
How to Solve It Automatically:
Selection Among Problem-Solving Methods

Eugene Fink
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213

eugene@cs.cmu.edu, http://www.cs.cmu.edu/�eugene

Good ideas are based on past experience.
— G. Polya,How to Solve It.

Abstract

The choice of an appropriate problem-solving method, from
available methods, is a crucial skill for experts in many areas.
We describe a technique for the automatic selection among
methods, which is based on a statistical analysis of their past
performances.

We formalize the statistical problem involved in selecting
an efficient problem-solving method, derive a solution to this
problem, and describe a method-selection algorithm. The
algorithm not only chooses among available methods, but
also decides when to abandon the chosen method, if it proves
to take too much time. We give empirical results on the use
of this technique in selecting among search engines in the
PRODIGYplanning system.

1 Introduction
The choice of an appropriate problem-solving method is one
of the main themes of Polya’s famous bookHow to Solve It
(Polya 1957). Polya showed that the selection of an effective
approach to a problem is a crucial skill for a mathemati-
cian. Psychologists have accumulated much evidence that
confirms Polya’s pioneering insight: the performance of ex-
perts depends on their ability to choose the right approach to
a problem (Newell and Simon 1972).

The purpose of our research is to automate the selection
of a problem-solving method. This research is motivated by
work on thePRODIGY planning system, which includes sev-
eral search engines (Veloso and Stone 1995). First, we need
to provide a mechanism for decidingwhich search engine is
appropriatefor a given problem. Second, since programs in
the real world cannot run forever, we need some means to
decidewhen to interrupt an unsuccessful search.

Researchers have long realized the importance of auto-
matic evaluation and selection of search algorithms, and de-
veloped techniques for various special cases of this problem.
In particular, Horvitz described a framework for evaluating
algorithms based on trade-offs between computation cost
and solution quality, and used this framework in automatic
selection of a sorting algorithm (Horvitz 1988). Breese and
Horvitz designed a decision-theoretic algorithm that evalu-
ates different methods of belief-network inference and se-
lects the optimal method (Breese and Horvitz 1990). Hans-
son and Mayer (1989), and Russell (1990) applied related
evaluation and selection techniques to the problem of choos-
ing promising branches of the search space.

Copyright 1998, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Russell, Subramanian, and Parr formalized a general prob-
lem of selecting among alternative problem-solving meth-
ods and used dynamic programming to solve some special
cases of this problem (Russellet al. 1993). Minton devel-
oped an inductive learning system that configures constraint-
satisfaction programs, by selecting among alternative search
strategies (Minton 1996).

Hansen and Zilberstein studied trade-offs between run-
ning time and solutionquality in simple any-time algorithms,
and designed a dynamic-programming technique for decid-
ing when to terminate the search (Hansen and Zilberstein
1996). Mouaddib and Zilberstein developed a similar tech-
nique for hierarchical knowledge-based algorithms (Mouad-
dib and Zilberstein 1995).

We found that the previous results are not applicable to
the problem of selecting amongPRODIGY search algorithms
because the developed techniques rely on the analysis of a
sufficiently large sample of past performance data. When
we applyPRODIGY to a new domain, or use new heuristics
or control rules, we usually have little or no prior data. Ac-
quiring more data is impractical, because experimentation is
much more expensive then solving a given problem.

We therefore develop a novel selection technique, which
makes the best use of the available data, even when they
do not provide an accurate estimate. We combine the ex-
ploitation of past data with exploration of new alternatives,
which enables us to collect additional performance data as
the system solves given problems.

We also consider the task of setting a time bound for the
chosen problem-solving method. The previous results for
deciding on the time of terminating any-time algorithms are
not applicable to this task because our problem solvers do
not use any-time behavior and do not satisfy the assumptions
used in thepast studies. We providea statistical technique for
selecting time bounds. We demonstrate that determining an
appropriate bound is as crucial for efficient problem solving
as choosing the right method.

Our techniques are aimed at selecting a method and time
boundbeforesolving a given problem. We do not provide a
means for switching a method or revising the selected bound
during the search for a solution. Developing such a means
is an important open problem.

Even though the selection amongPRODIGYalgorithms pro-
vided a motivation for our work, thedeveloped technique
does not rely on specific properties of thePRODIGY system.
The selection algorithm is applicable to choosing among
multiple problem-solving methods in any AI system. It is
equally effective for small and large-scale domains. The se-
lection takes littlecomputation and its running time is usually
negligible compared to the problem-solving time.

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

We first formalize the statistical problem of estimating
the expected performance of a method, based on the past
experience (Section 2). We derive a solution to this problem
(Section 3) and use it in selecting a method and time bound
(Section 4). We then describe the use of a heuristical measure
of problem complexity to improve the performance estimate
(Section 5). Note that we do not need a perfect estimate;we
only need accuracy sufficient for selecting the right method
and for setting a close-to-optimal time bound.

We give empirical results on the use of our technique to
select amongPRODIGY planning engines. We show that it
chooses an appropriate engine and time bound. The time of
making a selection is three orders of magnitude smaller than
PRODIGY’s planning time (Section 6).

The generality of our statistical technique makes it appli-
cable to practical problems outsideartificial intelligence. We
illustrate it by applying the learning algorithm to decide how
long one should wait on the phone, before hanging up, when
there is no answer.

2 Motivating Example
Suppose that we usePRODIGY to construct plans for trans-
porting packages between different locations in acity (Veloso
1994). We consider the use of three planning methods. The
first of them is based on several control rules, designed by
Veloso (1994) and P´erez (1995) to guidePRODIGY’s search in
the transportation domain. This method applies the selected
planning operators as early as possible; we call itAPPLY.
The second method uses the same control rules and a spe-
cial rule that delays the operator application and forces more
emphasis on the backward search (Veloso and Stone 1995);
we call itDELAY. The distinction betweenAPPLY andDELAY
is similar to that between theSAVTA andSABA planners, im-
plemented by Veloso and Stone (1995) . The third method,
ALPINE (Knoblock 1994), is a combination ofAPPLY with
an abstraction generator, which determines relative impor-
tance of elements of a planning domain.ALPINE first ignores
the less important elements and builds a solution outline; it
then refines the solution, taking care of the initially ignored
details.

Experiments have demonstrated that delaying the operator
execution improves efficiency in some domains, but slows
PRODIGY down in others (Stoneet al. 1994); abstraction
sometimes gives drastic time savings and sometimes worsens
the performance (Knoblock 1991; Bacchus and Yang 1992).
The most reliable way to select an efficient method for a
given domain is by empirical comparison.

The application of a method to a problem gives one of three
outcomes: it may solve the problem; it may terminate with
failure, after exhausting the available search space without
finding a solution; or we may interrupt it, if it reaches some
pre-set time bound without termination. In Table 1, we give
the results of solving thirty transportation problems, by each
of the three methods. We denote successes bys, failures by
f, and hitting the time bound byb. Note that our data are
only for illustrating the selection problem, andnot for the
purpose of a general comparison of these planners. Their
relative performance may be very different in other domains.

time (sec) and outcome # of
APPLY DELAY ALPINE packs

1 1.6 s 1.6 s 1.6 s 1
2 2.1 s 2.1 s 2.0 s 1
3 2.4 s 5.8 s 4.4 s 2
4 5.6 s 6.2 s 7.6 s 2
5 3.2 s 13.4 s 5.0 s 3
6 54.3 s 13.8 f 81.4 s 3
7 4.0 s 31.2 f 6.3 s 4
8 200.0 b 31.6 f 200.0 b 4
9 7.2 s 200.0 b 8.8 s 8

10 200.0 b 200.0 b 200.0 b 8
11 2.8 s 2.8 s 2.8 s 2
12 3.8 s 3.8 s 3.0 s 2
13 4.4 s 76.8 s 3.2 s 4
14 200.0 b 200.0 b 6.4 s 4
15 2.8 s 2.8 s 2.8 s 2
16 4.4 s 68.4 s 4.6 s 4
17 6.0 s 200.0 b 6.2 s 6
18 7.6 s 200.0 b 7.8 s 8
19 11.6 s 200.0 b 11.0 s 12
20 200.0 b 200.0 b 200.0 b 16
21 3.2 s 2.9 s 4.2 s 2
22 6.4 s 3.2 s 7.8 s 4
23 27.0 s 4.4 s 42.2 s 16
24 200.0 b 6.0 s 200.0 b 8
25 4.8 s 11.8 f 3.2 s 3
26 200.0 b 63.4 f 6.6 f 6
27 6.4 s 29.1 f 5.4 f 4
28 9.6 s 69.4 f 7.8 f 6
29 200.0 b 200.0 b 10.2 f 8
30 6.0 s 19.1 s 5.4 f 4

Table 1: Performance ofAPPLY, DELAY, andALPINE on thirty
transportation problems.

A glance at the data reveals thatAPPLY’s performance in
this domain is probably best among the three. We use sta-
tistical analysis to confirm this intuitive conclusion. We also
show how to choose a time bound for the selected method.

We may evaluate the performance along several dimen-
sions, such as the percentage of solved problems, the average
success time, and the average time in case of a failure or in-
terrupt. To compare different methods, we need to specify a
utility function that takes intoaccount all these dimensions.

We assume that we have to pay for running time and that
we get a certain rewardR for solving a problem. If a method
solves the problem, the overall gain is(R� time). In particu-
lar, if R < time, then the “gain” is negative and we are better
off not trying to solve the problem. If the method fails or hits
the time bound, the “gain” is(�time). We need to estimate
the expected gain for all candidate methods and time bounds,
and select the method and bound that maximize the expecta-
tion, which gives us the following statistical problem.

Problem Suppose that a method solvedn problems, failed
onm problems, and was interrupted (upon hitting the time
bound) onk problems. The success times weres1; s2; :::; sn,

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

the failure times weref1; f2; :::; fm, and the interrupt times
wereb1; b2; :::; bk. Given a rewardR for solving a new prob-
lem and a time boundB, estimate the expected gain for this
reward and time bound, and determine the standard devia-
tion of the estimate.

We use thestationarity assumption(Valiant 1984): we as-
sume that the past problems and the new problem are drawn
randomly from the same population, using the same proba-
bility distribution. We also assume that the method’s perfor-
mance does not improve over time.

3 Statistical Foundations
We now derive a solution to the statistical problem. We
assume, for convenience, that success, failure, and interrupt
times are sorted in the increasing order; that is,s1 � ::: � sn,
f1 � ::: � fm, andb1 � ::: � bk. We first consider the case
when the time boundB is no larger than the lowest of the past
bounds,B � b1. Let c be the number of success times that
are no larger thanB; that is,sc � B < sc+1. Similarly, letd
be the number of failures withinB; that is,fd � B < fd+1.

We estimate the expected gain by averaging the gains that
would be obtained in the past, if we used the rewardR and
time boundB. The method would solvec problems, earning
the gainsR�s1; R�s2; :::; R�sc. It would terminate with fail-
ured times, resulting in the negative gains�f1;�f2; :::;�fd.
In the remainingn+m+k�c�d cases, it would hit the time
bound,each time earning�B. The expected gain is equal to
the mean of all thesen+m+k gains:Pc

i=1(R� si)�
Pd

j=1 fj � (n +m + k � c� d)B

n+m + k
:

(1)
Since we have computed the mean for a random selection

of problems, it may be different from the mean of the overall
problem population. We estimate the standard deviation of
the expected gain using the formula for the deviation of a
sample mean:s

Sqr� Sum2=(n+m + k)

(n+m+ k)(n+m+ k � 1)
; where (2)

Sum=
Pc

i=1
(R� si)�

Pd

j=1
fj � (n+m+ k � c� d)B,

Sqr=
Pc

i=1(R � si)
2 +
Pd

j=1 f
2
j + (n+m+ k� c� d)B2.

In Figure 1, we show the dependency of the expected
gain on the time bound for our three methods. We give the
dependency for three different values of the rewardR, 10.0
(dash-and-dot lines), 30.0 (dashed lines), and 100.0 (solid
lines). The dotted lines show the standard deviation for the
100.0 reward: the lower line is “one deviation below” the
estimate, and the upper line is “one deviation above.”

We now consider the case whenB is larger thane of the
past interrupt times; that is,be < B � be+1. For example,
suppose that we interruptedALPINE on problem 4 after 4.5
seconds and on problem 7 after 5.5 seconds, obtaining the
data shown in Table 2(a), and that we need to estimate the
gain forB = 6:0.

10 100
−20

0

20

40

60

APPLY

TIME BOUND

E
X

P
E

C
T

E
D

 G
A

IN
S

10 100
−20

0

20

40

60

DELAY

TIME BOUND
10 100

−20

0

20

40

60

ALPINE

TIME BOUND

Figure 1: Dependency of the expected gain on the time
bound, for rewards of 10.0 (dash-and-dot lines), 30.0 (dashed
lines), and 100.0 (solid lines). The dotted lines show the
standard deviation of the gain estimate for the 100.0 reward.

ALPINE’s
time

1 1.6 s
2 2.0 s
3 4.4 s
4 4.5 b
5 5.0 s
6 81.4 s
7 5.5 b
8 200.0 b
9 8.8 s

� � �

29 10.2 f
30 5.4 f

(a)

!

weight time
1.000 1.6 s
1.000 2.0 s
1.000 4.4 s

– –
1.048 5.0 s
1.048 81.4 s
1.048 5.5 b
1.048 200.0 b
1.048 8.8 s

� � �

1.048 10.2 f
1.048 5.4 f

(b)

!

weight time
1.000 1.6 s
1.000 2.0 s
1.000 4.4 s

– –
1.048 5.0 s
1.118 81.4 s

– –
1.118 200.0 b
1.118 8.8 s

� � �

1.118 10.2 f
1.048 5.4 f

(c)

Table 2: Distributing the chances of interrupt times among
the larger-time outcomes.

We cannot useb1; b2; :::; be directly in the gain estimate,
since the use of the time boundB would cause the method
to run beyond these old bounds. Instead, we “re-distribute”
the corresponding probabilities among the other outcomes.

If we had not interrupted the method atb1 in the past,
it would have succeeded or failed at some larger time, or
hit a larger time bound. We may estimate the expected
outcome using the data on the past problem-solvingepisodes
in which the method ran beyondb1. We thus removeb1 from
the sample and distribute its chance to occur among all the
higher-time outcomes. In the example of Table 2(a),b1 is
4.5 and there are 21 problems with larger times. We thus
remove 4.5 from the sample data and increase the weights
of the larger-time outcomes from 1 to 1+ 1

21 = 1:048 (see
Table 2b).

We next distribute the weight ofb2 among the larger-
than-b2 times. In our example,b2 is 5.5 and there are 15
problems with larger times. We distributeb2’s weight, 1.048,
among these 15 problems, thus increasing their weight to
1:048+ 1:048

15 = 1:118 (Table 2c). We repeat this process for

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

b3; :::; be.
We denote the resulting weights ofs1; :::; sc by u1; :::; uc,

and theweights off1; :::; fdbyv1; :::; vd. All success, failure,
and interrupt times larger thanB have the same weight,
which we denote byw. We have thus obtained(n+m+k�e)
weighted times. We use them to compute the expected gain:Pc

i=1
ui(R � si)�

Pd

j=1
vjfj � (n+m + k � c� d� e)wB

n+m+ k
:

(3)
Similarly, we use the weights in estimating the standard

deviation of the expected gain:s
Sqr� Sum2=(n+m + k)

(n+m + k)(n+m+ k � e � 1)
; where (4)

Sum=
Pc

i=1
ui(R�si)�

Pd

j=1
vjfj�(n+m+k�c�d�e)wB,

Sqr=
Pc

i=1 ui(R�si)
2+
Pd

j=1 vjf
2
j+(n+m+k�c�d�e)wB2.

The application of these formulas to the data in Table 2(a),
for ALPINE with reward 30.0 and time bound 6.0, gives the
expected gain of 6.1 and the standard deviation of 3.0.

We have assumed in the derivation that the execution cost
is proportional to the running time. We may readily extend
the results to any other monotone dependency between time
and cost, by replacing the terms(R� si), (�fi), and(�B)
with more complex functions.

Note that we donot use past rewards in the statistical es-
timate. The rewardR may differ from the rewards earned
on the sample problems. We may extend our results to situ-
ations when the reward is a function of the solution quality,
rather than a constant, but it works only if this function does
not change from problem to problem. We replace the terms
(R � si) by (Ri � si), whereRi is the reward for the cor-
responding problem. The resulting expression combines the
estimate of the expected reward and expected running time.

In the full paper (Fink 1997), we describe an efficient
algorithm that computes the gain estimates and estimate de-
viations, for multiple values of the time boundB. The algo-
rithmdetermines weights and finds gain estimates in one pass
through the sorted list of success, failure, and interrupt times,
and time-bound values. ForM time bounds and a sample of
N problems, the time complexity isO(M + N). The com-
plexity of pre-sorting the lists isO((M +N) log(M +N)),
but in practice it takes much less time than the rest of the
computation. We implemented the algorithm in Common
Lisp and tested it on Sun 5. Its running time is about
(M + N) � 3 � 10�4 seconds.

4 Selection of a Method and Time Bound
We describe the use of the statistical estimate to choose
among problem-solving methods and to determine appro-
priate time bounds. We provide heuristics for combining
the exploitation of past experience with exploration of new
alternatives.

The basic technique is to estimate the gain for a number
of time bounds, foreach available method, and select the
method and time bound with the maximal gain. For example,
if the reward in the transportation domain is 30.0, then the

best choice isAPPLY with time bound 11.6, which gives
the expected gain of 14.0. This choice corresponds to the
maximum of the dashed lines in Figure 1. If the expected
gain for all time bounds is negative, then we are better off not
solving the problem at all. For example, if the only available
method isDELAY and the reward is 10.0 (see the dash-and-dot
line in Figure 1), we should skip the problem.

For each method, we use its past success times as candi-
date time bounds. We compute the expected gain only for
these bounds. If we computed the gain for some other time
boundB, we would get a smaller gain than for the closest
lower success timesi (wheresi < B < si+1), because ex-
tending the time bound fromsi toB would not increase the
number of successes on the past problems.

We now describe a technique for incremental learning of
the performance of available methods. We assume that we
begin with no past experience and accumulate performance
data as we solve more problems. For each new problem, we
use the statistical analysis to select a method and time bound.
After applying the selected method, we add the result to the
performance data.

We need to choose a method and time bound even when
we have no past experience. Also, we sometimes need to
deviate from the maximal-expectation selection in order to
explore new opportunities. If we always used the selection
that maximizes the expected gain, we would be stuck with
the method that yielded the first success, and we would never
set a time bound higher than the first success time.

We have not constructed a statistical model for combining
exploration and exploitation. Instead, we provide a heuris-
tical solution, which has proved to work well for selecting
amongPRODIGY planners. We first consider the selection of
a time bound for a fixed method, and then show how to select
a method.

If we have no previous data on a method’s performance,
we set the time bound equal to the reward. Now sup-
pose that we have accumulated some data on the method’s
performance, which enable us to determine the bound with
the maximal expected gain. To encourage exploration, we
select the largest bound whose expected gain is “not much
different” from the maximum.

Let us denote the maximal expected gain bygmax and its
standard deviation by�max. Suppose that the expected gain
for some bound isg and its deviation is�. The expected dif-
ference between the gaing and the maximal gain isgmax� g.
If our estimates are normally distributed, the standard devia-
tion of the expected difference is

p
�2

max+ �2. This estimate
of the deviation is an approximation, because the distribution
for small samples may be Student’s rather than normal, and
becausegmaxandg are not independent, as they are computed
from the same data.

We say thatg is “not much different” from the maximal
gain if the ratio of the expected difference to its deviation
is bounded by some constant. We set this constant to 0.1,
which tends to give good results:gmax�gp

�2
max+�

2
< 0:1: We thus

select the largest time bound whose gain estimateg satisfies
this condition.

We present the results of this selection strategy in Figure 2.

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

We ran each of the three methods on the thirty transportation
problems from Table 1, in order. The horizontal axes show
the problem’s number (from 1 to 30), whereas the vertical
axes are the running time. The dotted lines show the selected
time bounds, whereas the dashed lines mark the time bounds
that give the maximal gain estimates. The solid lines show
the running time; they touch the dotted lines where the meth-
ods hit the time bound. The successfully solved problems
are marked by circles and the failures are shown by pluses.

APPLY’s total gain is 360.3, which makes an average of
12.0 per problem. If we used the maximal-gain time bound,
11.6, for all problems, the gain would be 14.0 per problem.
Thus, the use of incremental learning yielded a near-maximal
gain, in spite of the initial ignorance.APPLY’s estimate of
the maximal-gain bound, after solving all problems, is 9.6.
It differs from the 11.6 bound, found from Table 1, because
the use of bounds that ensure a near-maximal gain prevents
sufficient exploration.

DELAY’s total gain is 115.7, or 3.9 per problem. If we used
the data in Table 1 to find the optimal bound, which is 6.2,
and solved all problems with this bound, we would earn 5.7
per problem. Thus, the incremental-learning gain is about
two-thirds of the gain that could be obtained based on the
advance knowledge. Finally,ALPINE’s total gain is 339.7, or
11.3 per problem. The estimate based on Table 1 gives the
bound 11.0, which would result in earning 12.3 per problem.
Unlike APPLY, bothDELAY andALPINE eventually found the
optimal bound.

Note that the choice of a time bound has converged to the
optimal in two out of three experiments. Additional tests
have shown that the insufficient exploration prevents finding
the optimal bound in about half of all cases (Fink 1997).
We tried to encourage more exploration by increasing the
bound on gmax�gp

�2
max+�

2
from 0.1 to 0.2. The selected bound then

converges to the optimal more often; however, the overall
performance worsens due to larger time losses on unsolved
problems.

We next describe the use of incremental learning to select
a problem-solving method. If we have no past data for some

10 20 30
0

5

10

15

20

25

30

APPLY

PROBLEM’S NUMBER

R
U

N
N

IN
G

 T
IM

E
 A

N
D

 B
O

U
N

D
S

10 20 30
0

5

10

15

20

25

30

DELAY

PROBLEM’S NUMBER
10 20 30

0

5

10

15

20

25

30

ALPINE

PROBLEM’S NUMBER

Figure2: Results of the incremental learning of a timebound:
running times (solid lines), time bounds (dotted lines), and
maximal-gain bounds (dashed lines). The successes are
marked by circles (o) and the failures by pluses (+).

10 20 30 40 50 60 70 80 90

0

10

20

30

PROBLEM’S NUMBER

R
U

N
N

IN
G

 T
IM

E

Figure 3: Results of the incremental selection of a method
and time bound, on ninety transportation problems. The
graph shows the running times (solid line), successes (o),
and failures (+). The three rows of symbols below the solid
line show the selection made amongAPPLY (o), DELAY (x),
andALPINE (�).

method, we select this unknown method, thus encouraging
exploration.

If we have past data for all methods, we first select a
time bound foreach method. Then, foreach method and
its selected bound, we find the probability that it is the best
among the methods. We use the statisticalt-test to estimate
the probability that some method is better than another one.
We compute the probability that a method is best as the
product of the probabilities that it outperforms individual
methods. This computation is an approximation, since the
probabilities that we multiply are not independent.

Finally, we make a weighted random selection among the
methods; the chance of selecting a method is equal to the
probability that it is best among the methods. This strategy
leads to the frequent application of methods that perform
well, but also encourages some exploratory use of poor per-
formers.

We show the results of using this selection strategy in the
transportation domain, for the reward of 30.0, in Figure 3.
In this experiment, we first use the thirty problems from
Table 1 and then sixty additional transportation problems.
The horizontal axis shows the problem’s number, whereas
the vertical axis is the running time. The rows of symbols
below the curve show the selection of a planner: a circle for
APPLY, a cross forDELAY, and an asterisk forALPINE.

The total gain is 998.3, or 11.1 per problem. The selection
converges to the use ofAPPLY with the time bound 12.7,
which is optimal for this set of ninety problems. If we used
this selection on all the problems, we would earn 13.3 per
problem.

5 Use of Problem Sizes
We have considered the task of finding a problem-solving
method and timebound that will work well for most problems
in a domain. If we can estimate the sizes of problems, we
improve the performance by adjusting the time bound to a

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

 1 10
 1

10

100
APPLY

t = 4.2, P < 0.01

P
O

L
Y

N
O

M
IA

L
 D

E
P

E
N

D
E

N
C

Y

 1 10
 1

10

100
DELAY

t = 1.6, 0.1 < P < 0.2
 1 10

 1

10

100
ALPINE

t = 3.5, P < 0.01

5 10 15
 1

10

100

t = 3.8, P < 0.01E
X

P
O

N
E

N
T

IA
L

 D
E

P
E

N
D

E
N

C
Y

5 10 15
 1

10

100

t = 0.5, P > 0.2
5 10 15

 1

10

100

t = 3.3, P < 0.01

Figure4: The dependency of the success time on theproblem
size. The top graphs show the regression for a polynomial
dependency, and the bottom graphs are for an exponential
dependency.

problem size.
We define aproblem sizeas an easily computable positive

value that correlates with the problem complexity: the larger
the value, the longer it usually takes to solve the problem.
Finding an accurate measure of complexity is often a difficult
task, but many domains provide at least a rough complex-
ity estimate. In the transportation domain, we estimate the
complexity by the number of packages to be delivered. In
the rightmost column of Table 1, we show the number of
packages in each problem.

We use regression to find the dependency between the
sizes of the sample problems and the times to solve them.
We use separate regressions for success times and for failure
times. We assume that the dependency of time on size is
either polynomial or exponential. If it is polynomial, the
logarithm of time depends linearly on the logarithm of size;
for an exponential dependency, the time logarithm depends
linearly on size. We thus use linear least-square regression
to find both polynomial and exponential dependencies.

In Figure 4, we give the results of regressing the success
times for the transportation problems from Table 1. The top
three graphs show the polynomial dependency of the success
time on the problem size, whereas the bottom graphs are for
the exponential dependency. The horizontal axes show the
problem sizes (that is, the number of packages), and the
vertical axes are the running time. The circles show the sizes
and times of the problem instances; the solid lines are the
regression results.

We evaluate the regression using thet-test. Thet value is

 1 10
 1

10

100

PROBLEM SIZE

R
U

N
N

IN
G

 T
IM

E

Figure 5: Scaling two success times (o) and a failure time (+)
of DELAY to a 3-package problem.

the ratio of the estimated slope of the regression line to the
standard deviation of the slope estimate. Thet-test converts
the t value into the probability that using the regression is
no betterthan ignoring the sizes and simply taking the mean
time; this probability is called theP value. When the re-
gression gives a good fit to sample data,t is large andP is
small. In Figure 4,we give thet values and the corresponding
intervals of theP value.

We use the regression only if the probabilityP is smaller
than a certain bound. In our experiments, we set this bound
to 0.2; that is, we use problem sizes only forP < 0:2. We
use the 0.2 value rather than more “customary” 0.05 or 0.02
because an early detection of a dependency between sizes
and times is more important for the overall efficiency than
establishing a high certainty of the dependency. We select
between the polynomial and exponential regression based on
the value oft: we prefer the regression with the largert. In
our example, the polynomial regression wins for all three
methods.

Note that least-square regression and the relatedt-test
make quite strong assumptions about the nature of the dis-
tribution. First, for problems of fixed size, the distribution
of the time logarithms must be normal; that is, time must be
distributed log-normally. Second, for all problem sizes, the
standard deviation of the distribution must be the same. The
regression, however, usually provides a good approximation
of the dependency between size and time even when these
assumptions are not satisfied.

The use of a problem size in estimating the gain is based
on “scaling” the times of sample problems to the given size.
We illustrate the use of regression in Figure 5, where we
scaleDELAY’s times of a 1-package success, an 8-package
success, and an 8-package failure for estimating the gain
on a 3-package problem (the 3-package size is marked by
the vertical dotted line). We use the slope of the success
regression in scaling success times, and the slope of the
failure regression in scaling failures.

The slope of scaling an interrupt should depend on whether
the algorithm would succeed or fail if we did not interrupt it;
however, we do not know which outcome would occur. We
use a simple heuristic of choosing between the success and
failure slope based on which of them has smallerP .

For a sample ofN problems, the overall time of computing
the polynomial and exponential regression slope, selecting
between the two regressions, and scaling the sample times
is N � 9 � 10�4 seconds. For the incremental learning of a

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

10 100
−20

0

20

40

60

80

1 PACKAGE

TIME BOUND

E
X

P
E

C
T

E
D

 G
A

IN
S

10 100
−20

0

20

40

60

80

3 PACKAGES

TIME BOUND
10 100

−20

0

20

40

60

80

10 PACKAGES

TIME BOUND

Figure 6: Dependency ofAPPLY’s expected gain on the time
bound, for rewards of 10.0 (dash-and-dot lines), 30.0 (dashed
lines), and 100.0 (solid lines). The dotted lines show the
standard deviation of the gain estimate for the 100.0 reward.

time bound, we implemented a procedure that incrementally
updates the slope andt value after adding a new problem to
the sample. This procedure reduces the amortized time of
the statistical computation to(N � 2+ 7) � 10�4 seconds per
problem.

After scaling the sample times to a given size, we use the
technique of Section 3 to compute the gain estimate and its
standard deviation. The only difference is that we reduce the
second term in the denominator for the deviation (Formula 4)
by 2, as the success and failure regressions reduce the number
of degrees of freedom of the sample. Thus, we compute the

deviation as follows:
q

SqrSum�Sum2=(n+m+k)
(n+m+k)�(n+m+k�e�3) :

In Figure 6, we show the dependency of the expected
gain on the time bound when usingAPPLY on 1-package, 3-
package, and 10-package problems. If we use the problem
sizes in the incremental-selection experiments of Section 3,
we gain 12.2 per problem in learning a bound forAPPLY
(vs. the 12.0 gain obtained without the use of sizes), 4.7 in
learning forDELAY (vs. 3.9 without the use of sizes), 11.9
in learning forALPINE (vs. 11.3), and 11.8 in the method-
selection experiment (vs. 11.1). The average running time
of regression and scaling is 0.03 seconds per problem. Thus,
the time of the statistical computation for using problem sizes
is much smaller than the resulting gain increase.

The results show that the use of problem sizes increases
the gain, though not by much. We have conducted additional
experiments with artificially generated data (Fink 1997) and
demonstrated that, if running times better correlate with
problem sizes, the gain increase becomes more significant.

6 Empirical Examples
We have demonstrated the effectiveness of the statistical se-
lection in a simple transportation domain. We now give
results in two other domains.

We first consider an extension to the transportation do-
main, in which we use airplanes to carry packages between
cities and vans for the local delivery within cities (Veloso
1994). In Table 3, we give the performance ofAPPLY, DE-

time (sec) and outcome # of
APPLY DELAY ALPINE packs

1 4.7 s 4.7 s 4.7 s 1
2 96.0 s 9.6 f 7.6 f 2
3 5.2 s 5.1 s 5.2 s 1
4 20.8 s 10.6 f 14.1 s 2
5 154.3 s 31.4 s 7.5 f 2
6 2.5 s 2.5 s 2.5 s 1
7 4.0 s 2.9 s 3.0 s 1
8 18.0 s 19.8 s 4.2 s 2
9 19.5 s 26.8 s 4.8 s 2

10 123.8 s 500.0 b 85.9 s 3
11 238.9 s 96.8 s 76.6 s 3
12 500.0 b 500.0 b 7.6 f 4
13 345.9 s 500.0 b 58.4 s 4
14 458.9 s 98.4 s 114.4 s 8
15 500.0 b 500.0 b 115.6 s 8
16 35.1 s 21.1 s 6.6 f 2
17 60.5 s 75.0 f 13.7 s 2
18 3.5 s 3.4 s 3.5 s 1
19 4.0 s 3.8 s 4.0 s 1
20 232.1 s 97.0 s 9.5 f 2
21 60.1 s 73.9 s 14.6 s 2
22 500.0 b 500.0 b 12.7 f 2
23 53.1 s 74.8 s 15.6 s 2
24 500.0 b 500.0 b 38.0 s 4
25 500.0 b 213.5 s 99.2 s 4
26 327.6 s 179.0 s 121.4 s 6
27 97.0 s 54.9 s 12.8 s 6
28 500.0 b 500.0 b 16.4 f 8
29 500.0 b 500.0 b 430.8 s 16
30 500.0 b 398.7 s 214.8 s 8

Table 3: Performance in the extended transportationdomain.

LAY , andALPINE on thirty problems.
We present the results of the incremental learning of a

time bound forAPPLY, DELAY, andALPINE, for the reward of
400.0, in the top three graphs of Figure 7 (the legend is the
same as in Figure 2). We obtained these results without the
use of problem sizes. TheAPPLY learning gives the gain of
110.1 per problem and eventually selects the bound 127.5.
The optimal bound for this set of problems is 97.0. If we used
the optimal bound for all problems, we would earn 135.4 per
problem. If we estimate the problem sizes by the number of
packages to be delivered, and use these sizes in learning the
time bound forAPPLY, we gain 121.6 per problem.

DELAY gains 131.1 per problem and chooses the 105.3
bound at the end of the learning. The actual optimal bound
for DELAY is 98.4, the use of which on all problems would
give 153.5 per problem. The use of the problem size in the
incremental learning gives 137.4 per problem.

Finally, ALPINE gains 243.5 per problem and chooses the
bound 127.6. The optimal bound forALPINE is 430.8, the use
of which would give the per-problem gain of 255.8. The use
of problem sizes gives the 248.3 per-problem gain. (ALPINE
outperformsAPPLY andDELAY because it uses abstraction,
which separates the problem of between-city air transporta-

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

10 20 30
0

100

200

300

400

APPLY

PROBLEM’S NUMBER

R
U

N
N

IN
G

 T
IM

E
 A

N
D

 B
O

U
N

D
S

10 20 30
0

100

200

300

400

DELAY

PROBLEM’S NUMBER
10 20 30

0

100

200

300

400

ALPINE

PROBLEM’S NUMBER

INCREMENTAL SELECTION OF A METHOD

10 20 30 40 50 60 70 80 90

0

100

200

300

400

PROBLEM’S NUMBER

R
U

N
N

IN
G

 T
IM

E

Figure 7: Incremental learning of time bounds (top three
graphs) and selection of a method (bottom graph) in the
extended transportation domain.

tion from the problem of within-city deliveries.)
The bottom graph in Figure 7 shows the results of the in-

cremental selection of a method, without the use of problem
sizes (we use the same legend as in Figure 3). We first use the
thirty problems from Table 3 and then sixty other problems.
The method converges to the choice ofALPINE with the time
bound 300.6 and gives the gain of 207.0 per problem. The
optimal choice for this set of problems is the use ofALPINE
with the time bound 517.1, which would yield 255.6 per
problem. An incremental-selection experiment with the use
of problem sizes gives the 229.4 per-problem gain.

We next apply our technique to the bound selection when
calling to a friend on thephone. Wedeterminehow many sec-
onds (or rings) you should wait for an answer before hanging
up. The reward for reachingyour party may be determined
by the time that you are willing to wait in order to talk
now, as opposed to hanging up and calling later. In Table 4,
we give the times for sixty calls, rounded to 0.05 seconds1.
A success occurred when our party answered thephone.
A reply by an answering machine was considered a failure.

The graph on the left of Figure 8 shows the dependency
of the expected gain on the time bound, for the rewards of

1We made these calls to sixty different people at their home
numbers; we measured the time from the beginning of the first ring,
skipping the static silence of the connection delays.

time # time # time
1 5.80 f 21 200.00 b 41 12.60 s
2 8.25 s 22 200.00 b 42 26.15 f
3 200.00 b 23 10.50 s 43 7.20 s
4 5.15 s 24 14.45 f 44 16.20 f
5 8.30 s 25 11.30 f 45 8.90 s
6 200.00 b 26 10.20 f 46 4.25 s
7 9.15 s 27 4.15 s 47 7.30 s
8 6.10 f 28 14.70 s 48 10.95 s
9 14.15 f 29 2.50 s 49 10.05 s

10 200.00 b 30 8.70 s 50 6.50 s
11 9.75 s 31 6.45 s 51 15.10 f
12 3.90 s 32 6.80 s 52 25.45 s
13 11.45 f 33 8.10 s 53 20.00 f
14 3.70 s 34 13.40 s 54 24.20 f
15 7.25 s 35 5.40 s 55 20.15 f
16 4.10 s 36 2.20 s 56 10.90 s
17 8.25 s 37 26.70 f 57 23.25 f
18 5.40 s 38 6.20 s 58 4.40 s
19 4.50 s 39 24.45 f 59 3.20 f
20 32.85 f 40 29.30 f 60 200.00 b

Table 4: Waiting times (seconds) in phone-call experiments.

30.0 (dash-and-dot line), 90.0 (dashed line), and 300.0 (solid
line). The optimal bound for the 30.0 and 90.0 rewards is
14.7 (three rings), whereas the optimal bound for 300.0 is
25.5 (five rings).

The graph on the right of Figure 8 shows the results of
selecting the bounds incrementally, for the reward of 90.0.
The learned bound converges to the optimal bound, 14.7.
The average gain obtained during the learning is 38.9 per
call. If we used the optimal bound for all calls, we would
earn 41.0 per call.

The experiments in the twoPRODIGY domains and the
phone-call domain show that the learning procedure usually
finds an appropriate bound and yields a near-maximal gain.
In the full paper (Fink 1997), we present a series of experi-
ments with artificially generated time values, using normal,
uniform, log-normal, and log-uniform distributions. The
learning gives good results for all four distributions.

7 Conclusions and Open Problems
We have stated the task of selecting among problem-solving
methods as a statistical problem, derived an approximate so-
lution, and demonstrated experimentally its effectiveness in
selecting an appropriate method and time bound. In the full
paper (Fink 1997), we describe the use of similarity among
problems to improve the accuracy of method selection. We
have designed a module that uses similarity to choose rele-
vant data from the library of past problem-solving episodes,
which enables the selection algorithm to adjust the method
and bound selection to specific features of a given problem.

Even though AI planning provided the motivation for our
work, the generality of the statistical model makes it appli-
cable to a wide range of real-life situations outside AI. The
main limitation of applicability stems from the restrictions
on the reward function. We plan to test the effectiveness

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

10 100

0

50

100

150

TIME BOUND

E
X

P
E

C
T

E
D

 G
A

IN
S

DEPENDENCY OF GAINS ON TIME BOUND

0 20 40 60
0

10

20

30

40

PROBLEM’S NUMBER

W
A

IT
IN

G
 T

IM
E

 A
N

D
 B

O
U

N
D

S

LEARNING A TIME BOUND

Figure 8: Dependency of the expected gain on the time bound
in the phone-call domain, for the rewards of 30.0 (dash-and-
dot line), 90.0 (dashed line), and 300.0 (solid line), and the
results of the incremental learning of a time bound.

of the statistical-selection algorithm in other AI systems, as
well as on method-selection tasks outside AI.

To make the model more flexible, we need to provide a
mechanism for switching the method and revising the time
bound in the process of search for a solution. We also plan to
study the possibility of running competing problem-solving
methods on parallel machines, which will require a further
extension to the statistical model. Another open problem
is to consider possible dependencies of the reward on the
solution quality and enhance the model toaccount for such
dependencies. Finally, we need to allow interleaving of
several promising methods, and selecting new methods if the
original selection has failed. Such a multi-method strategy
is often more effective than sticking to one method.

Acknowledgements
I am grateful to Svetlana Vayner, who contributedmany valu-
able insights. She helped to construct the statistical model
for estimating the performance of problem-solving methods
and provided a thorough feedback on all my ideas. I also owe
thanks to Manuela Veloso, Martha Pollack, Henry Rowley,
and anonymous reviewers for their valuable comments.

The research is sponsored by the Wright Laboratory,Aero-
nautical Systems Center, Air Force Materiel Command,
USAF, and Defense Advanced Research Project Agency
(DARPA) under grant number F33615-93-1-1330.

References
Bacchus, F., and Yang, Q. 1992. The expected value of
hierarchical problem-solving. InProceedings of the Tenth

National Conference on Artificial Intelligence.
Breese, J. S., and Horvitz, E. J. 1990. Ideal reformulation
of belief networks. InProceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence, 64–72.
Fink, E. 1997. Statistical selection among problem-solving
methods. Technical Report CMU-CS-97-101, Department
of Computer Science, Carnegie Mellon University.
Hansen, E. A., and Zilberstein, S. 1996. Monitoring the
progress of anytime problem-solving. InProceedings of the
Fourteenth National Conference on Artificial Intelligence,
1229–1234.
Hansson, O., and Mayer, A. 1989. Heuristic search and
evidential reasoning. InProceedings of the Fifth Workshop
on Uncertainty in Artificial Intelligence, 152–161.
Horvitz, E. J. 1988. Reasoning under varying and uncer-
tain resource constraints. InProceedings of the Seventh
National Conference on Artificial Intelligence, 111–116.
Knoblock, C. A. 1991.Automatically Generating Abstrac-
tions for Problem Solving. Ph.D. Dissertation, School of
Computer Science, Carnegie Mellon University. Technical
Report CMU-CS-91-120.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning.Artificial Intelligence68:243–302.
Minton, S. 1996. Automatically configuring constraint
satisfaction programs: A case study.Constraints: An In-
ternational Journal1:7–43.
Mouaddib, A., and Zilberstein, S. 1995. Knowledge-based
anytime computation. InProceedings of the International
Joint Conference on Artificial Intelligence, 775–781.
Newell, A., and Simon, H. A. 1972.Human Problem
Solving. Englewood Cliffs, NJ: Prentice Hall.
Pérez, M. A. 1995.Learning Search Control Knowledge
to Improve Plan Quality. Ph.D. Dissertation, School of
Computer Science, Carnegie Mellon University. Technical
Report CMU-CS-95-175.
Polya, G. 1957.How to Solve It. Garden City, NY: Dou-
bleday, second edition.
Russell, S. J.; Subramanian, D.; and Parr, R. 1993. Provably
bounded optimal agents. InProceedings of the Thirteenth
International Joint Conference on Artificial Intelligence,
338–344.
Russell, S. J. 1990. Fine-grained decision-theoretic search
control. InProceedings of the Sixth Conference on Uncer-
tainty in Artificial Intelligence, 436–442.
Stone, P.; Veloso, M. M.; and Blythe, J. 1994. The need for
different domain-independent heuristics. InProceedings
of the Second International Conference on AI Planning
Systems, 164–169.
Valiant, L. G. 1984. A theory of the learnable.Communi-
cations of the ACM27:1134–1142.
Veloso, M. M., and Stone, P. 1995.FLECS: Planning
with a flexible commitment strategy.Journal of Artificial
Intelligence Research3:25–52.
Veloso, M. M. 1994.Planning and Learning by Analogical
Reasoning. Springer Verlag.

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

