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Abstract1

We consider the problem of scheduling an unknown
sequence of tasks for a single server as the tasks arrive with
the goal off maximizing the total weighted value of the tasks
served before their deadline is reached. This problem is
faced for example by schedulers in packet communication
networks when packets have deadlines and rewards associ-
ated with them. We make the simplifying assumptions that
every task takes the same fixed amount of time to serve, that
every task arrives with the same initial latency to its dead-
line. We also assume that future task arrivals are stochasti-
cally described by a Hidden Markov Model (HMM). The
resulting decision problem can be formally modelled as a
Partially Observable Markov Decision Process (POMDP).

We first present and analyze a new optimal off-line schedul-
ing algorithm called Prescient Minloss scheduling for the
problem just described, but with “prescient” foreknowledge
of the future task arrivals. We then discuss heuristically
adapting this off-line algorithm into an on-line algorithm by
sampling possible future task sequences from the HMM. We
discuss and empirically compare scheduling methods for this
on-line problem, including previously proposed sampling-
based POMDP solution methods. Our heuristic approach can
be used to adapt any off-line scheduler into an on-line sched-
uler.

1.  Introduction
This work considers the problem of scheduling a sequence
of tasks where the tasks are not all known to the scheduler
at once, but rather arrive in an on-line fashion as scheduling
proceeds. We use stochastic planning techniques to model
and address the problem of selecting which task to serve in
order to maximize the cumulative value of the tasks served
over long time intervals (more precisely, we seek to maxi-
mize the discounted weighted number of tasks served,
where each task carries a natural number weight indicating
its value if served before its deadline).

We make several simplifying assumptions in our first
pass at this problem—these are primarily motivated by the
need for analytical and algorithmic tractability, but also by
correspondence to our motivating application of multiclass

packet-network scheduling. First, we assume that there
a finite number of different classes of tasks such that the
ward associated with scheduling a task before its deadlin
determined by the class into which it falls. These class
can be thought of as differing priorities (or pricings) of se
vice. We assume that the task arrivals for each class are
scribed stochastically by a Hidden Markov Model (HMM)
one for each class,2 such that at most one task arrives pe
time step per class. In our problem setting there are no p
cedence constraints among the tasks, so that any task
be scheduled regardless of what other tasks have b
scheduled. We assume that every task takes the same
time to process, and finally, we assume that every task
rives with the same latency to its deadline:i.e., there is
some fixed time intervald between the arrival time and
deadline time that applies to every task. Even under
these simplifying assumptions this on-line scheduling ta
has no known optimal or approximately optimal solutio
that can be computed in reasonable time.

The approach we take here is to model the problem a
discrete-time Partially Observable Markov Decision Pr
cess (a POMDP). POMDPs have recently been studied
the artificial intelligence literature as general models f
planning in the face of uncertainty (Littman 1996). Optima
POMDP solution methods are known to be impractical
many cases even for small problems. Proposed approac
often rely on additional assumptions about the problem th
are not present in this example (e.g., (Hansen, Barto, and
Zilberstein 1996) relies on the presence ofsensoractions
that reveal the hidden state information).

Queueing/scheduling problems such as the one we c
sider are most commonly formulated using continuous-tim
MDP or semi-MDP models (see for example (Stidham an
Weber 1993)). For simplicity in explicating the connection
to the AI POMDP literature we consider a discrete-tim
formulation here, but this work should generalize to conti
uous time.

In this work we consider using sampling of possible fu
tures to obtain an estimate of the expected value obtain
by following each available action (i.e., scheduling each
candidate task). Recent work reported in (Kearns, Manso
and Ng 1999a), (Kearns, Mansour, and Ng 1999b) and
(McAllester and Singh 1999) has proposed sampling as1. This research is supported by the Defense Advanced Research Projects

Agency under contract F19628-98-C-0051. The equipment for this
work was provided in part by a grant from Intel Corporation. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U. S. Government.

2. In problems where the job arrival characteristics are not known (or a
changing), an HMM model for each class can be inferred and upda
over time using an expectation maximization (EM) algorithm.
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means for evaluating or selecting a POMDP policy, respec-
tively.

Unfortunately, the approximately optimal sampling tech-
niques presented in these previous papers appear to be com-
pletely impractical for reasonable parameter values of this
problem. More specifically, if the sampling width and hori-
zon for these algorithms are selected so that the approxima-
tion guarantees are non-trivial, then the amount of compu-
tation required cannot be carried out by any current
computer hardware. As an example, suppose we use the
sampling technique proposed in (McAllester and Singh
1999) and select the sampling parameters using the approx-
imation bounds provided in that paper. If we assume seven
task classes with the highest-reward tasks having reward
2000 and the lowest-reward tasks having reward 5, with dis-
count factor 0.9, and if we require value estimates accurate
enough to discriminate between a policyρ that schedules a
low-reward task at every time step and a policyρ’ that
schedules a high-reward task at every time step, then the
method appears to require us to traverse a tree with branch-
ing factor of order 108 and depth greater than 60.3

In response to these practical difficulties, we have taken a
different (and more heuristic) approach to using sampling
to address this scheduling problem. This approach can be
applied to any POMDP problem; however, it is clear that
only problems with very particular structure will find this
approach useful. Future work must be done to determine
exactly what problem features are required to justify this
approach—at this point, our evidence for the applicability
of our approach to this problem is only empirical.

Our approach is to begin by designing a policy selection
method for the related off-line scheduling problem—i.e.,
the problem where the future task arrivals are known. For
this problem, we are able to give an algorithm that com-
putes an optimal schedule, and this paper presents that algo-
rithm and argues its optimality. It is important to note that
in this off-line scheduling problem, tasks cannot be sched-
uled before they are slated to arrive—in other words, the ar-
rival sequence is still important and we are not simply
scheduling aset of tasks.

This off-line algorithm can then be used to get aheuristic
estimate of the value obtainable from a given POMDP be-
lief state by using sampling, as follows. Using sampling, we
can compute the expected value obtained from any belief
state by the off-line algorithm over the problem-specified
distribution of job arrival sequences: we simply sample sev-
eral task arrival sequences from the HMM and compute the
mean performance of the off-line scheduler on those se-
quences. This corresponds to measuring the expected per-
formance of a “prescient” version of the off-line algo-
rithm—one that can see the future arrival sequence. There
is no guarantee that this will correspond to the performance
of any “non-prescient” scheduler. This sampling-based
value estimate can then be used to estimate the Q-value for
each possible scheduling choice and choose a task to sched-
ule. To do this in practice also requires maintaining and up-

dating a current POMDP belief state after each action
taken, to use as the starting point for sampling.

To generalize this approach to an arbitrary POMD
(which will often perform quite poorly, we believe), we
must view the off-line algorithm as a means of taking
POMDP belief state and a fixed random number sequen
and returning the optimal finite-horizon value obtainab
from the belief state, assuming that any stochastic choic
encountered are made in sequence according to the fi
random number sequence. (In our problem, the only s
chasticity in the problem comes from the uncertain futu
task arrivals, and so presciently knowing the future task s
quence is equivalent to knowing how each stochastic cho
will be resolved, i.e., knowing the random number se
quence used in task sequence generation.) Given a sim
off-line algorithm for an arbitrary POMDP, we can then es
timate the expected value of acting “presciently optimal”
that POMDP, and base our action choice on that estimate
cannot be overemphasized that for many POMDP proble
this will yield very poor performance (we show an examp
later). The usefulness of this technique clearly relies on sp
cial characteristics present in scheduling-derived POMD
(and perhaps other POMDPs—we have not yet been able
characterize the class of POMDPs where this techniq
would apply).

We have implemented an on-line scheduling syste
based on these ideas, and compared its performance w
two approaches that ignore future-arriving tasks until th
arrive, and with the more principled sampling approach d
scribed in (McAllester and Singh 1999) with sampling pa
rameters set small enough to make the sampling practica
computable (thus losing any useful approximation guara
tees). Our system performs favorably with respect to the
other approaches.

A key approach we have not yet compared to our wo
empirically is the approach presented in (Crites and Ba
1996) for elevator scheduling. This approach analyzes
MDP problem formulation using function approximation t
cope with the large state space and off-line Q-learning
find an effective policy. While it is not immediately clea
how to apply this approach to a POMDP setting, we plan
eventually compare our approach to a Q-learning based
proach (perhaps learning for the continuous “informatio
state” MDP form of the POMDP). This alternative still re
quires substantial off-line training in contrast to our ap
proach, but the resulting policy is more clearly implemen
able in an on-line scheduler (no sampling to be done).

In the remainder of this paper, we formally define in turn
the on-line scheduling task we are addressing, the POM
formalism we are using to represent the decision-maki
task, the off-line scheduling algorithm we have designe
(including its optimality proof), and the sampling adapta
tion of this off-line algorithm. We then give empirical re-
sults for some particular instances of this task compari
our algorithm to other approaches.

2.  On-line Task Scheduling with Deadlines
We assume that timet is discrete,i.e., t ∈ {0,1,2,...}, and

3. The high branching factor derives from the high sampling width
required for reasonable accuracy.
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that each task takes exactly one time step to be served. We
assume there arem> 1 different classes of tasks involved in
the problem, with positive real rewardλi > 0 associated
with each classi ∈{1, ..., m}. We assume without loss of
generality that fori < j, λi > λj, i.e., that the classes are
arranged in order of descending reward.

For each task classi, we assume some unknown arrival
sequence given byAi(t) ∈ {0,1} as t varies inT. In other
words, a task arrives at timet in classi if and only if Ai(t) is
1. Let A(t) be them-tuple of arrivals for the differentm
classes <A1(t), ..., Am(t)>, so thatA constitutes a complete
description of the arrival sequence for all classes, and is
called atask arrival pattern. Note that for simplicity we do
not allow multiple tasks in the same class to arrive at the
same time, and tasks arriving at different times or in differ-
ent classes are assumed distinct from one another. When
needed, we will refer to the task arriving in classi at timet
(if any) as taskpi,t. Every task is assumed to have a “built-
in” arrival time, and the same deadlined relative to its ar-
rival time—i.e., taskpi,t must be served/scheduled at a time
t’ in the ranget ≤ t’ < (t + d) or it is considered lost. We re-
fer to the latest time a taskpi,t can be scheduled (t+d–1) as
thedeadlinefor the task, denoted deadline(pi,t). Taskpi,t is
said to belive for times in this range only. A taskpi,t is said
to beearlier than a taskpi’,t’  if t < t’ .

Definition 1: A scheduleπ(t) is a mapping from timest ∈
T to classes {1, ...,m} or “idle” giving the class4 of task
served at timet. The scheduleπt is the scheduleπ
restricted to times 0, ...,t–1 and “idle” otherwise, and is
called aprefix schedule, so thatπ0 is the completely “idle”
schedule. We say thatπ schedulesa taskpi,t at time t’ if
and only ifπ(t’ ) is i, Ai(t) is 1,pi,t is live at timet’, and all
earlier taskspi,t’’ that are live at timet’ are scheduled by
πt’ . A task isunscheduledby π if it is not scheduled byπ
at any time. The scheduleπ is well-formedfor arrival pat-
tern A if for all t, π(t) is “idle” when no task is actually
scheduled (i.e., π(t) is never a class with no live task
unscheduled byπt).

In analyzing our algorithms, we also need schedules that
specify exactly which tasks to serve at each point in time:

Definition 2: A task mappingis a one-to-one partial map-
ping σ from times to tasks such thatσ(t) = p implies that
p is live at time t. The scheduleπσ induced byσ is the
schedule that serves classi at timet if and only if σ(t) is in
classi, and is “idle” if σ(t) is undefined. For each classi,
the schedule induced byσ schedules the same number of
class i tasks as appear in the range ofσ. Every well-
formed scheduleπ is πσ for some task mappingσ.

Definition 3: A scheduling policyS(πt, A), is a mapping
from a prefix scheduleπt and arrival patternA to a classi
to be scheduled next. PolicyS is said to generate the
scheduleπ on arrivalsA if π(t) is equal toS(πt, A) for all

times t. By abuse of notation, this schedule is writte
S(A). A scheduling policyS is said to bework-conserving
if every scheduleπ generated byShas a task scheduled a
every time t for which there is a live task not already
scheduled byπ at any previous time. PolicyS is said to be
causal, or on-line if its output on prefix policiesπt does
not depend on the valuesAi(t’ ) for timest’ > t; otherwise,
S is said to beoff-line.

Definition 4: The γ-discounted weighted task loss Wπ
incurred by a scheduleπ is the sum for all arriving tasks
pi,t unscheduled byπ of the class rewardλi lost by not
serving the taskpi,t times the discount factorγ raised to
the 1+deadline(pi,t) power5.

We seek a policy minimizingγ-discounted weighted task
loss forγ arbitrarily close to one.

Definition 5: A scheduling policyS dominatesa policyS’
if there is some discount factorγ such that for everyγ’>γ
and every arrival patternA, WS(A) ≤ WS’(A).

We would ideally like to find an on-line scheduling policyS
that dominates all other on-line scheduling policies. Unfo
tunately, it is not hard to show that in general there is n
such policy (e.g.,see (Chang et al. 2000)). For any cand
date on-line policy, we can find an arrival pattern and alte
native on-line policy such that the alternative polic
outperforms the candidate policy on the selected pattern
incurring less weighted task loss. Therefore, it is necess
to consider a prior distribution over arrival patterns in ord
to define a desired optimal policy.

Definition 6: A scheduling policyS is said to beoptimal
for a given probability distributionP over arrival patterns
A if for every alternative policyS’ the expected value over
all A of WS’(A) exceeds the expected value ofWS(A).

It follows from the theory of POMDPs that for any distribu
tion P over arrival patterns and any finite horizon, ther
must exist an optimal scheduling policyS; however, com-
puting this policy for an arbitraryP and large horizon can
be extremely difficult and is in general intractable. W
investigate known techniques for approximating the op
mal policy and compare them to our heuristic techniqu
First, we must discuss our model for the probability distr
butionP over arrival patterns.

Modeling Task Arrival Distributions. Our approach to
modeling distributions over arrival patterns is to give a hid
den Markov model (an HMM) for each classi that gener-
ates the arrival patternAi for that class. An HMM is a tuple
<Q, T, Λ, Π> where Q is a finite set of task-generation
states,T gives the next state probability distribution fo
each state inQ, Λ is a mapping fromQ to probabilities giv-
ing the probability of a task arrival per time step for eac
state, andΠ is a distribution overQ representing the uncer-

4. A schedule can select only the class and not the actual task at each time
step because we always serve the earliest unexpired task of a given
class—this can readily be seen to preclude only “dominated” sched-
ules.

5. Note: discounting is introduced here for consistency with the POMD
formalism we adopt later and the AI literature on POMDPs—howeve
the nature of the scheduling problem makes discounting inessen
and an alternative formulation in terms of rolling finite-horizon win
dows is also acceptable. Our general techniques do apply to proble
where the discount factor is important.
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tain initial state of the HMM. A (hidden) state sequence
<q1, ..., qk> is generated by the HMM with probability
given byΠ(q1) times the product over alli in 1, ...,k–1 of
T(qi, qi+ 1). The probability that the state sequence <q1, ...,
qk> will generate a given arrival pattern <a1, ..., ak> where
eachai ∈{0,1} is given by the product over alli in 1, ...,k of
[ai Λ(qi) + (1–ai) (1–Λ(qi))]. Finally, the overall (hidden
state sequence independent) probability that the HMM will
generate a given arrival pattern <a1, ..., ak> is the sum over
all state sequences <q1, ...,qk> of the probability of the state
sequence times the probability that the state sequence will
generate the arrival pattern. Standard techniques generalize
these definitions to infinite length sequences.

HMM models can generate a wide range of different
bursty and non-bursty arrival patterns of arbitrary complex-
ity depending on the size of the state spaceQ (Fischer and
Meier-Hellstern 1992)(Michiel and Laevens 1997). We note
that for applications where the task arrival pattern is not
known, or is changing over time, well-known variants of
the expectation-maximization (EM) algorithm can be used
to infer an HMM heuristically describing the pattern from
observations of the pattern over time (Rabiner 1989). For
the remainder of this work we assume that an accurate
HMM model for the distributionP is provided.

POMDP Models for On-line Scheduling. The optimiza-
tion problem involved in selecting a scheduling policy for a
specific HMM describing the arrival patterns can be formu-
lated as a partially observable Markov decision process
(POMDP). Here we briefly review POMDPs and relate
them to our problem—for a more substantial introduction
please see (Littman 1996) or (Kaelbling, Littman, and Cas-
sandra 1998). A POMDP is a 7-tuple <Q, I, T, R, O, Z,Π>
whereQ is a set of system states,I is a set of available ac-
tions,T gives the next-state probability distribution for each
state and action, R gives the reward obtained for taking an
action at a state,O is a set of possible observations,Z gives
a distribution over observations for each state, andΠ is a
distribution overQ representing our uncertainty about the
initial system state. If the actual current state isq and we
take actiona, we receive a reward ofR(q, a), and the proba-
bility that the state will transition toq’ is T(q, a, q’). The
probability that the state sequence <q1, ...,qk> is generated
in response to the action sequence <a1, ..., ak–1> is Π(q1)
times the product over alli in 1, ...,k–1 of T(qi, ai, qi+ 1).

The tuple <Q, I, T, R> (without the “observation” compo-
nentsO andZ) specifies a Markov decision process (MDP).
A policy π for the MDP <Q, I, T, R> is a mapping fromQ to
I specifying the action to take at each state. For a given pol-
icy π, we define the infinite-horizon discounted reward
starting at stateq as , whereri
is a random variable representing the reward received at
time i andγ is a positive real-number discount factor less
than 1. Under general conditions, there is an optimal policy
that maximizes the infinite-horizon discounted reward.

The POMDP <Q, I, T, R, O, Z, Π> introduces the com-
plication that our plan cannot be a mapping from states to
actions, because we do not have access to the states. In-
stead, we have to work with the observation sequence—if

the underlying state isq, we make an observationo with
probabilityZ(q, o). An optimal policy for a POMDP can be
defined by converting the POMDP into the equivalent “in
formation-state MDP” (ISMDP) over “belief states”. A be
lief stateb is a probability distribution overQ representing
the probability that the underlying MDP is in each stat
Starting with the initial belief stateΠ of the POMDP, a
straightforward application of Bayes rule can be used to u
date the belief state at each state transition as a function
the action taken and the observation seen. This “belief-st
update rule” essentially defines the transition probabilitie
for the related ISMDP, where the state space is the poss
belief states. In particular, this defines transition probabili
functionT’, defined in terms ofT andZ, such that given a
belief stateb and an actiona, T’(b, a, b’) is the probability
that the next belief state isb’. Similarly, the reward function
R’ for the belief MDP can be defined in terms ofT, Z, and
R. A policy for the POMDP/ISMDP can then be specifie
as a map from belief states to actions. The infinite-horizo
discounted reward starting from any initial belief stateb is
therefore well-defined, the optimal value of which is calle
the value function, denotedV*(b). Defining theQ-function
for actiona by Qa(b) = R’(b, a) + γ Σb’[T’(b, a, b’) V*(b’)],
it can be shown that the optimal policy for the POMDP i
given byπ’(b) = argmaxa Qa(b, a).

We can now describe how to formulate our schedulin
problem as a POMDP <Q, I, T, R, O, Z,Π>. Let <Qi, Ti, Λi,
Πi> be the HMM for the arrivals of classi ∈ {1, ..., m}. The
state spaceQ of the POMDP isQ = Q1 × ... × Qm ×
{0,1} m× d, where the last factor represents the currently a
rived unserved tasks, indexed by class and time remain
to deadline—given a particular state, this component of t
state is called thebufferof the state. The set of actions isI =
{1, ..., m}, where actiona = i means that we serve the earli
est live unserved task in classi. The state transition function
T is defined in the obvious manner representing underlyi
stochastic transitions in each of the arrival HMMs, and th
change in the buffer by adding new tasks generated stoch
tically by the arrival HMMs as well as the expiry of un-
served tasks and the removal of the task served by the
tion selected. The reward functionR is defined asR(q, a) =
λa. The set of observationsO is given byO = {0, 1} m, rep-
resenting the observed arrival or nonarrival of a task in ea
class. The probabilityZ(q, o) of making observationo at
stateq is either 1 or 0 according to whethero precisely de-
scribes the final column of the buffer inq. An alternativeR
function can easily be designed to describe the equival
problem of minimizing weighted loss (here we have d
scribed maximizing weighted throughput). We select a d
count factorγ arbitrarily close to one because the nature
the scheduling problem makes discounting inessentia
good policies must serve as much weight early as possi
with or without discounting. Our actual finite-horizon sam
pling algorithms will treat the discount factor as equal t
one.

3.  Non-sampling On-line Policies
In this section we describe three basic on-line scheduli

lim t ∞→ E Σi 0=
t γ i r i⋅( )[ ]( )
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policies that use no information about the distribution of
arrival patterns to provide a baseline for comparison and to
provide a starting point for defining our sampling policy.
First, two very simple policies: one that ignores deadlines
and another that ignores task class.

Definition 7: Thestatic priority (SP) policyis the policy
SPsuch thatSP(πt, A) is the highest reward class that has
a task unscheduled byπt that is live at timet (breaking
ties by serving the earlier arriving task)

Definition 8: The earliest deadline first (EDF) policyis
the policyEDF such thatEDF(πt, A) is the class with the
earliest-expiring task unscheduled byπt that is live at time
t (breaking ties by serving the higher class task).

Next, we consider policies that act at each time step to min-
imize loss under the assumption that no further tasks will
arrive, which we call “current-minloss policies.”

We say that a task arrival patternA is finite if Ai(t’ ) is zero
for all i and allt’ ≥ t for somet called thehorizonof A. We
say that a scheduleπ starts at time tif π(t’ ) = “idle” for all
t’ < t. Also, for any set of tasksK, we can construct an ar-
rival patternAK corresponding to the arrivals of those tasks
at their respective arrival times, and no other arrivals.

Definition 9: A minloss scheduleπA for a finite arrival
patternA is a schedule that achieves lower weighted loss
than any other schedule forA (at the horizon time ofA
plusd). A minloss schedule for A starting at time t(πA

t ) is
a schedule starting at timet that achieves lower weighted
loss onA than any other such schedule. If the tasks inA
have all arrived at timet, we call this acurrent-minloss
(CM) schedule starting at time t.

Definition 10: A current-minloss (CM) policyis a policy
CM that always schedules a class that is scheduled by at
least one current-minloss schedule for the currently live
unscheduled tasks (i.e., ignoring future arrivals). More
formally, if CM(πt, A) is the classi then there must be
some CM scheduleπA’

t starting at timet for arrival pat-
ternA’ = AK whereK is the set of live tasks at timet that
are unscheduled byπt, such thatπA’

t (t) = i.

It is possible to give on-line CM policies. Constructing a
CM policy involves finding at each timet a CM schedule
starting att for the live unscheduled tasks at timet. We give
in Figure 1 the pseudo-code for an implementation of a par-
ticular on-line CM scheduler. The problem at each timet is
a special case of the general job sequencing problem solved
by Sahni (Sahni 1976). Sahni’s approach specializes to a
O(d2) time complexity CM policy for our problem—the
CM policy we sketch in Figure 1 can be implemented to
obtain a tighter O(d+m) performance because it is opti-
mized for our problem assumptions.6

Our algorithm greedily schedules each task in the latest
available time slot for which the task is live, considering

tasks from high-reward classes first, and within each cla
later deadline tasks before earlier deadline tasks. T
pseudo-code in Figure 1 also achieves a CM schedule
this manner in Step 1, and then goes on in Step 2 to impro
the schedule for use in “non-current” contexts (i.e., when
future arrivals are expected) by reorganizing the schedule
serve the highest possible reward task first without losi
the CM property. For the remainder of this paper we refer
this algorithm as the CM policy.

Theorem 1:Figure 1, Step 1 defines a CM policy.

Proof: We say that a task mappingσ is a “CM mapping” if
πσ is a CM schedule, and we call a partial mappingσ
“acceptable” if it can be extended to a CM mapping. Th
empty mapping is “acceptable” in this sense. Consider
acceptable mappingσ. Let i be the class of the highest-
reward arriving task that can be added toσ to get another
task mapping. Letp be the latest arriving task in classi not
already in the range ofσ. Let σ’ be the mapping that
extendsσ by schedulingp at the latest timet’ such thatp is
live at t’. (This is exactly the extension toplan that is car-
ried out by thefor  loops of step 1 of the algorithm.)

We argue thatσ’ is acceptable. By definition, some
extensionσ’’ of σ is a CM mapping.σ’’ must schedule
some classi task not scheduled byσ, or modifyingσ’’
by settingσ’’ (t’ ) to be p would produce a mapping that
schedules more class weight thanπσ’’ , contradicting the
choice ofσ’’ as a CM mapping. But ifσ’’ schedules any
classi task p’’ not scheduled byσ at any timet’’ , then
t’’ must be less thant’ , given the way we choset’. But
thenσ’’ can be modified into a CM-mapping extending
σ’ by swappingσ(t’ ) andσ(t’’ ), and then replacingp’’
by p as the value ofσ(t’ ). Q.E.D.

6. Implementing the sketched CM policy directly from this pseudo-code
will also give O(d2) time complexity, however the line that computes
slot can be optimized by using union-find on sets of times. Also, the
O(d+m) bound stated omits an inverse Ackerman’s function factor
from the union-find algorithm.

Let plan be a mapping from timest, ..., t+d–1 to tasks or
“idle”, initialized at all time steps to “idle”.

Step 1:Generate a current-minloss task schedule

for class = 1 tom // highest weight class first

for task inclass, latest-arrived to earliest-arrived

slot = the largestj ≤ deadline(task) such that
plan[j]==“idle”;

if  suchslot exists,then plan[slot] = task;

endfor

endfor

Step 2:Select a class to serve next usingplan

cut = the smallest timet’ such that forallt’’ ≤ t’, dead-
line(plan[t’’ ]) ≤ t’

// tasks up toplan[cut] can all be served no matter
// which task is actually scheduled first:
Select the highest-reward class of plan[t],..., plan[cut]

Figure 1: Code sketch for our CM policy
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Unlike Sahni’s algorithm, our CM policy is designed for
use in an on-line setting (hence Step 2 in the code sketch).
Thus unlike Sahni, we have analyzed the policy’s on-line
performance. We can show the following two modest asser-
tions hold regarding this performance (see also (Hajek and
Seri 1998) for general related results).

Theorem 2: The CM policy strictly dominates the EDF
policy (i.e., CM wins/ties regardless of arrival pattern).

Theorem 3: The CM policy is work-conserving and
(unweighted) throughput optimal (i.e., for any arrival pat-
tern CM generates a schedule that serves the maximum
number of tasks).

4.  Off-line Scheduling for Minimum Loss
We consider the problem of scheduling a finite arrival pat-
ternA for minloss in an off-line manner,i.e., as though we
know ahead of time in what pattern the tasks will arrive.
This problem corresponds to a standard job sequencing
problem where each job has both a deadline and a “ready
time” (the arrival time, before which the job cannot be
scheduled) (Kise, Ibaraki, and Mine 1978), (Lawler 1964),
(Lawler 1976), (Moore 1968), (Villareal and Bulfin 1983).
We have found no previous work7 combining deadlines,
ready times, and the weighted task optimality criterion—we
give a polynomial-time algorithm addressing all these fac-
tors. The problem is known NP-hard without our assump-
tion that each task has the same fixed deadlined at its
arrival and the same fixed processing time (i.e., the problem
is NP-hard with arbitrary task ready and deadline times or
task processing times) (Lenstra 1977).

The constraint that a task cannot be scheduled prior to its
arrival adds complexity to the minloss scheduling problem.
Neither of the observations used in Section 3 in designing
the CM policy holds for this richer problem. Because the
problem involves apparent foreknowledge of the arrival pat-
tern, we refer to algorithms addressing it as “prescient”.

Definition 11: A minloss policyis an (off-line) policy that
generates a minloss schedule for any finite arrival pattern.

We present and argue correctness for a particular minloss
policy based on an elaboration of the approach taken in
CM. We schedule tasks greedily from the highest-reward
class to the lowest, and within a class from latest arriving to
earliest arriving. As in CM, we start by scheduling tasks for
service at the latest open schedule slot not after the task
deadline. However, unlike in CM, we cannot be guaranteed
that this initial task placement in the schedule can be
extended to a full minloss schedule. The initial placement
may be revised by the algorithm as additional tasks are
scheduled. Similarly, we cannot drop a task (i.e., not add it

to the schedule) if there is no idle slot in the schedule du
ing the task’s live period—we must consider moving oth
tasks that are scheduled during that period to make roo
This complexity is a result of having to consider varyin
task arrival times in addition to deadlines (unlike in the CM
scheduling problem where all the tasks have curren
already arrived). To handle this complexity, we introduce
new concept:

Definition 12: Given a task mappingσ and timest andt’
with t < t’ , ashuffle onσ moving time t to time t’is a per-
mutationR of a finite setBR of times includingt and t’
such that for each timet’’ in BR (other than t),

• R(t’’ ) < t’’,

• if defined,σ(t’’ ) is a task that is live at timeR(t’’ ), and

• R(t) = t’ .

The result of applying a shuffle R toσ is a new task
mapping (writtenR(σ) by abuse of notation) defined to
equalσ except that for eacht’’ in BR, [R(σ)](R(t’’) ) is set
to σ(t’’ ).

We can now describe the basis of our PM algorithm. W
construct a task mapping incrementally, starting from th
empty task mapping (undefined everywhere), and consid
ing tasks for addition to the mapping greedily from th
highest-reward class to the lowest, and within a class fro
latest arriving task to earliest arriving. Once a task is co
sidered and rejected that task never needs to be consid
again. Given a partial task mappingσ and a taskp to be
considered for addition toσ, we let t be the latest time≤
deadline(p) such thatσ(t) is undefined. We then admitp to
σ if there exists a timet’ whenp is live and a shuffleRonσ
moving timet to timet’ . If there is such a shuffleRand time
t’ , we updateσ to R(σ) and then setσ(t’ ) to p. A key and
nontrivial property of this algorithm is that the set of sched
uled tasks after any task is considered does not depend
the choices of shuffles made up to that point (see pro
below). We give a code sketch for anO(H2+m) minloss
scheduler in Figure 2, for sampling horizonH. We hence-
forth refer to this policy as the “prescient minloss” (PM
policy. We start our analysis of this algorithm by proving
key lemma, mentioned above. The lemma depends cr
cally on the following definition of a functionslack that
maps task mappings to vectors of numbers.

Definition 13: Given a partial task mappingσ defined on
times {0, ...,H}, the slack of σ is a vector <s0, ..., sH>
where si gives the number of tasks scheduled byσ at
times≥ i that are live at timei–1. More formally,si gives
the cardinality of the set {t | t ≥ i andσ(t) is defined and is
live at timei–1}. (s0 is always zero.)

Lemma 1: The sequence of tasks admitted to the task ma
ping σ (plan in the code sketch) does not depend on t
choices of shuffles made in the calls to find-shuffle.

Proof: The lemma follows from these observations:

7. It has since come to our attention that a symmetric variant of this algo-
rithm (reversing time and swapping ready/deadline times) has been
published in the performance evaluation literature for a different pur-
pose—providing an upper bound on performance to use in evaluating
scheduling algorithms. Our optimality proof is different and apparently
more complete. See (Peha 1995).
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a. For any shuffleR on σ moving a timeempty-
time to a time when the newly admitted taskp is
live, the slack and idle times of the new task
mapping resulting from applyingR to σ and add-
ing p depends onlyp and the slack and idle times
of σ, and not on any other details ofσ or on the
shuffle used.

b. The existence of a shuffle allowingp to be added
to σ depends only onp and the slack ofσ, but not
on any other details ofσ.

Theorem 4:The PM policy in Figure 2 is a minloss policy.

Proof: (sketch) The proof of this theorem using Lemma
is non-trivial, but similar to the proof of Theorem 1; a com
plete proof will be provided in the full version of this paper

To finish the proof of Theorem 4 requires showing (as
we did in proving Theorem 1) that the scheduler would
never profit from passing up scheduling a late-arriving
high-reward task in hopes of scheduling some earlier
arriving task of the same class (or some lower-reward
task) instead. This fact essentially follows from the fact
that passing up the one task will never allow the sched
uling of two other tasks in its place—proving this
involves generalizing the proof of Theorem 1 to handle
the presence of shuffles, but space does not allow us t
present the proof here. Q.E.D.

5.  Extending Off-line Scheduling by Sampling
The off-line PM policy just described would be the idea
scheduler to apply but for the fact that in an on-line settin
we do not have access to the future arrival sequen
Instead, we have the stochastic model generating t
sequence in the form of an HMM for each class, constitu
ing a POMDP problem (equivalent to a related ISMDP).

We have investigated sampling from the ISMDP in
principled manner using the techniques described by McA
lester and Singh (McAllester and Singh 1999)8. The ap-
proximation bounds given in that work require a comput
tionally intractable amount of sampling to be done in ord
to get a useful guarantee of accuracy. However, the te
niques described can be used with much smaller amount
sampling giving up any approximationguarantee. We have
implemented and tested this approach, and our prelimin
results indicate that the resulting policy is generally inferio
to the SP policy defined in Definition 7. Augmenting th
policy by using our CM policy to estimate values at the ho
rizon improves performance but the resulting policy do
not outperform CM itself.9 These poor results are no doub
due to low sampling width and short horizon. (see below

In response to this poor performance, we have conside
an alternative, heuristic sampling approach. This approa
is based on the following observations about the optim
value function for a POMDP. TheV* value function is de-
fined in an “expectimax” fashion—being themaxover all
actions of the expected value ofV* at the next state (which
itself is themaxover all actions of the expected value ofV*

Let plan be a mapping from times0, ..., H to tasks or
“idle”, initialized at all time steps to “idle”.

Step 1:Generate a prescient-minloss task schedule

for class = 1 tom // highest weight class first

for task inclass, latest-arrived to earliest-arrived

slot = the largestj ≤ deadline(task) such that
plan[j]==“idle”;

shuffle = find-shuffle(arrival-time(task),slot)

if  suchslot andshuffle exist,
then {apply shuffle toplan; plan[slot] = task}

endfor
endfor

// Finding a shuffle
// ------from any time t before arrival-time, to empty-time

find-shuffle (arrival-time,empty-time) {

Let shuffle be a sequence of timest1, ..., tj representing
the permutationt1→ ...→ tj→ t1. Initialize shuffle
to the unit sequence of one timeempty-time.

last-added =empty-time;found = true;

while (arrival-time> last-added) andfound

found = false;

for offset = 1 tod–1

if plan[last-added–offset] is live at timelast-added
then { found = true;last-added –=offset;

addlast-added toshuffle at seq. start;
break thefor  loop}

endfor
endwhile

if foundthen return(shuffle); else return(fail);

} // end of find-shuffle

Step 2:As given for CM in Figure 1.

Figure 2: Code sketch for our PM policy

8. We note that a critical feature of the techniques in (McAllester an
Singh 1999) is the compact approximate representation of the POM
belief state. This compact approximation is not needed in our proble
because we have a natural factoring of the belief state into facto
observable state (the buffer contents) and unobservable state (the
den state of the task arrival process). Although our overall statespac
very large, the arrival process state space can reasonably be assum
be modest in size, so we can represent a belief state easily.

9. Achieving even this performance requires modifying the original tec
niques by using the same sampled arrival patterns for evaluating e
action at a given choice point. Sampling anew for each action evalu
tion increases the variance in the value estimates and destroys pe
mance. This use of common samples is also important to our meth
and derives from work in discrete-event systems oncommon random
numbers simulationin perturbation analysis.(Ho and Cao 1991).
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at the second next state, etc.). When the state space is small,
dynamic programming can collapse the resulting expecti-
max tree.10 However, with the very large state spaces
widely encountered in AI problems, dynamic programming
is of very limited use. The sampling technique of McAll-
ester and Singh is the principled way to sample from such
an expectimax tree, but is also too expensive in this case.

We consider here the heuristic approach of rearranging
the tree so that all the expectation nodes come above all the
max nodes in order to get an upper bound on the true value
(formalized below), starting with a finite horizon tree11. For
a general POMDP (even a fully observable one) this ap-
proach may not yield useful results, as it resembles assum-
ing we know what each action will do before deciding
whether to take it—this essentially allows the value esti-
mate to be based upon a careful “lucky” walk through a
minefield. In particular, optimal POMDP and MDP policies
need to avoid taking actions that have significant chance of
leading to very bad states, even if those actions also have a
chance of leading to good states. Taking all expectation out-
side of the maximization steps effectively computes a value
estimate based on a non-stationary policy that takes a given
action only when it will “luckily” have a desired result.
This can result in an action appearing beneficial when the
Q-function value for the action is very poor. For an exam-
ple, this approach will choose to walk through a minefield
to avoid a safe tollbooth if there are “wait” and “walk” ac-
tions such that the “wait” action is completely safe and the
“walk” action has some probability of killing you (when in
the minefield) and some probability of safety.

However, for some POMDPs12, including the scheduling
POMDP we are addressing here, it appears that this unprin-
cipled approach yields a reasonable approximation of the
true relative value of each action (theQ-functions). “Know-
ing” the future in the sense of this approach leads to erring
only on the side of overestimating state value (in any
POMDP). It appears that for our POMDP this results in a
similar amount of overestimation for the different states
reachable by different actions from a single source state—
this is expected because these single-step reachable states
are all very similar. All the uncertainty is coming from the
arrival pattern distribution, and that applies equally to every
action. We now describe this approach more concretely for
our problem and then present a brief formal analysis.

For our problem, we start by using the POMDP belief
state update rule to maintain a belief state over time (note

that the states of the arrival-generating HMMs are not d
rectly observable). We can then select an action by estim
ing theQa-function at the current belief state, for each ac-
tion a. To do this, we apply each actiona in turn to the
current belief state, and use our heuristic sampling tec
nique to estimate theV* value at the resulting belief stateq.
We assume the scheduler knows the HMM models fro
which arrivals are drawn, which can then be used to gen
ate the samples of possible future arrivals. TheV*(q) esti-
mate is derived by averaging overn samplesSof future ar-
rivals out to some horizonH, and using the PM scheduling
policy to compute the exact minloss schedule valu
achieved from stateq on encountering sampleS with pre-
scient foreknowledge. We call this policy the Sampled P
policy (SPM) (no relation to the SP policy of Definition 7)

TheV*-value estimate given by the SPM algorithm doe
not provide a principled estimate of the finite horizonV*

function for an ISMDP. Instead, we are estimating a fun
tion we have named theJ-function, defined below, that up-
per bounds theV* function. First, we state the finite horizon
undiscounted total rewardVH

* definition for comparison.
We setV*

0 (q) = 0, and

V*
H (q) = maxa R(q,a) + ET(q,a,q’)[V*

H–1 (q’)]. (1)

These equations can readily be seen to describe an exp
max tree where the max nodes are each computingV*

h (q’ )
for some stateq’ and some horizonh between 1 andH. This
is the tree that a principled sampling algorithm mu
approximate by sampling after each action choice-point. A
equivalent definition forV*

H (q) is as follows.

(2)

where <π1, ...,πH> ranges over sequences of policies (i.e.,a
non-stationary policy), and the random variableri gives the
reward at timei given that for each timei the policyπi is
followed. For eitherV*

H equation, sampling to estimate the
expectation must be conducted inside an exponentia
branching choice of a sequence of actions/policies, if w
are to estimateV*

H (q)  in a principled manner.

We do not have any answer for this difficulty for genera
POMDP problems; however, for problems with speci
structure like the scheduling problem described here,
can sample as described for the SPM algorithm above.
this case, we are instead computing the following equatio
where the maximization is now inside the expectation.

(3)

Since the term inside the expectation is computed by P
we can computeJH by sampling and running PM.JH(q)
can informally be seen to upper boundV*

H (q) by observing
that the maximization is done for each stochastic futu
rather than once for all possible futures.

10. An expectimax tree is a tree where odd-depth nodes are labelled with
“expectation” and even-depth nodes are labelled with “max”. If the
leaves are labelled with numbers, a value can be computed recursively
at every node by performing the function given by the node label on
the values of the children of the node.

11. We note that Hauskrecht has considered a similar rearrangement of this
expectimax tree independently for a quite different but related purpose.
See p. 86 of (Hauskrecht 1997).

12. One candidate class is the class of exogenous control problems—prob-
lems where the action choice has no effect on the source of uncertainty.
However, it is not clear how to define this class of problems formally,
as it seems any POMDP can be viewed this way by thinking of all ran-
domness as coming from a stream of random numbers generated inde-
pendently of the control applied.

VH
* q( ) max π1 … πH, ,〈 〉 E Σi 0=

H r i[ ]=

JH q( ) E max π1 … πH, ,〈 〉 Σi 0=
H r i=

E max a1 … aH, ,〈 〉 Σi 0=
H r i=
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6.  Empirical Results
As with many AI problem domains (for example, proposi-
tional satisfiability), randomly selected problems from this
scheduling domain are typically too easy (for satisfiability,
such problems are easily seen to be satisfiable or easily seen
to be unsatisfiable). In scheduling, this problem manifests
itself in the form of arrival patterns that are easily scheduled
for virtually no loss, and arrival patterns that are apparently
impossible to schedule without heavy weighted loss (in
both cases, it is typical that blindly serving the highest class
available performs as well as possible). Difficult scheduling
problems are typified by arrival patterns that are close to
being schedulable with no weighted loss, but that must
experience some substantial weighted loss.

We have conducted experiments by selecting HMM
models for the arrival distributions at random from a single
distribution over HMMs. There is not room in this work
(space- or time-wise) for an extensive study determining
which distributions over HMM arrival descriptions yield
hard problems and why, but this is a good topic for future
work. At this point we have made some guided ad-hoc
choices (see below) in selecting the distribution over
HMMs from which to conduct our experiments.

Given the selected distribution over HMMs, we have
tested our SPM and CM algorithms, along with SP and
EDF, against six different specific HMM arrival descrip-
tions drawn from the distribution. For each such arrival de-
scription, we ran each scheduling policy for 2× 105 time
steps and measured the weighted loss achieved by each pol-
icy over time. We show one such plot as an example in
Figure 3. To summarize all the plots effectively, we have
calculated theweighted-loss ratefor each policy against
each arrival pattern—this is the slope of the weighted loss
versus time plot. Weighted-loss rates for the four algorithms
versus each of the 6 arrival patterns are shown in Table 1.

We give a brief description of an ad-hoc choice involved
in selecting our distribution over HMMs. All of the prob-
lems we consider involve 7 classes of tasks. We select an
HMM for each class, chosen from the same distribution.
We selected the HMM state space of size 3 arbitrarily for
these examples, resulting in a total hidden state space of 37

states. We selected the 7 class weights13 as 2000, 1000,
800, 600, 20, 10, 5. Given the small state space for each
HMM, we deliberately arrange the states in a directed cycle
to ensure that there is interesting dynamic structure to be
modeled by the POMDP belief state update (we do this by
setting the non-cyclic transition probabilities to zero). Simi-
larly, we select the self transition probability for each state
uniformly in the interval [0.9, 1.0] in order that state transi-
tions are seldom enough that observations as to what state is
active can accumulate. We select the arrival generation
probability at each state so that one state is “low traffic”
(uniform in [0, 0.01]), one state is “medium traffic” (uni-
form in [0.2, 0.5]), and one state is “high traffic” (in [0.7,
1.0]). Finally, after selecting the HMMs for each of the

seven classes, we generate a large traffic sample and u
to normalize the arrival generation probabilities for eac
class so that arrivals are roughly equally likely in high-re
ward (classes 1&2), medium-reward (classes 3&4), a
low-reward (classes 5–7), and so that overall arrivals occ
at about 1.5 tasks per time unit to create a scheduling pr
lem that is suitably saturated to be difficult.

Even with these assumptions, a very broad range of
rival pattern HMMs can be generated. Without some a
sumptions like those we made here, we have found (in
very limited survey) that the arrival characterization give
by the HMMs generated is typically too weak to allow an
effective inference based on projection into the future. As
result, CM and SPM typically perform very similarly, and
SP often performs nearly as well. The precise HMMs us
are available on request.

Examination of the weighted-loss rates shown in Table
reveals that the basic CM policy dramatically outperforme
EDF and SP on all the arrival patterns, unsurprisingly. T
heuristic sampling policy SPM outperformed CM by
smaller but significant margin. Sampling never hurt th
long-term performance on any HMM instance we tried, an
on all but one instance the sampling reduced weighted lo
by 20–35% (i.e.,comparing SPM to CM).

We believe these results indicate that sampling to co
pute theJ function is a reasonable heuristic for on-lin
scheduling, but also that CM itself is a reasonably goo
scheduling policy without looking into the future.

We expect that further research will lead to a better cha
acterization of the class of HMM arrival models that yiel
suitable structure for sampling algorithm. We also expect
will continue to be difficult to find any distributions where

13. We have not found performance to be very sensitive to class weight
choices, as long as they are not extremely similar or dissimilar.
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Figure 3: Example weighted-loss plots for a single ar-
rival pattern.

HMM#: 1 2 3 4 5 6 Mean

EDF 0.33 5.63 0.54 1.61 0.51 2.17 1.80

SP 0.27 3.93 0.26 1.76 0.32 1.27 1.30

CM 0.019 1.02 0.051 0.26 0.039 0.34 0.29

SPM 0.013 0.84 0.044 0.22 0.025 0.30 0.24

Table 1: Weighted-loss rates for all HMMs tested.
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CM outperforms SPM—these would be distributions where
the J function was actually misleading. It is not surprising
that for some HMM distributions, CM and SPM perform
very similarly, as the state inference problem for some
HMMs can be very difficult—SPM will perform poorly if
the computed belief state represents significant uncertainty
about the true state, giving a poor estimate of the future ar-
rivals.

We have also implemented a principled sampling tech-
nique based on McAllester and Singh’s algorithm (McAll-
ester and Singh 1999). This technique proved very resource
intensive, and we have been unable to collect a wide range
of results for it. Even sampling with a “sampling width” of
2 and a horizon of 4 requires searching a tree with 40,000
nodes. Doing even just this at each time step for 2× 105

time steps is beyond our resources; as a result we have only
very preliminary results for this policy. These results (not
shown) indicate that this policy performs like SP when zero
value is used at the horizon of the sampling, and like CM if
CM is used to estimate value at the horizon. This is unsur-
prising because of the low sampling horizon.

7.  Conclusions
In this work, we have developed new scheduling policies
CM and SPM for the on-line multiclass scheduling problem
with arrival and deadline times and task arrivals specified
by HMMs. The more effective SPM policy is based on a
heuristic sampling technique using the HMM arrival mod-
els. Although the scheduling problem is naturally
formulated as a POMDP, previously published sampling
approximation methods for POMDPs perform poorly when
used with tractable sampling parameters. Our empirical
work demonstrates that for reasonably broad classes of
HMM-described task arrivals our heuristic SPM approach
outperforms other known policies for this problem, includ-
ing the CM policy that minimizes weighted loss on the cur-
rently present tasks. We discussed above how the heuristic
technique we used in designing SPM can be applied to any
POMDP problem—while this is ill-advised for most prob-
lems, characterizing a class of problems where this heuris-
tic is useful is an area for interesting future research.
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