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Abstract

We consider the problem of scheduling an unknown
sequence of tasks for a single server as the tasks arrive with
the goal off maximizing the total weighted value of the tasks
served before their deadline is reached. This problem is
faced for example by schedulers in packet communication
networks when packets have deadlines and rewards associ-
ated with them. We make the simplifying assumptions that
every task takes the same fixed amount of time to serve, that
every task arrives with the same initial latency to its dead-
line. We also assume that future task arrivals are stochasti-
cally described by a Hidden Markov Model (HMM). The
resulting decision problem can be formally modelled as a
Partially Observable Markov Decision Process (POMDP).

We first present and analyze a new optimal off-line schedul-
ing algorithm called Prescient Minloss scheduling for the
problem just described, but with “prescient” foreknowledge
of the future task arrivals. We then discuss heuristically
adapting this off-line algorithm into an on-line algorithm by
sampling possible future task sequences from the HMM. We
discuss and empirically compare scheduling methods for this
on-line problem, including previously proposed sampling-
based POMDP solution methods. Our heuristic approach can
be used to adapt any off-line scheduler into an on-line sched-
uler.

1. Introduction

This work considers the problem of scheduling a sequence
of tasks where the tasks are not all known to the scheduler
at once, but rather arrive in an on-line fashion as scheduling

proceeds. We use stochastic planning technigues to model

and address the problem of selecting which task to serve in
order to maximize the cumulative value of the tasks served
over long time intervals (more precisely, we seek to maxi-

mize the discounted weighted number of tasks served,
where each task carries a natural number weight indicating
its value if served before its deadline).

We make several simplifying assumptions in our first
pass at this problem—these are primarily motivated by the
need for analytical and algorithmic tractability, but also by
correspondence to our motivating application of multiclass

packet-network scheduling. First, we assume that there are
a finite number of different classes of tasks such that the re-
ward associated with scheduling a task before its deadline is
determined by the class into which it falls. These classes
can be thought of as differing priorities (or pricings) of ser-
vice. We assume that the task arrivals for each class are de-
scribed stochastically by a Hidden Markov Model (HMM),
one for each clagssuch that at most one task arrives per
time step per class. In our problem setting there are no pre-
cedence constraints among the tasks, so that any task may
be scheduled regardless of what other tasks have been
scheduled. We assume that every task takes the same unit
time to process, and finally, we assume that every task ar-
rives with the same latency to its deadliries., there is
some fixed time intervall between the arrival time and
deadline time that applies to every task. Even under all
these simplifying assumptions this on-line scheduling task
has no known optimal or approximately optimal solution
that can be computed in reasonable time.

The approach we take here is to model the problem as a
discrete-time Partially Observable Markov Decision Pro-
cess (a POMDP). POMDPs have recently been studied in
the artificial intelligence literature as general models for
planning in the face of uncertainty (Littman 1996). Optimal
POMDP solution methods are known to be impractical in
many cases even for small problems. Proposed approaches
often rely on additional assumptions about the problem that
are not present in this example.g, (Hansen, Barto, and
Zilberstein 1996) relies on the presencesehsoractions
that reveal the hidden state information).

Queueing/scheduling problems such as the one we con-
sider are most commonly formulated using continuous-time
MDP or semi-MDP models (see for example (Stidham and
Weber 1993)). For simplicity in explicating the connections
to the Al POMDRP literature we consider a discrete-time
formulation here, but this work should generalize to contin-
uous time.

In this work we consider using sampling of possible fu-
tures to obtain an estimate of the expected value obtained
by following each available action.€., scheduling each
candidate task). Recent work reported in (Kearns, Mansour,
and Ng 1999a), (Kearns, Mansour, and Ng 1999b) and in
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2. In problems where the job arrival characteristics are not known (or are
changing), an HMM model for each class can be inferred and updated

over time using an expectation maximization (EM) algorithm.



means for evaluating or selecting a POMDP policy, respec-
tively.
Unfortunately, the approximately optimal sampling tech-

dating a current POMDP belief state after each action is
taken, to use as the starting point for sampling.
To generalize this approach to an arbitrary POMDP

nigues presented in these previous papers appear to be com{which will often perform quite poorly, we believe), we
pletely impractical for reasonable parameter values of this must view the off-line algorithm as a means of taking a
problem. More specifically, if the sampling width and hori- POMDP belief state and a fixed random number sequence
zon for these algorithms are selected so that the approxima- and returning the optimal finite-horizon value obtainable
tion guarantees are non-trivial, then the amount of compu- from the belief state, assuming that any stochastic choices
tation required cannot be carried out by any current encountered are made in sequence according to the fixed
computer hardware. As an example, suppose we use therandom number sequence. (In our problem, the only sto-
sampling technique proposed in (McAllester and Singh chasticity in the problem comes from the uncertain future
1999) and select the sampling parameters using the approx-task arrivals, and so presciently knowing the future task se-
imation bounds provided in that paper. If we assume seven quence is equivalent to knowing how each stochastic choice
task classes with the highest-reward tasks having reward will be resolved,i.e., knowing the random number se-
2000 and the lowest-reward tasks having reward 5, with dis- quence used in task sequence generation.) Given a similar

count factor 0.9, and if we require value estimates accurate off-line algorithm for an arbitrary POMDP, we can then es-

enough to discriminate between a poligyhat schedules a
low-reward task at every time step and a polgythat

timate the expected value of acting “presciently optimal” in
that POMDP, and base our action choice on that estimate. It

schedules a high-reward task at every time step, then the cannot be overemphasized that for many POMDP problems

method appears to require us to traverse a tree with branch-

ing factor of order 1®and depth greater than &0.
In response to these practical difficulties, we have taken a
different (and more heuristic) approach to using sampling

this will yield very poor performance (we show an example

later). The usefulness of this technique clearly relies on spe-
cial characteristics present in scheduling-derived POMDPs
(and perhaps other POMDPs—we have not yet been able to

to address this scheduling problem. This approach can be characterize the class of POMDPs where this technique

applied to any POMDP problem; however, it is clear that
only problems with very particular structure will find this
approach useful. Future work must be done to determine
exactly what problem features are required to justify this
approach—at this point, our evidence for the applicability
of our approach to this problem is only empirical.

Our approach is to begin by designing a policy selection
method for the related off-line scheduling problemes
the problem where the future task arrivals are known. For
this problem, we are able to give an algorithm that com-

putes an optimal schedule, and this paper presents that algo-

rithm and argues its optimality. It is important to note that

in this off-line scheduling problem, tasks cannot be sched-
uled before they are slated to arrive—in other words, the ar-
rival sequence is still important and we are not simply

scheduling setof tasks.

This off-line algorithm can then be used to gdteuristic
estimate of the value obtainable from a given POMDP be-
lief state by using sampling, as follows. Using sampling, we
can compute the expected value obtained from any belief
state by the off-line algorithm over the problem-specified
distribution of job arrival sequences: we simply sample sev-
eral task arrival sequences from the HMM and compute the
mean performance of the off-line scheduler on those se-

would apply).

We have implemented an on-line scheduling system
based on these ideas, and compared its performance with
two approaches that ignore future-arriving tasks until they
arrive, and with the more principled sampling approach de-
scribed in (McAllester and Singh 1999) with sampling pa-
rameters set small enough to make the sampling practically
computable (thus losing any useful approximation guaran-
tees). Our system performs favorably with respect to these
other approaches.

A key approach we have not yet compared to our work
empirically is the approach presented in (Crites and Barto
1996) for elevator scheduling. This approach analyzes an
MDP problem formulation using function approximation to
cope with the large state space and off-line Q-learning to
find an effective policy. While it is not immediately clear
how to apply this approach to a POMDP setting, we plan to
eventually compare our approach to a Q-learning based ap-
proach (perhaps learning for the continuous “information-
state” MDP form of the POMDP). This alternative still re-
quires substantial off-line training in contrast to our ap-
proach, but the resulting policy is more clearly implement-
able in an on-line scheduler (no sampling to be done).

In the remainder of this paper, we formally define in turn:

guences. This corresponds to measuring the expected per-the on-line scheduling task we are addressing, the POMDP

formance of a “prescient” version of the off-line algo-

formalism we are using to represent the decision-making

rithm—one that can see the future arrival sequence. There task, the off-line scheduling algorithm we have designed

is no guarantee that this will correspond to the performance
of any “non-prescient” scheduler. This sampling-based

(including its optimality proof), and the sampling adapta-
tion of this off-line algorithm. We then give empirical re-

value estimate can then be used to estimate the Q-value forsults for some particular instances of this task comparing
each possible scheduling choice and choose a task to sched-our algorithm to other approaches.

ule. To do this in practice also requires maintaining and up-

3. The high branching factor derives from the high sampling width
required for reasonable accuracy.

2. On-line Task Scheduling with Deadlines
We assume that timeis discrete,.e, t 0{0,1,2,...}, and



that each task takes exactly one time step to be served. We

assume there ara> 1 different classes of tasks involved in
the problem, with positive real rewar} > 0 associated

with each clas$ {1, ..., m}. We assume without loss of
generality that fori < j, Aj > )\j, i.e., that the classes are
arranged in order of descending reward.

For each task clads we assume some unknown arrival
sequence given bgy(t) O {0,1} as t varies inT. In other
words, a task arrives at tién classi if and only if Aj(t) is
1. Let A(t) be them-tuple of arrivals for the differenm
classes A4(t), ..., Ay(t)>, so thatA constitutes a complete
description of the arrival sequence for all classes, and is
called atask arrival pattern Note that for simplicity we do
not allow multiple tasks in the same class to arrive at the
same time, and tasks arriving at different times or in differ-

timest. By abuse of notation, this schedule is written
SA). A scheduling policySis said to bewvork-conserving

if every scheduletgenerated by has a task scheduled at
every timet for which there is a live task not already
scheduled bytat any previous time. Polic8is said to be
causal or on-line if its output on prefix policiest does
not depend on the valugg(t’) for timest’ > t; otherwise,
Sis said to beff-line.

Definition 4: The y-discounted weighted task loss W
incurred by a schedula is the sum for all arriving tasks
pi+ unscheduled byt of the class reward,; lost by not
serving the taslp; ; times the discount factoy raised to
the 1+deadlineg ) power.

We seek a policy minimizing-discounted weighted task

ent classes are assumed distinct from one another. Whenl0ss fory arbitrarily close to one.

needed, we will refer to the task arriving in class timet

(if any) as taskp; ;. Every task is assumed to have a “built-
in” arrival time, and the same deadliderelative to its ar-
rival time—i.e., taskp; ; must be served/scheduled at a time
t intherangd <t' < (t + d) or it is considered lost. We re-
fer to the latest time a tagk; can be scheduled+d-1) as
the deadlinefor the task, denoted deadlimg(). Taskp; is
said to béive for times in this range only. A tagf ; is said

to beearlier thana taskp; ¢ if t<t'.

Definition 1: A schedulat(t) is a mapping from times[
T to classes {1, ...m} or “idle” giving the clas$ of task
served at timet. The scheduleryis the schedulem
restricted to times O, ..t-1 and “idle” otherwise, and is
called aprefix scheduleso thatry is the completely “idle”
schedule. We say that schedulesa taskp; ; at timet’ if
and only ifr(t') is i, Aj(t) is 1,p; ¢ is live at timet’, and all
earlier taskg; + that are live at time’ are scheduled by
T. A task isunscheduledby mtif it is not scheduled byt
at any time. The scheduteis well-formedfor arrival pat-
tern A if for all t, T(t) is “idle” when no task is actually
scheduled i(e., i(t) is never a class with no live task
unscheduled by).

In analyzing our algorithms, we also need schedules that
specify exactly which tasks to serve at each point in time:

Definition 2: A task mappinds a one-to-one partial map-
ping o from times to tasks such tha(t) = p implies that

p is live at timet. The schedulery; induced byo is the
schedule that serves clasa timet if and only if o(t) is in
classi, and is “idle” if o(t) is undefined. For each clags
the schedule induced ly schedules the same number of
classi tasks as appear in the range @f Every well-
formed schedul& is 1, for some task mapping

Definition 3: A scheduling policyS(g, A), is a mapping
from a prefix scheduleg and arrival patterr to a class
to be scheduled next. Polic$ is said to generate the
schedulerton arrivalsA if 1i(t) is equal to(tg, A) for all

4. Aschedule can select only the class and not the actual task at each time

step because we always serve the earliest unexpired task of a given
class—this can readily be seen to preclude only “dominated” sched-
ules.

Definition 5: A scheduling policyS dominates policy S’

if there is some discount factgrsuch that for every >y

and every arrival pattery, Wga) < Wgya).
We would ideally like to find an on-line scheduling poliy
that dominates all other on-line scheduling policies. Unfor-
tunately, it is not hard to show that in general there is no
such policy é.g.,see (Chang et al. 2000)). For any candi-
date on-line policy, we can find an arrival pattern and alter-
native on-line policy such that the alternative policy
outperforms the candidate policy on the selected pattern by
incurring less weighted task loss. Therefore, it is necessary
to consider a prior distribution over arrival patterns in order
to define a desired optimal policy.

Definition 6: A scheduling policySis said to beoptimal
for a given probability distributiof? over arrival patterns
Aif for every alternative policys’ the expected value over
all A of Wgy5) exceeds the expected value/dd .

It follows from the theory of POMDPs that for any distribu-
tion P over arrival patterns and any finite horizon, there
must exist an optimal scheduling poli& however, com-
puting this policy for an arbitrary? and large horizon can
be extremely difficult and is in general intractable. We
investigate known techniques for approximating the opti-
mal policy and compare them to our heuristic technique.
First, we must discuss our model for the probability distri-
butionP over arrival patterns.

Modeling Task Arrival Distributions. Our approach to
modeling distributions over arrival patterns is to give a hid-
den Markov model (an HMM) for each classhat gener-
ates the arrival patterfy; for that class. An HMM is a tuple
<Q, T, A, N> whereQ is a finite set of task-generation
states,T gives the next state probability distribution for
each state i, A is a mapping fronQ to probabilities giv-
ing the probability of a task arrival per time step for each
state, and1 is a distribution oveR representing the uncer-

5. Note: discounting is introduced here for consistency with the POMDP
formalism we adopt later and the Al literature on POMDPs—however,
the nature of the scheduling problem makes discounting inessential
and an alternative formulation in terms of rolling finite-horizon win-
dows is also acceptable. Our general techniques do apply to problems
where the discount factor is important.



tain initial state of the HMM. A (hidden) state sequence
<Q, .- O¢> is generated by the HMM with probability
given byTl(qg,) times the product over ailin 1, ...,k-1 of
T(qi, gi+1). The probability that the state sequenag,<..,
g will generate a given arrival patterrag ..., a> where
eacha; 0{0,1} is given by the product over ailin 1, ...,k of

[a A(g) + (1—5) (1-A(q))]. Finally, the overall (hidden
state sequence independent) probability that the HMM will
generate a given arrival patteras ..., > is the sum over
all state sequencess ..., q> of the probability of the state
sequence times the probability that the state sequence will

the underlying state ig, we make an observatiamwith
probability Z(q, 0). An optimal policy for a POMDP can be
defined by converting the POMDP into the equivalent “in-
formation-state MDP” (ISMDP) over “belief states”. A be-
lief stateb is a probability distribution ove® representing

the probability that the underlying MDP is in each state.
Starting with the initial belief statél of the POMDP, a
straightforward application of Bayes rule can be used to up-
date the belief state at each state transition as a function of
the action taken and the observation seen. This “belief-state
update rule” essentially defines the transition probabilities

generate the arrival pattern. Standard techniques generalizefor the related ISMDP, where the state space is the possible

these definitions to infinite length sequences.

HMM models can generate a wide range of different
bursty and non-bursty arrival patterns of arbitrary complex-
ity depending on the size of the state sp&cé-ischer and
Meier-Hellstern 1992)(Michiel and Laevens 1997). We note
that for applications where the task arrival pattern is not
known, or is changing over time, well-known variants of
the expectation-maximization (EM) algorithm can be used
to infer an HMM heuristically describing the pattern from
observations of the pattern over time (Rabiner 1989). For
the remainder of this work we assume that an accurate
HMM model for the distributiorP is provided.

POMDP Models for On-line Scheduling. The optimiza-
tion problem involved in selecting a scheduling policy for a
specific HMM describing the arrival patterns can be formu-
lated as a partially observable Markov decision process
(POMDP). Here we briefly review POMDPs and relate
them to our problem—for a more substantial introduction
please see (Littman 1996) or (Kaelbling, Littman, and Cas-
sandra 1998). A POMDP is a 7-tupl&xlI, T, R, O, ZJ1>
whereQ is a set of system statdsis a set of available ac-
tions, T gives the next-state probability distribution for each
state and actigrR gives the reward obtained for taking an
action at a stated is a set of possible observatiorsgives

a distribution over observations for each state, Bnd a
distribution overQ representing our uncertainty about the
initial system state. If the actual current statejiand we
take actiora, we receive a reward d¢¥(q, a), and the proba-
bility that the state will transition tq" is T(q, a, ). The
probability that the state sequence, <..., > is generated

in response to the action sequenag,<.., a_4> is (q;)
times the product over dlin 1, ...,k-1 of T(q;, &, Qi+ 1)-

The tuple Q, |, T, R> (without the “observation” compo-
nentsO andZ) specifies a Markov decision process (MDP).
A policy ttfor the MDP Q, |, T, R> is a mapping fron@Q to
| specifying the action to take at each state. For a given pol-
icy 1, we define the infinite-horizon discounted reward
starting at state aslim, _ oo(E[Zit _o(y' Orl) , where;
is a random variable representing the reward received at
timei andy is a positive real-number discount factor less
than 1. Under general conditions, there is an optimal policy
that maximizes the infinite-horizon discounted reward.

The POMDP €, I, T, R, O, Z, N> introduces the com-
plication that our plan cannot be a mapping from states to

actions, because we do not have access to the states. In-

stead, we have to work with the observation sequence—if

belief states. In particular, this defines transition probability
functionT’, defined in terms of andZ, such that given a
belief stateb and an actiora, T'(b, a, b)) is the probability
that the next belief state is. Similarly, the reward function
R’ for the belief MDP can be defined in terms §fZ, and
R. A policy for the POMDP/ISMDP can then be specified
as a map from belief states to actions. The infinite-horizon
discounted reward starting from any initial belief sthtis
therefore well-defined, the optimal value of which is called
the value function, denoted*(b). Defining theQ-function
for actionaby Q4(b) =R’(b, a) +vy 2u[T (b, a b) V*(b7)],
it can be shown that the optimal policy for the POMDP is
given bytt(b) = argmax Q,4(b, a).

We can now describe how to formulate our scheduling
problem as a POMDP®, |, T, R, O, ZJ1>. Let <Q;, T;, A\;,
M;> be the HMM for the arrivals of clasd] {1, ..., m}. The
state spac®) of the POMDP isQ = Q1 X ... x Qp, X
{0,13™4 where the last factor represents the currently ar-
rived unserved tasks, indexed by class and time remaining
to deadline—given a particular state, this component of the
state is called thbufferof the state. The set of actionslis
{1, ..., m}, where actiona = i means that we serve the earli-
est live unserved task in classThe state transition function
T is defined in the obvious manner representing underlying
stochastic transitions in each of the arrival HMMs, and the
change in the buffer by adding new tasks generated stochas-
tically by the arrival HMMs as well as the expiry of un-
served tasks and the removal of the task served by the ac-
tion selected. The reward functidis defined adR(q, a) =
A4 The set of observatior@ is given byO = {0, 1}™, rep-
resenting the observed arrival or nonarrival of a task in each
class. The probabilitg(qg, o) of making observatiomw at
stateq is either 1 or 0 according to whetheprecisely de-
scribes the final column of the buffer @ An alternativeR
function can easily be designed to describe the equivalent
problem of minimizing weighted loss (here we have de-
scribed maximizing weighted throughput). We select a dis-
count factory arbitrarily close to one because the nature of
the scheduling problem makes discounting inessential—
good policies must serve as much weight early as possible
with or without discounting. Our actual finite-horizon sam-
pling algorithms will treat the discount factor as equal to
one.

3. Non-sampling On-line Policies
In this section we describe three basic on-line scheduling



policies that use no information about the distribution of
arrival patterns to provide a baseline for comparison and to
provide a starting point for defining our sampling policy.
First, two very simple policies: one that ignores deadlines
and another that ignores task class.

Definition 7: The static priority (SP) policyis the policy
SPsuch thatSP(, A) is the highest reward class that has
a task unscheduled b that is live at timet (breaking
ties by serving the earlier arriving task)

Definition 8: The earliest deadline first (EDF) policis
the policyEDF such thaEDF(tg, A) is the class with the
earliest-expiring task unscheduledimpthat is live at time
t (breaking ties by serving the higher class task).

Next, we consider policies that act at each time step to min-
imize loss under the assumption that no further tasks will
arrive, which we call “current-minloss policies.”

We say that a task arrival pattetvis finite if Ai(t’) is zero
for all i and allt’ =t for somet called thehorizonof A. We
say that a schedule starts at time if m(t’) = “idle” for all
t’ <t. Also, for any set of taskK, we can construct an ar-
rival patternAyx corresponding to the arrivals of those tasks
at their respective arrival times, and no other arrivals.

Definition 9: A minloss schedulet, for a finite arrival
patternA is a schedule that achieves lower weighted loss
than any other schedule fér (at the horizon time ofA
plusd). A minloss schedule for A starting at tim(an;f\) is

a schedule starting at tintehat achieves lower weighted
loss onA than any other such schedule. If the task#\in
have all arrived at time, we call this acurrent-minloss
(CM) schedule starting at time t.

Definition 10: A current-minloss (CM) policys a policy

tasks from high-reward classes first, and within each class
later deadline tasks before earlier deadline tasks. The
pseudo-code in Figure 1 also achieves a CM schedule in
this manner in Step 1, and then goes on in Step 2 to improve
the schedule for use in “non-current” contexi®.( when
future arrivals are expected) by reorganizing the schedule to
serve the highest possible reward task first without losing
the CM property. For the remainder of this paper we refer to
this algorithm as the CM policy.

Let plan be a mapping from times...,t+d—1 to tasks or
“idle”, initialized at all time steps to “idle”.

Step 1:Generate a current-minloss task schedule
for class = 1 tan // highest weight class first
for task inclass, latest-arrived to earliest-arrived
slot = the largest< deadlinefask) such that

plan[j]=="idle";
if suchslot existsthen plan[slot] =task;
endfor
endfor

Step 2:Select a class to serve next ugitan
cut = the smallest tim& such that foralt” < t', dead-

line(plant”]) <t’
/l tasks up t@lan|cut] can all be served no matter
/l which task is actually scheduled first
Select the highest-reward class of pthn[, plangut]

Figure 1: Code sketch for our CM policy

CM that always schedules a class that is scheduled by at Theorem 1:Figure 1, Step 1 defines a CM policy.

least one current-minloss schedule for the currently live
unscheduled taskd.€., ignoring future arrivals). More
formally, if CM(tg, A) is the class then there must be
some CM schedulety starting at timet for arrival pat-
ternA = Ak whereK is the set of live tasks at timethat

are unscheduled by, such thatty (t) = i.

It is possible to give on-line CM policies. Constructing a
CM policy involves finding at each timea CM schedule
starting att for the live unscheduled tasks at timé\Ve give

in Figure 1 the pseudo-code for an implementation of a par-
ticular on-line CM scheduler. The problem at each tinee

Proof: We say that a task mappimis a “CM mapping” if

T, is a CM schedule, and we call a partial mappiog
“acceptable” if it can be extended to a CM mapping. The
empty mapping is “acceptable” in this sense. Consider an
acceptable mapping. Let i be the class of the highest-
reward arriving task that can be addedatdo get another
task mapping. Lep be the latest arriving task in clasgot
already in the range 06. Let ¢’ be the mapping that
extendso by schedulingp at the latest tim# such thatp is

live att’. (This is exactly the extension fgan that is car-

a special case of the general job sequencing problem solvedried out by thdor loops of step 1 of the algorithm.)

by Sahni (Sahni 1976). Sahni’s approach specializes to a
0O(d? time complexity CM policy for our problem—the
CM policy we sketch in Figure 1 can be implemented to
obtain a tighter Gf+m) performance because it is opti-
mized for our problem assumptions.

Our algorithm greedily schedules each task in the latest
available time slot for which the task is live, considering

6. Implementing the sketched CM policy directly from this pseudo-code
will also give O(d“) time complexity, however the line that computes

slot can be optimized by using union-find on sets of times. Also, the
O(d+m) bound stated omits an inverse Ackerman’s function factor

from the union-find algorithm.

We argue thato’ is acceptable. By definition, some
extensions” of o is a CM mappingcs” must schedule
some class task not scheduled by, or modifying 0”

by settingo” (t') to be p would produce a mapping that
schedules more class weight thap , contradicting the
choice of¢” as a CM mapping. Buti6” schedules any
classi task p” not scheduled by at any timet” , then
t” must be less thati, given the way we chosg But
theno” can be modified into a CM-mapping extending
0’ by swappingo(t') ando(t” ), and then replacingp”
by p as the value of(t'). Q.E.D.



Unlike Sahni’s algorithm, our CM policy is designed for  to the schedule) if there is no idle slot in the schedule dur-
use in an on-line setting (hence Step 2 in the code sketch). ing the task’s live period—we must consider moving other
Thus unlike Sahni, we have analyzed the policy’s on-line tasks that are scheduled during that period to make room.
performance. We can show the following two modest asser- This complexity is a result of having to consider varying
tions hold regarding this performance (see also (Hajek and task arrival times in addition to deadlines (unlike in the CM

Seri 1998) for general related results).

Theorem 2: The CM policy strictly dominates the EDF
policy (i.e., CM wins/ties regardless of arrival pattern).

Theorem 3: The CM policy is work-conserving and
(unweighted) throughput optimai.€., for any arrival pat-
tern CM generates a schedule that serves the maximum
numberof tasks).

4. Off-line Scheduling for Minimum Loss

We consider the problem of scheduling a finite arrival pat-
tern A for minloss in an off-line manner,e., as though we
know ahead of time in what pattern the tasks will arrive.
This problem corresponds to a standard job sequencing
problem where each job has both a deadline and a “ready
time” (the arrival time, before which the job cannot be
scheduled) (Kise, Ibaraki, and Mine 1978), (Lawler 1964),
(Lawler 1976), (Moore 1968), (Villareal and Bulfin 1983).
We have found no previous wofkcombining deadlines,
ready times, and the weighted task optimality criterion—we
give a polynomial-time algorithm addressing all these fac-
tors. The problem is known NP-hard without our assump-
tion that each task has the same fixed deadtinat its
arrival and the same fixed processing time.(the problem

is NP-hard with arbitrary task ready and deadline times or
task processing times) (Lenstra 1977).

The constraint that a task cannot be scheduled prior to its
arrival adds complexity to the minloss scheduling problem.
Neither of the observations used in Section 3 in designing
the CM policy holds for this richer problem. Because the
problem involves apparent foreknowledge of the arrival pat-
tern, we refer to algorithms addressing it as “prescient”.

Definition 11: A minloss policyis an (off-line) policy that

generates a minloss schedule for any finite arrival pattern.
We present and argue correctness for a particular minloss
policy based on an elaboration of the approach taken in
CM. We schedule tasks greedily from the highest-reward
class to the lowest, and within a class from latest arriving to
earliest arriving. As in CM, we start by scheduling tasks for
service at the latest open schedule slot not after the task
deadline. However, unlike in CM, we cannot be guaranteed
that this initial task placement in the schedule can be
extended to a full minloss schedule. The initial placement
may be revised by the algorithm as additional tasks are
scheduled. Similarly, we cannot drop a task.(not add it

7. It has since come to our attention that a symmetric variant of this algo-
rithm (reversing time and swapping ready/deadline times) has been
published in the performance evaluation literature for a different pur-
pose—providing an upper bound on performance to use in evaluating
scheduling algorithms. Our optimality proof is different and apparently
more complete. See (Peha 1995).

scheduling problem where all the tasks have currently
already arrived). To handle this complexity, we introduce a
new concept:

Definition 12: Given a task mapping and times andt’
with t < t', ashuffle ono moving time t to time tis a per-
mutationR of a finite setBg of times includingt andt’
such that for each tinté in By (other thart),

e R(t") <t
¢ if defined,o(t”) is a task that is live at timB(t" ), and
e R(t)=t.

The result of applying a shuffle R to is a new task
mapping (writtenR(c) by abuse of notation) defined to
equalo except that for eacti in Bg, [R(0)](R(1") ) is set
too(t").

We can now describe the basis of our PM algorithm. We
construct a task mapping incrementally, starting from the
empty task mapping (undefined everywhere), and consider-
ing tasks for addition to the mapping greedily from the
highest-reward class to the lowest, and within a class from
latest arriving task to earliest arriving. Once a task is con-
sidered and rejected that task never needs to be considered
again. Given a partial task mappimgand a taskp to be
considered for addition to, we lett be the latest time
deadlinep) such thats(t) is undefined. We then admitto

o if there exists a tim& whenpiis live and a shuffl&onao
moving timet to timet’. If there is such a shuffl@ and time

t', we updates to R(o) and then set(t’) to p. A key and
nontrivial property of this algorithm is that the set of sched-
uled tasks after any task is considered does not depend on
the choices of shuffles made up to that point (see proof
below). We give a code sketch for @(H?+m) minloss
scheduler in Figure 2, for sampling horizéh We hence-
forth refer to this policy as the “prescient minloss” (PM)
policy. We start our analysis of this algorithm by proving a
key lemma, mentioned above. The lemma depends criti-
cally on the following definition of a functiorslack that
maps task mappings to vectors of numbers.

Definition 13: Given a partial task mapping defined on
times {0, ...,H}, the slackof o is a vector <, ..., >
where s gives the number of tasks scheduled dyat
timesz i that are live at timé—1. More formally,s; gives
the cardinality of the sett{|t =i anda(t) is defined and is
live at timei—1}. (54 is always zero.)

Lemma 1: The sequence of tasks admitted to the task map-
ping o (plan in the code sketch) does not depend on the
choices of shuffles made in the calls to find-shuffle.

Proof: The lemma follows from these observations:



Let plan be a mapping from timeg, ..., H to tasks or
“idle”, initialized at all time steps to “idle”.

Step 1:Generate a prescient-minloss task schedule
for class = 1 tan // highest weight class first
for task inclass, latest-arrived to earliest-arrived
slot = the largest< deadlinefask) such that
plan(j]=="idle”;
shufle = find-shuffle(arrival-timeask),slot)

if suchslot andshufle exist,
then {apply shufle toplan; plan[slot] =task}
endfor
endfor

/I Finding a shuffle
/[ ------ from any time t before arrival-time, to empty-tin

find-shuffle @rrival-time,empty-time) {

Letshufle be a sequence of timeés ..., t; representing
the permutatiorty - ...— tj - ty. Initialize shuffle
to the unit sequence of one timmpty-time.

last-added ®mpty-time;found = true;
while (arrival-time > last-added) anfbund
found = false;
for offset = 1 tod-1

if planflast-addedeffset] is live at timdast-added
then {found = truejast-added —offset;
addlast-added tghufle at seq. start;
break theor loop}

endfor
endwhile

if foundthen returnghufle); elsereturn(fail);
} /I end of find-shuffle

Step 2:As given for CM in Figure 1.

Figure 2: Code sketch for our PM policy

a. For any shuffleR on o moving a timeempty-
time to a time when the newly admitted taghks
live, the slack and idle times of the new task
mapping resulting from applyinB to o and add-
ing p depends only and the slack and idle times
of g, and not on any other details ofor on the
shuffle used.

b. The existence of a shuffle allowipgo be added
to o depends only op and the slack of, but not
on any other details af.

Theorem 4:The PM policy in Figure 2 is a minloss policy.

Proof: (sketch) The proof of this theorem using Lemma 1
is non-trivial, but similar to the proof of Theorem 1; a com-
plete proof will be provided in the full version of this paper.

To finish the proof of Theorem 4 requires showing (as
we did in proving Theorem 1) that the scheduler would
never profit from passing up scheduling a late-arriving
high-reward task in hopes of scheduling some earlier-
arriving task of the same class (or some lower-reward
task) instead. This fact essentially follows from the fact
that passing up the one task will never allow the sched-
uling of two other tasks in its place—proving this
involves generalizing the proof of Theorem 1 to handle
the presence of shuffles, but space does not allow us to
present the proof here. Q.E.D.

5. Extending Off-line Scheduling by Sampling

The off-line PM policy just described would be the ideal
scheduler to apply but for the fact that in an on-line setting
we do not have access to the future arrival sequence.
Instead, we have the stochastic model generating this
sequence in the form of an HMM for each class, constitut-
ing a POMDP problem (equivalent to a related ISMDP).

We have investigated sampling from the ISMDP in a
principled manner using the techniques described by McAl-
lester and Singh (McAllester and Singh 19@97he ap-
proximation bounds given in that work require a computa-
tionally intractable amount of sampling to be done in order
to get a useful guarantee of accuracy. However, the tech-
nigques described can be used with much smaller amounts of
sampling giving up any approximatiaguarantee We have
implemented and tested this approach, and our preliminary
results indicate that the resulting policy is generally inferior
to the SP policy defined in Definition 7. Augmenting the
policy by using our CM policy to estimate values at the ho-
rizon improves performance but the resulting policy does
not outperform CM itself These poor results are no doubt
due to low sampling width and short horizon. (see below)

In response to this poor performance, we have considered
an alternative, heuristic sampling approach. This approach
is based on the following observations about the optimal
value function for a POMDP. The" value function is de-
fined in an “expectimax” fashion—being thmaxover all
actions of the expected value \df at the next state (which
itself is themaxover all actions of the expected value\6f

8. We note that a critical feature of the techniques in (McAllester and
Singh 1999) is the compact approximate representation of the POMDP
belief state. This compact approximation is not needed in our problem
because we have a natural factoring of the belief state into factored
observable state (the buffer contents) and unobservable state (the hid-
den state of the task arrival process). Although our overall statespace is
very large, the arrival process state space can reasonably be assumed to
be modest in size, so we can represent a belief state easily.

9. Achieving even this performance requires modifying the original tech-
nigues by using the same sampled arrival patterns for evaluating each
action at a given choice point. Sampling anew for each action evalua-
tion increases the variance in the value estimates and destroys perfor-
mance. This use of common samples is also important to our method
and derives from work in discrete-event systemscommon random
numbers simulatiom perturbation analysigHo and Cao 1991)



at the second next state, etc.). When the state space is smallthat the states of the arrival-generating HMMs are not di-

dynamic programming can collapse the resulting expecti- rectly observable). We can then select an action by estimat-

max treel® However, with the very large state spaces ing the Qg -function at the current belief stattor each ac-

widely encountered in Al problems, dynamic programming tion a. To do this, we apply each acticnin turn to the

is of very limited use. The sampling technique of McAIl-  current belief state, and use our heuristic sampling tech-

ester and Singh is the principled way to sample from such nique to estimate the* value at the resulting belief state

an expectimax tree, but is also too expensive in this case. We assume the scheduler knows the HMM models from
We consider here the heuristic approach of rearranging which arrivals are drawn, which can then be used to gener-

the tree so that all the expectation nodes come above all theate the samples of possible future arrivals. i) esti-

max nodes in order to get an upper bound on the true value mate is derived by averaging ovesamplesS of future ar-

(formalized below), starting with a finite horizon tféeFor rivals out to some horizohl, and using the PM scheduling

a general POMDP (even a fully observable one) this ap- policy to compute the exact minloss schedule value

proach may not yield useful results, as it resembles assum- achieved from statg on encountering sampl® with pre-

ing we know what each action will do before deciding scient foreknowledge. We call this policy the Sampled PM

whether to take it—this essentially allows the value esti- policy (SPM) (no relation to the SP policy of Definition 7).

mate to be based upon a careful “lucky” walk through a The V*-value estimate qi ;

= . . 9 - given by the SPM algorithm does
minefield. In particular, optimal POMDP and MDP policies o hrovide a principled estimate of the finite horizeh
need to avoid taking actions that have significant chance of . tion for an ISMDP. Instead. we are estimating a func-
leading to very bad states, even if those actions also have aj;n we have named tﬁbfunctioﬁ defined below, that up-
chance of leading to good states. Taking all expectation out- yor 6 nds the* function. First, we state the finite horizon

side of the maximization steps effectively computes a value ngiscounted total rewardly; definition for comparison.
estimate based on a non-stationary policy that takes a given o setV} (g) = 0, and

action only when it will “luckily” have a desired result.

This can result in an action appearing beneficial when the Vi (9) = mag R(9,8) + Eq(gaqf V-1 (@)]- 1)
Q-function value for the action is very poor. For an exam-  These equations can readily be seen to describe an expecti-
ple, this approach will choose to walk through a minefield ,5x tree where the max nodes are each compitinty’)

tions such that the “wait” action is completely safe and the is the tree that a principled sampling algorithm must

“walk” action has some probability of killing you (whenin  gn5r0ximate by sampling after each action choice-point. An

the minefield) and some probab_ility of_safety. _ equivalent definition fOVﬁ (q) is as follows.

However, for some POMDPS including the scheduling
POMDP we are addressing here, it appears that this unprin- v = max H o 2
cipled approach yields a reasonable approximation of the H(@ oy, B[ 210 ] @
true relative value of each action (tRefunctions). “Know- where 491, ..., Ti;> ranges over sequences of policies.(a

ing” the future in the sense of this approach leads to erring non-stationary policy), and the random variahlgives the
only on the side of overestimating state value (in any reward at timei given that for each timé the policy g is
POMDP). It appears that for our POMDP this results in a followed. For eitherVy; equation, sampling to estimate the
similar amount of overestimation for the different states expectation must be conducted inside an exponentially
reachable by different actions from a single source state— pranching choice of a sequence of actions/policies, if we
this is expected because these single-step reachable stategre to estimaté/,j (q) in a principled manner.
are all very similar. All the uncertainty is coming from the
arrival pattern distribution, and that applies equally to every
action. We now describe this approach more concretely for
our problem and then present a brief formal analysis.

For our problem, we start by using the POMDP belief
state update rule to maintain a belief state over time (note

We do not have any answer for this difficulty for general
POMDP problems; however, for problems with special
structure like the scheduling problem described here, we
can sample as described for the SPM algorithm above. In
this case, we are instead computing the following equation,
where the maximization is now inside the expectation.

H
= . r
10. An expectimax tree is a tree where odd-depth nodes are labelled with JH(q) E [maxml' "HDZ' =0 '}
“expectation” and even-depth nodes are labelled with “max”. If the H (3)
leaves are labelled with numbers, a value can be computed recursively - E [max > I‘i}
at every node by performing the function given by the node label on E} ay=i =0
the values of the children of the node.

11. We note that Hauskrecht has considered a similar rearrangement of this Since the term inside the expectation is computed by PM
expectimax tree independently for a quite different but related purpose. . . ’
See p. 86 of (Hauskrecht 1997). we can computely by sampling and running PMl (CI)

12. One candidate class is the class of exogenous control problems—prob- €an informally be seen to upper boqu (a) by observing
lems where the action choice has no effect on the source of uncertainty. that the maximization is done for each stochastic future
However, it is not clear how to define this class of problems formally, :
as it seems any POMDP can be viewed this way by thinking of all ran- rather than once for all pOSSIble futures.
domness as coming from a stream of random numbers generated inde-
pendently of the control applied.

------



6. Empirical Results

As with many Al problem domains (for example, proposi-
tional satisfiability), randomly selected problems from this
scheduling domain are typically too easy (for satisfiability,

such problems are easily seen to be satisfiable or easily seen

to be unsatisfiable). In scheduling, this problem manifests
itself in the form of arrival patterns that are easily scheduled
for virtually no loss, and arrival patterns that are apparently
impossible to schedule without heavy weighted loss (in
both cases, it is typical that blindly serving the highest class
available performs as well as possible). Difficult scheduling
problems are typified by arrival patterns that are close to
being schedulable with no weighted loss, but that must
experience some substantial weighted loss.

We have conducted experiments by selecting HMM
models for the arrival distributions at random from a single
distribution over HMMs. There is not room in this work
(space- or time-wise) for an extensive study determining
which distributions over HMM arrival descriptions yield
hard problems and why, but this is a good topic for future
work. At this point we have made some guided ad-hoc
choices (see below) in selecting the distribution over
HMMs from which to conduct our experiments.

Given the selected distribution over HMMs, we have
tested our SPM and CM algorithms, along with SP and
EDF, against six different specific HMM arrival descrip-
tions drawn from the distribution. For each such arrival de-
scription, we ran each scheduling policy fox210° time
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Figure 3: Example weighted-loss plots for a single ar-
rival pattern.

HMM#: 1 2 3 4 5 6 Mean

EDF 033 563 054 161 051 217 180
SP 027 393 026 176 032 127 130
CM 0.019 1.02 0.051 0.26 0.039 0.34 0.29
SPM 0.013 0.84 0.044 022 0.025 030 0.24

Table 1: Weighted-loss rates for all HMMs tested.

seven classes, we generate a large traffic sample and use it
to normalize the arrival generation probabilities for each

steps and measured the weighted loss achieved by each polclass so that arrivals are roughly equally likely in high-re-

icy over time. We show one such plot as an example in
Figure 3. To summarize all the plots effectively, we have
calculated theweighted-loss ratdor each policy against
each arrival pattern—this is the slope of the weighted loss
versus time plot. Weighted-loss rates for the four algorithms
versus each of the 6 arrival patterns are shown in Table 1.
We give a brief description of an ad-hoc choice involved

in selecting our distribution over HMMs. All of the prob-

ward (classes 1&2), medium-reward (classes 3&4), and
low-reward (classes 5-7), and so that overall arrivals occur
at about 1.5 tasks per time unit to create a scheduling prob-
lem that is suitably saturated to be difficult.

Even with these assumptions, a very broad range of ar-
rival pattern HMMs can be generated. Without some as-
sumptions like those we made here, we have found (in a
very limited survey) that the arrival characterization given

lems we consider involve 7 classes of tasks. We select an py the HMMs generated is typically too weak to allow any
HMM for each class, chosen from the same distribution. effective inference based on projection into the future. As a
We selected the HMM state space of size 3 arbitrarily for result, CM and SPM typically perform very similarly, and
these examples, resulting in a total hidden state space of 3 SPp often performs nearly as well. The precise HMMs used
states. We selected the 7 class weightss 2000, 1000, are available on request.

800, 600, 20, 10, 5. Given the small state space for each Examination of the weighted-loss rates shown in Table 1
HMM, we deliberately arrange the states in a directed cycle reveals that the basic CM policy dramatically outperformed
to ensure that there is interesting dynamic structure to be EDF and SP on all the arrival patterns, unsurprisingly. The
modeled by the POMDP belief state update (we do this by heuristic sampling policy SPM outperformed CM by a
setting the non-cyclic transition probabilities to zero). Simi-  smaller but significant margin. Sampling never hurt the
larly, we select the self transition probability for each state long-term performance on any HMM instance we tried, and
uniformly in the interval [0.9, 1.0] in order that state transi- on all but one instance the sampling reduced weighted loss
tions are seldom enough that observations as to what state ishby 20-35% i(e., comparing SPM to CM).

active can accumulate. We select the arrival generation \We believe these results indicate that sampling to com-

probability at each state so that one state is “low traffic”
(uniform in [0, 0.01]), one state is “medium traffic” (uni-
form in [0.2, 0.5]), and one state is “high traffic” (in [0.7,
1.0]). Finally, after selecting the HMMs for each of the

13. We have not found performance to be very sensitive to class weight

choices, as long as they are not extremely similar or dissimilar.

pute theJ function is a reasonable heuristic for on-line
scheduling, but also that CM itself is a reasonably good
scheduling policy without looking into the future.

We expect that further research will lead to a better char-
acterization of the class of HMM arrival models that yield
suitable structure for sampling algorithm. We also expect it
will continue to be difficult to find any distributions where



CM outperforms SPM—these would be distributions where
the J function was actually misleading. It is not surprising
that for some HMM distributions, CM and SPM perform
very similarly, as the state inference problem for some
HMMs can be very difficult—SPM will perform poorly if

Learning for Mixed Open-loop and Closed-loop ContRlo-
ceedings of the Ninth Neural Information Processing Systems
ConferenceDenver, Colorado, December, 1996.

M. Hauskrecht. Planning and control in stochastic domains with
imperfect information. Ph.D. dissertation, Massachusetts Insti-
tute of Technology, Tech. Report MIT-LCS-TR-738. 1997.

the computed belief state represents significant uncertainty Ho, v. C. and Cao, X. RPerturbation analysis of discrete-event

about the true state, giving a poor estimate of the future ar-
rivals.

We have also implemented a principled sampling tech-
nigue based on McAllester and Singh's algorithm (McAll-

ester and Singh 1999). This technique proved very resource
intensive, and we have been unable to collect a wide range

of results for it. Even sampling with a “sampling width” of
2 and a horizon of 4 requires searching a tree with 40,000
nodes. Doing even just this at each time step for 20°

dynamic system&luwer Academic Publishers. 1991.

Kearns, M., Mansour, Y. and Ng, A. Y. Approximate Planning in
Large POMDPs via Reusable Tragectorisdvances in Neural
Information Processing System$99.
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Intelligence 101(1-2): 99-134. 1998.
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time steps is beyond our resources; as a result we have onlyKise, H., Ibaraki, T., and H. Mine. A Solvable Case of the One-

very preliminary results for this policy. These results (not
shown) indicate that this policy performs like SP when zero
value is used at the horizon of the sampling, and like CM if
CM is used to estimate value at the horizon. This is unsur-
prising because of the low sampling horizon.

7. Conclusions

In this work, we have developed new scheduling policies
CM and SPM for the on-line multiclass scheduling problem
with arrival and deadline times and task arrivals specified
by HMMs. The more effective SPM policy is based on a
heuristic sampling technique using the HMM arrival mod-
els. Although the scheduling problem is naturally
formulated as a POMDP, previously published sampling
approximation methods for POMDPs perform poorly when
used with tractable sampling parameters. Our empirical

work demonstrates that for reasonably broad classes of

HMM-described task arrivals our heuristic SPM approach
outperforms other known policies for this problem, includ-
ing the CM policy that minimizes weighted loss on the cur-

rently present tasks. We discussed above how the heuristic
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technique we used in designing SPM can be applied to any Rabiner, L. R. A tutorial on hidden Markov models and selected

POMDP problem—uwhile this is ill-advised for most prob-
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