
the average of U - d(U)

Exp-B: Adaptation to the change of
dynamics

SIP is adaptive to the change of dynamics because of
the environment modeler. Hence we were interested
in comparing SZP with fixed-depth planning which
stops the planning at the given depth. Though the
fixed-depth planning can control deliberation, it is not
adaptive to the change of dynamics because of fixed
depth. The same parameters of Exp-A were used, ex-
cept changing the fixed-depth from 1 to 10 instead of
an execution threshold. This fixed-depth planner is
same to S~P, except that the planning depth is fixed.

The results for c = 100 is shown in Fig.& Compar-
ing with Fig.6, the maximum scoring rates arc almost
equal to ones in Fig.6. This is showed also in other c.
Unlike the fixed depth planning, ,qI~> can change the
plan length on-line even with a fixed execution thresh-
old. Unfortunately, the advantage is not shown2.

2~Ve consider since the causality between goals is too
simple, SP is smoothly decreased and the interleave timing
of two planning are not much different.

d=l ~ d=4 --o--d=7[
---o--d=2 --o---d=5 ¢ d=8 [----b----d=3+d=6

i

0.8 i i

0.6 ............ +’-"+ ..................~ ..........

iii
02

0
12345678910

Fix~depth

Fig. 8 Fixed-depth planning

We expected that the optimal threshold of ,qIP
would be more robust than the optimal depth of fixed-
depth planning. It is because fixed-depth planning
does not deal with dynamics, and it may change the
optimal depth widely depending on the change of dy-
namics. Fig.9 shows the differences between ~ at r =
0.6 or depth = 6 (which are the optimal conditions at 
= 3) and the maximum e, at d = 3, 4, 5 and 6. Smaller
the difference is, more robust the system is. Thus we
see ,92"7) is more robust than fixed-depth planning.
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l[ 01 ~ ~
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!

i :
I
5 6

Dynamics

Fig. 9 Robustness of ~q2"P

Next, we investigated the "adaptation of ~q2"~ to the
change of dynamics. Using 82"P with the environment
modeler and fixed-depth planner, we made the experi-
ment in which dynamics itself changed. The dynamics
was initially three, changed to four at 10000 agent-
time, and to five at 20000 agent-time. The sample
number n of a modeler was set 20 and c = 100. The
results are shown in Fig.10. Though the fixed-depth
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planner outperformed S~ until 10000 time, after dy-
namics changed twice, S2"~ is better than the fixed-
depth because of its adaptation to the change of dy-
namics. Thus we consider one of the classes in which
S2"~ works well is the environment where dynamics
itself changes.

1
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~0.6
o
~I 0.4

0.2

o
o

’ " i ’ ’ ’ I ’

.............. ~iI .................. ~ ................
i i
I ’I I . ¯ I , I . I ¯

10000 20000 30000
Agent time

Fig. 10 Adaptation to the change of dynamics

Conclusion
We proposed a SI~ method for controlling delibera-
tion in a dynamic environment. 8277~ computes the
success probability SP that a plan will be executed
successfully, and stops planning when the SP falls be-
low an execution threshold. A plan is transformed into
a plan Bayesian network, and the SP is efficiently com-
puted on it. We made experiments in the simplified
Tileworld for evaluating SI~. As a result, we found
out 8I~ worked better than a reactive and a deliber-
ative system in some problems. Furthermore we found
out the optimal threshold is robust, and one of good
classes for SI~ is where dynamics itself changes. How-
ever ~q2"~ needs to deal with replanning, and we need
systematic characterization, like (Kirman 1994), of the
classes where SI~ works well.
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