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Abstract

The PRODIGY system is based onbidirectional planning,
which is a combination of goal-directed backward chaining
with simulation of plan execution. Experiments have demon-
strated that it is an efficient technique, a fair match to other
successful planning systems. The question of completeness
of bidirectional planning, however, has remained unanswered.

We show thatPRODIGY is not complete and discuss the
advantagesand drawbacks of its incompleteness. We then de-
velop a complete bidirectional planner and compare it exper-
imentally with PRODIGY. We demonstrate that the complete
planner is almost as efficient asPRODIGYand solves a wider
range of problems.

Introduction
Newell and Simon inventedmeans-ends analysisduring their
work on General Problem Solver, back in the early days
of artificial intelligence. Their technique combined goal-
directed reasoning with forward chaining from the initial
state (Newell and Simon 1961). The authors of later plan-
ning systems (Fikes and Nilsson 1971; Warren 1974; Tate
1977) gradually abandoned forward search and began to rely
exclusively on backward chaining. Researchers investigated
several types of backward chainers (Mintonet al. 1994) and
discovered thatleast commitmentimproves the efficiency of
goal-directed reasoning, which gave rise toTWEAK (Chap-
man 1987),ABTWEAK (Yanget al. 1996),SNLP(McAllester
and Rosenblitt 1991),UCPOP (Penberthy and Weld 1992;
Weld 1994), and other least-commitment planners.

Meanwhile, PRODIGY researchers extended means-ends
analysis and developed a family of planners based on the
combination of goal-directed backward chaining with simu-
lation of plan execution (Velosoet al. 1995). We call them
bidirectional planners, which includePRODIGY2 (Minton
1988), NOLIMIT (Veloso 1989; Veloso 1994),PRODIGY4
(Velosoet al. 1995), andFLECS (Veloso and Stone 1995).
These planners keep track of the planning-domain state that
results from executing parts of the currently constructed plan.
They use the domain state to guide the goal-directed reason-
ing. Least commitment proved inefficient for bidirectional
search, and Veloso developedcasual commitment, based on
instantiating all variables as early as possible (Veloso 1994).

Kambhampati and Srivastava developed a framework
that generalizes both least-commitment and bidirectional
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search, as well as direct forward search. They imple-
mented Universal Classical Planner (UCP), which can use all
these search strategies (Kambhampati and Srivastava 1996a;
Kambhampati and Srivastava 1996b).

Blum and Furst have recently developedGRAPHPLAN
(Blum and Furst 1995), which uses the domain state in a
different way. They implemented propagation of constraints
from the initial state of the domain, which enables their plan-
ner to identify some operators whose preconditions cannot be
satisfied. The planner then discards these operators and uses
backward chaining to construct the plan from the remain-
ing operators.GRAPHPLAN performs the forward constraint
propagation prior to the search for a solution plan. Unlike
PRODIGY, it doesnotuse forward search from the initial state.

Experiments have demonstrated that bidirectional search
is an efficient technique, a fair match to other modern plan-
ners (Stoneet al. 1994), and thatPRODIGY and backward
chainers perform well in different domains. Some prob-
lems are more suitable for casual-commitment bidirectional
search (Veloso and Blythe 1994), whereas others require
backward chaining (Barrett and Weld 1994).

The relative performance ofPRODIGYandGRAPHPLANalso
varies from domain to domain. TheGRAPHPLAN algorithm
uses fully instantiated operators. It has to generate and store
all possible instantiations of all operators before searching
for a solution, which often causes a combinatorial explosion
in large-scale domains. On the other hand,GRAPHPLAN is
often faster thanPRODIGYin small-scale domains that require
extensive search.

To date, all bidirectional planners have been incomplete.
PRODIGY2 does not interleave goals and sometimes fails to
solve very simple problems.NOLIMIT , PRODIGY4, andFLECS
use a more flexible strategy, and their incompleteness arises
less frequently. Veloso and Stone proved the completeness
of FLECS using simplifying assumptions (Veloso and Stone
1995), but their assumptions hold only for a limited class of
domains.

The incompleteness ofPRODIGY is not a major handi-
cap. Since the search space of most problems is very large,
a complete exploration of the space is not feasible, which
makes any planner “practically” incomplete. If incomplete-
ness comes up only in a fraction of problems, it is a fair
payment for efficiency.

If we achieve completenesswithout compromising effi-
ciency, we get two bonuses. First, we ensure that the planner
solves every problem whose search space is sufficiently small
for complete exploration. Second, incompleteness may oc-
casionally rule out a simple solution to a large-scale problem,
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causing an extensive search instead of an easy win. If a plan-
ner is complete, it does not rule out any solutions and is able
to find such a simple solution early in the search.

We identify the two specific reasons for the incomplete-
ness of means-ends analysis and develop the first complete
bidirectional planner, by extending thePRODIGYsearch algo-
rithm. The planner supports a rich domain language, which
allows the use of conditional effects and complex precondi-
tion expressions (Carbonellet al. 1992).

We achieve completeness by adding crucial new branches
to the search space. The main challenge is to minimize the
number of new branches, in order to preserve efficiency. We
describe a method for identifying the crucial branches, based
on the use of the information learned in failed old branches.
We believe that this method will prove useful for developing
complete versions of other search algorithms.

We outline a proof of completeness and then demonstrate
experimentally that the new planner is almost as efficient as
PRODIGY and that it solves more problems.

Description of Planning Problems
We define aplanning domainby a set of object types and a
library of operators that act on objects of these types. An
operator is defined by itspreconditionsand effects. The
preconditions of an operator are the conditions that must
be satisfied before the execution. They are represented by
a logical expression with negations, conjunctions, disjunc-
tions, and universal and existential quantifiers. The effects
are the list of predicates added to or deleted from the current
state of the domain upon the execution.

We may specify conditional effects, whose outcome de-
pends on the domain state. A conditional effect is defined
by conditionsandactions. If the conditions hold, the effect
changes the state, according to its actions. Otherwise, it does
not affect the state.

In Figure 1, we give an example of a simple domain. The
domain has two types of objects,Package andPlace. The
Place type includes two subtypes,Town andVillage.

A truck carries packages between towns and villages. The
truck’s tank of fuel is sufficient for only one ride. Towns
have gas stations, so the truck can refuel before leaving a
town. Villages do not have gas stations; if the truck comes
to a village without a supply of extra fuel, it cannot leave.
The truck can get extra fuel supply in any town.

We have to load packages before driving to their destina-
tion and unload afterwards. If a package is fragile, it gets
broken during loading. We may cushion a package by soft
material, which removes the fragility and prevents breakage.

A planning problemis defined by a list of objects, an
initial state, and agoal statement. The initial state is a set
of literals. The goal statement is a condition that must hold
after executing a plan. Asolutionis a sequence of operators
that can be executed from the initial state to achieve the
goal. We give an example of a problem in Figure 2. The
task in this problem is to deliver two packages fromtown-1 to
town-2. Wemay solve it by the following plan: “load(pack-1,
town-1), load(pack-2, town-1), leave-town(town-1, town-2),
unload(pack-1, town-2), unload(pack-2, town-2).”

leave-village

<from>: type Village
<to>: type Place
Pre: (truck-at <from>)

(extra-fuel)
(truck-at <from>)Del:
(truck-at <to>)Add:

leave-town

<from>: type Town
<to>: type Place
Pre: (truck-at <from>)
Del: (truck-at <from>)

(truck-at <to>)Add:

(<from>, <to>) (<from>, <to>)

Type Hierarchy

Package

Town

Place

Village

<pack>: type Package
<place>: type Place
Pre: (at <pack> <place>)

(truck-at <place>)
Del:

(if (fragile <pack>)
Add: (broken <pack>))

(truck-at <place>)

<place>: type Place

(in-truck <pack>)

Pre: (in-truck <pack>)

Add: (at <pack> <place>)

<pack>: type Package

(at <pack> <place>)

load(<pack>, <place>) unload(<pack>, <place>)

(in-truck <pack>)Add:

fuel(<place>)
<place>: type Town
Pre: (truck-at <place>)
Add: (extra-fuel)

<pack>: type Package

cushion(<pack>)

Del: (fragile <pack>)

Del:

Figure 1: Trucking Domain.

Foundations of Bidirectional Planning
We now give basics of bidirectional planning (Velosoet al.
1995). We omit the methods for handling disjunctive and
quantified preconditions. AllPRODIGY planners are based
on the algorithm described here; however, they differ from
each other in the decision points, used for backtracking, and
in the general heuristics for guiding the search.

Given a problem, most planning systems begin with the
empty plan and modify it until a solution is found. Examples
of modifications include adding an operator, instantiating
or constraining a variable in an operator, and imposing an
ordering constraint.

ThePRODIGYplanner also solves a problem by adding op-
erators and constraints to the initial empty plan. InPRODIGY,
a plan consists of two parts, a total-orderhead-planand tree-
structuredtail-plan(see Figure 3). The root of the tail-plan’s
tree is the goal statementG, the other nodes are operators,
and the edges are ordering constraints. The tail-plan is built
by a backward chainer, which starts from the goal statement
and adds operators, one by one, to achieve goal literals and
preconditions of tail-plan operators. The planner completely
instantiates an operator when adding it to the tail-plan. The
head-plan is a sequence of instantiated operators that can be
executed from the initial state. The stateC achieved by exe-
cuting the head-plan is thecurrent state. In Figure 4, we give
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(at pack-2 town-1)
(truck-at town-1)

(at pack-1 town-1)
Initial State

(at pack-2 town-2)

(at pack-1 town-2)

Goal Statement

Set of Objects
pack-1, pack-2: type Package
town-1, town-2: type Town
ville: type Village

Figure 2: Problem in the Trucking Domain.

tail-plan

G

head-plan

I C

Figure 3: Representation of a plan.

an example of an incomplete plan, constructed byPRODIGY
during its search for a solution.

Given an initial stateI and a goal statementG, PRODIGY
begins with the empty plan and modifies it, step by step, until
it builds a solution. The head and tail of the initial plan are
empty, and the current state is the same as initial,C = I.

At each step,PRODIGY can modify the current plan in
one of two ways. First, it can add an operator to the tail-
plan, to achieve a goal literal or a precondition of another
operator. The planner establishes a link from the newly
added operator to the literal it achieves and the corresponding
ordering constraint. If the planner uses a conditional effect
of an operator to achieve a literal, then the effect’s conditions
are added to the preconditions of the instantiated operator.
PRODIGY tries to achieve a literal only if it is not true in the
current stateC and has not been linked with any operator of
the tail-plan.Unsatisfied goal literals and preconditions are
calledsubgoals.

Second,PRODIGYcan move some operatoropfrom the tail
to the head. The preconditions ofopmust be satisfied in the
current stateC. The operatorop becomes the last operator
of the head, and the current state is updated toaccount for
the effects ofop. Moving an operator to the head is called
theapplicationof the operator.

In Figure 5, we summarize thePRODIGYsearch algorithm,
which explores the space of possible plans. The algorithm

(at pack-1

(at pack-2

(pack-2,
unload

town-2)

unload

town-2)

town-1)

town-1)

(at pack-1
town-1)

(at pack-2

(truck-at
town-1)

town-1)
(at pack-2

(truck-at

(in-truck
pack-1)

(pack-1,
load

town-1)

Initial State Current State Goals

town-2)

town-2)

(pack-1,

Figure 4: Example of an incomplete plan.

PRODIGY
1a. If the goalsG are satisfied in the current stateC,

then returnHead-Plan.
2a. Either

(i) Backward-Chaineradds an operator toTail-Plan,
(ii) or Operator-Applicationmoves an operator

from Tail-Plan to Head-Plan.
Decision point: Choose between (i) and (ii).

3a. Recursively callPRODIGY on the resulting plan.

Backward-Chainer
1b. Pick a literall among the current subgoals.

Decision point: Choose one of the subgoal literals.
2b. Pick an operatorop that achievesl.

Decision point: Choose one of such operators.
3b. Addop to the plan; establish a link fromop to l.
4b. Instantiate the free variables ofop.

Decision point: Choose an instantiation.
5b. If the effect achievingl is conditional,

add its conditions to the operator preconditions.

Operator-Application
1c. Pick an operatorop, in Tail-Plan, such that

(i) no operator inTail-Plan is ordered beforeop,
(ii) and the preconditions ofopare satisfied inC.
Decision point: Choose one of such operators.

2c. Moveop to the end ofHead-Planand updateC.

Figure 5: ThePRODIGY search algorithm.

includes five decision points, which give rise to different
branches of the search space. It can backtrack over the
choice of a subgoal (Line 1b), an operator that achieves it
(Line 2b), and the operator’s instantiation (Line 4b). It also
backtracks over the decision to apply an operator (Line 2a)
and the choice of an “applicable” tail-planoperator (Line 1c).
The two latter choices enable the planner to consider different
ordering of operators in the head-plan. These two choices are
essential for completeness; they are analogous to the choice
of ordering constraints in least-commitment planners.

The search terminates when the head-plan achieves the
goals; that is, the goal statementG is satisfied inC. If the
tail-plan is not empty at that point, it is dropped.

The incompleteness comes from two sources. First, the
planner does not add operators for achieving literals that are
true in the current state. Intuitively, the planner ignores po-
tential troubles until they actually arise. Sometimes, it is too
late and the planner fails because it did not take measures
earlier. Second,PRODIGY ignores the conditions of condi-
tional effects that do not establish any subgoal. Sometimes,
such effects negate goals or preconditions of other operators,
which may cause a failure. We discuss these two situations
and show how to extend the search to make it complete.

Limitation of Means-Ends Analysis
GPSandPRODIGY2 were not complete because they did not
explore all branches in their search space. The incomplete-
ness of later means-end analysis planners has a deeper rea-
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(at pack-1(pack-1,
unload

town-1)
(in-truck
pack-1)

(truck-at
town-1)

ville)
(pack-1,
load

(at pack-1
ville)

(truck-at
ville)

(truck-at
town-1)

Goals

town-1)

leave-
town

ville)
(town-1,

Figure 6: Incompleteness of means-end analysis.

son: they do not try to achieve tail-plan preconditions that
hold in the current state.

For example, suppose that the truck is intown-1, pack-1
is in ville, and the goal is to getpack-1 to town-1. The only
operator that achieves the goal isunload(pack-1, town-1), so
PRODIGY begins by adding it to the tail (see Figure 6). The
precondition (truck-at town-1) of unload is true in the ini-
tial state. The planner may achieve the other precondition,
(in-truck pack-1), by addingload(pack-1, ville). The precon-
dition (at pack-1 ville) of load is true in the initial state, and
the other precondition is achieved byleave-town(town-1,
ville) (Figure 6).

Now all preconditions are satisfied, and the planner’s only
choice is to applyleave-town. The application leads straight
into an unescapable trap, where the truck is stranded inville
without a supply of extra fuel. The planner may backtrack
and consider different instantiations ofload, but they will
eventually lead to the same trap.

To avoid such traps, a planner must sometimes add oper-
ators for achieving literals that are true in the current state
and have not been linked with any tail-plan operators. Such
literals are calledanycase subgoals. The challenge is to iden-
tify anycase subgoals among the preconditions of tail-plan
operators.

A simple method is to view all preconditions as anycase
subgoals. Veloso and Stone considered this approach to
building a complete version of theirFLECS planner (Veloso
and Stone 1995); however, it proved to cause an explosion
in the number of subgoals, leading to a gross inefficiency.

Kambhampati and Srivastava used a similar approach to
ensure the completeness of the Universal Classical Planner
(Kambhampati and Srivastava 1996b). Their planner may
add operators for achieving preconditions that are true in the
current state, if the preconditions are not explicitly linked
to the corresponding literals of the state. Even though this
approach is more efficient than viewing all preconditions as
anycase subgoals, it considerably increases branching and
often makes bidirectional search impractically slow.

A moreeffectivesolution is based on theuseof information
learned in failed branches of the search space.Let us look
again at Figure 6. The planner fails because it does not add
any operator to achieve the precondition (truck-at town-1)
of unload, which is true in the initial state. The planner
tries to achieve this precondition only when the application
of leave-townhas negated it; however, after the application,
the precondition can no longer be achieved.

We see that means-ends analysis may fail when some pre-
condition is true in the current state, but is later negated by
an operator application. We use this observation to iden-
tify anycase subgoals:a precondition or a top-level goal
is an anycase subgoal if, at some point of the search, an
application negates it.

(c)

(d)

l is anycase

xl

(not l) xl

l is not anycase

xl

xl

(a)

(b)

Figure 7: Identifying an anycase subgoal.

(pack-1,
town-1)

unload

(at pack-1
ville)

ville)
(pack-1,
load

(truck-at
ville)

(town-1,

leave-
town

ville)

fuel
(town-1)

(in-truck
pack-1)

(truck-at
town-1)(extra-

fuel)
(at pack-1

Goals

town-1)

(truck-at
ville) leave-

town-1)

village
(ville,

Figure 8: Subgoaling on literals true in the current state.

We illustrate the identification of anycase subgoals in Fig-
ure 7. Suppose that the planner adds an operatorx, with a
preconditionl, to the tail (plana in Figure 7). The plan-
ner creates the branch wherel is not an anycase subgoal
(planb). If, at some descendent, an application of some op-
erator negatesl and if it was true before the application, then
l is marked as anycase (planc). If the planner fails to find
a solution in this branch, it eventually backtracks to plana.
If l is marked as anycase, the planner creates a new branch,
wherel is an anycase subgoal (pland). If several precon-
ditions ofx are marked as anycase, the planner creates the
branch where they all are anycase subgoals.

Let us see how this mechanism works in the example
of Figure 6. The planner first assumes that the precondi-
tions of unload(pack-1, town-1) are not anycase subgoals.
It builds the tail-plan shown in Figure 6 and appliesleave-
town, negating the precondition (truck-at town-1) of unload.
The planner then marks this precondition as anycase.

Eventually, the planner backtracks and creates the branch
where(truck-at town-1) is an anycase subgoal. It is achieved
by addingleave-village(ville, town-1) (see Figure 8). The
planner then constructs the tail-plan shown in Figure 8,which
leads to the solution (theprecondition (truck-at ville) of leave-
village is satisfied after applyingleave-town).

Clobbers Among Conditional Effects
We illustrate the other source of incompleteness—the use of
conditional effects—in Figure 9. The goal is to load fragile
pack-1, without breaking it. The planner addsload(pack-1,
town-1) to achieve (in-truck pack-1). The preconditions of
load and the goal (not (broken pack-1)) hold in the current
state, and the planner’s only choice is to applyload. The
application causes the breakage ofpack-1, and no further
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(pack-1,
load

town-1)

(at pack-1
town-1)

(truck-at
town-1)(truck-at

town-1)

(fragile
pack-1)

town-1)
(at pack-1

pack-1)
(in-truck

(not
(broken
pack-1))

Initial State Goals

Figure 9: Failure because of a clobber effect.

planning improves the situation. The planner may try other
instances ofload, but they also break the package.

The problem arises because an effect ofload negates the
goal (not (broken pack-1)); we call it aclobber effect.The ap-
plication reveals the clobber, and the planner backtracks and
tries to find another instance ofload, or another operator, that
does not cause clobbering. If the clobber effect is not condi-
tional, backtracking is the only way to remedy the situation.

If the clobber is a conditional effect, we should try another
alternative: negate the clobber’s conditions (Pednault 1988).
It may or may not be a good choice; perhaps, it is better to
apply the clobber and then re-achieve the negated subgoal.
For example, if we had a means for repairing a broken pack-
age, we could use it instead of cushioning. We thus need a
decision point on whether to negate a clobber’s conditions.

Introducing this new decision point for every conditional
effect will ensure completeness, but may considerably in-
crease branching. We avoid this problem by identifying po-
tential clobbers among conditional effects. We detect them
in the same way as anycase subgoals.An effect is marked as a
potential clobber if it actually deletes some subgoal in one of
the failed branches.The deleted subgoal may be a top-level
goal, an operator precondition, or a condition of a condi-
tional effect that achieves another subgoal. We thus again use
information learned in failed branches to guide the search.

We illustrate the mechanism for identifying clobbers in
Figure 10. Suppose that the planner adds an operatorx, with
a conditional effecte, to the tail-plan, and that this operator
is added for the sake of some other of its effects (plana in
Figure 10). That is,e is not linked to a subgoal. Initially,
the planner does not try to negatee’s conditions (planb). If,
at some descendent,x is applied and its effecte negates a
subgoal that was true before the application, then the planner
markse as a potential clobber (planc). If the planner fails
to find a solution in this branch, it backtracks to plana. If
e is now marked as a potential clobber, the planner adds the
negation ofe’s conditions,cond, to the operator’s precondi-
tions (pland). If an operator has several conditional effects,
the planner uses a separate decision point for each of them.

In the example of Figure 9, the application ofload(pack-
1, town-1) negates the goal (not (broken pack-1)) and the
planner marks the conditional effect ofload as a potential
clobber. Upon backtracking, the planner adds thenegation
of the clobber’s condition (fragile pack-1) to the precondi-
tions of load. The planner usescushion to achieve this
new precondition and generates the plan “cushion(pack-1),
load(pack-1, town-1).”

e
x

e
x

ex

(a)

(b)

(c)

(d)
e

xcond)
(not

negate e’s conditionsdo not worry about e

Figure 10: Identifying a clobber effect.

op3op4op3op2op1 op4op2

op1

Figure 11: Converting a solution into a tail-plan.

Completeness Proof
We give a sketch of the completeness proof. We show
that,for every solvable planning problem, some sequence of
choices in the planner’s decision points leads to a solution.

Suppose that a problem has a (fully instantiated) solution
“op1; op2; op3; :::; opn” and that no other solution has fewer
operators. We begin by defining clobber effects, subgoals,
and justified effects in the solution plan.

A clobberis a conditional effect such that (1) its conditions
do not hold in the planand (2) if we applied its actions
anyways, they would make the plan incorrect.

A subgoalis a goal literal or precondition such that either
(1) it does not hold in the initial stateor (2) it is negated
by some prior operator. For example, a precondition ofop3
is a subgoal if either it does not hold in the initial state or
it is negated byop1. Every subgoal in a correct solution is
achieved by some operator; for example, ifop1 negates a
precondition ofop3, thanop2 must achieve it.

A justified effectis the last effect that achieves a subgoal
or negates a clobber’s conditions. For example, ifop1, op2,
andop3 all achieve some subgoal precondition ofop4, then
the corresponding effect ofop3 is justified, since it is last
among the three.

If a condition literal in a justified conditional effect does
not hold in the initial state, or if it is negated by some prior
operator, we consider it a subgoal. Note that the definition of
such a subgoal is recursive: we define it through a justified
effect, and a justified effect is defined in terms of a subgoal
in some operator that comesafter it.

Since we consider a shortest solution, each operator in the
solution plan has at least one justified effect. If we link each
subgoal andeach clobber’s negation to the corresponding
justified effect, we may use the resulting links to convert the
solution into a tree-structured tail-plan. We illustrate this
conversion in Figure 11. If an operator is linked to several
subgoals, we use only one of the links in the tail-plan.

We now show that our algorithm can construct this tail-
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plan. If no subgoal holds in the initial state and the plan has
no clobber effects, then the tail construction is straightfor-
ward. The nondeterministic algorithm in Figure 5 creates
the desired tail-plan by always callingBackward-Chainerin
Line 2a, choosing subgoals that correspond to the links of
the desired plan in Line 1b, and selecting the appropriate
operators (Line 2b) and their instantiations (Line 4b).

If some subgoal literal holds in the initial state, the plan-
ner first builds a tail-plan that has no operator linked to this
subgoal. Then, the application of some operator negates it
and the planner marks it as anycase. It can then backtracks
to the pointbefore the first applicationand choose the right
operator for achieving the subgoal. Similarly, if the plan has
a clobber effect, the algorithm can detect it by applying oper-
ators. The planner can then backtrack to the point before the
applications and add the right operator for negating the clob-
ber’s conditions. Note that, even if the planner always makes
the right choices, it may have to backtrack for every subgoal
that holds in the initial state and for every clobber effect.

Eventually, the algorithm constructs the plan consisting of
the desired tail and no head. It may then produce the solution
plan by always deciding to apply in Line 2a (see Figure 5)
and selecting applicable operators in the right order.

Performance of the Complete Planner
We have implemented a complete bidirectional planner,
calledRASPUTIN1. We present experimental comparison of
its efficiency with that ofPRODIGY4. We then demonstrate
thatRASPUTIN solves more problems thanPRODIGY4.

We first give results in thePRODIGYLogistics Transporta-
tion Domain (Veloso 1994). The task in this domain is to
construct plans for transporting packages, by vans and air-
planes. The domain consists of several cities,each of which
has an airport and postal offices. We use airplanes for car-
rying packages between airports, and vans for delivery from
and to post offices within cities. This domain has no condi-
tional effects and does not give rise to situations that require
planning for anycase subgoals; thus,PRODIGY4 performs
better than the complete planner.

We ran both planners on fifty problems of various com-
plexities. We experimented with different number of cities,
vans, airplanes, and packages. Werandomly generated initial
locations of packages, vans, and airplanes, and destinations
of packages. The results are summarized in Figure 12(a),
where each plus (+) denotes a problem. The horizontal axis
showsPRODIGY’s running time and the vertical axis gives
RASPUTIN’s time on the same problems. SincePRODIGY
wins on all problems, all pluses are above the diagonal. The
ratio of RASPUTIN’s to PRODIGY’s time varies from 1.20 to
1.97; its mean is 1.45.

We ran similar tests in thePRODIGYMachine Shop Domain
(Gil 1991), which also does not require negating effects’
conditions or planning for anycase subgoals. The task in

1The Russian mystic Grigori Rasputin used the biblical parable
of the Prodigal Son to justify his debauchery. He tried to make the
story of the Prodigal Son as complete as possible,which is similar to
our goal. Besides, his name comes from the Russian wordrasputie,
which meansdecision point.
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Figure 12:PRODIGY’s andRASPUTIN’s performance.

this domain is to construct plans for making mechanical
parts with specified properties, using available machining
equipment. The ratio ofRASPUTIN’s to PRODIGY’s time in
this domain is between 1.22 and 1.89, with the mean at 1.39.

We next show results in an extended version of our Truck-
ing Domain. We now use multiple trucks and connect towns
and villages by roads. A truck can go from one place to an-
other only if there is a road between them. We experimented
with different number of towns, villages, trucks, and pack-
ages. We randomly generated road connections, initial loca-
tions of trucks and packages, and destinations of packages.

In Figure 12(b), we summarize the performance of
PRODIGY andRASPUTIN on fifty problems. The twenty-two
problems denoted by pluses (+) do not require the clob-
ber negation or anycase subgoals.PRODIGY outperforms
RASPUTIN on these problems, with a mean ratio of 1.27.

The fourteen problems denoted by asterisks (�) require the
use of anycase subgoals or the negation of clobbers’ condi-
tions for finding an efficient solution, but can be solved inef-
ficiently without it. RASPUTIN wins on twelve of these prob-
lems and loses on two. The ratio ofPRODIGY’s toRASPUTIN’s
time varies from 0.90 to 9.71, with the mean at 3.69. This
ratio depends on the number of required anycase subgoals:
it grows with the number of such subgoals.

Finally, the circles (o) show the sixteen problems that
cannot be solved without anycase subgoals and the negation
of clobbers.PRODIGYhits the 10-second time limit on some
of these problems and terminates with failure on the others,
whereasRASPUTIN solves all of them.

Conclusions
We have developed a complete bidirectional planner, by ex-
tendingPRODIGY search; to our knowledge, it is the first
complete planner that uses means-ends analysis. The com-
plete planner is about 1.5 times slower thanPRODIGY4 on
the problems that do not require negating clobbers’ condi-
tions and planning for anycase subgoals; however, it solves
problems that the incomplete planner cannot solve.

We developed the complete planner in three steps. First,
we identified the specific reasons for incompleteness of pre-
vious planners. Second, we added new decision points to
eliminate these reasons. Third, we implemented a search
algorithm that explores the branches of the old search space
first, and extends the search space only after failing to find a
solution in the old space’s branches. We conjecture that this

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



three-step approach may prove useful for enhancing other
incomplete planners.

The planner uses information from failed branches in
its branching decisions, which means that it must perform
depth-first search. We cannot use breadth-first or best-first
search; however, breadth-first search in casual-commitment
bidirectional planners is impractically slow anyways, due to
a large branching factor.
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