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Abstract

In this paper a general shop scheduling problem with
sequence dependent setup times and alternative re-
sources is considered, where optimization criteria are
both makespan and sum of setup times. Two coop-
crative models for the problem based on Constraint
Programming are proposed. The first is used to model
the scheduling constraints, while the second is a multi-
path model used for setup optimization. Integrating
lower bounding techniques for the sum of setup times,
the multi-path model performms propagation based on
reduced cost fixing. A solution method based on a
two phase algorithm is described, and a computational
study is performed both on instances known from lit-
erature as on newly proposed instances. It is shown
that the cooperation of the two models significantly
improves performance. Although the aim of the pa-
per is to study the problem including alternative re-
sources, for several known instances without alterna-
tive resources, we were able to improve on the best
known results.

Introduction

The scheduling problem studicd in this paper is a gen-
eral shop problem with sequence dependent setup times
and alternative resources for activities. The sctup time
between two activities 4; and As is defined as the
amount of time that must elapse between the end of
A; and the start of 4., when A; precedes Ay, If an
activity can be scheduled on any one resource from a
set S of resources, we say that S is the set of alternative
resources for that activity. We consider two criteria as
objective functions: makespan and sum of setup times.
A large part of the motivation for this study was found
in our experience with industrial applications. There
we found that both sequence dependent setup times
and alternative resources are very commonly encoun-
tered properties of scheduling problems. What’s more,
both properties are also often important in the sense
that not considering them leads to unacceptable solu-
tions. The importance of setup times and setup costs
has also been investigated in several other studies. Al-
lahverdi, Gupta, and Aldowaisan, in reviewing the re-
search on scheduling involving setup considerations (Al-
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lahverdi, Gupta, & Aldowaisan 1998), discuss the im-
portance of scheduling with sequence dependent setups
in real world applications, and encourage rescarchers
to work on the subject. Qur experience with indus-
trial applications also formed the basis for the motiva-
tion for considering both makespan and sum of setup
times, and, more specifically of trying to find a sched-
ule with a good makespan and a minimal sum of setup
times. We chose to use Constraint Programming (CI)
as it has been proven to be a very flexible framework to
model and solve scheduling problems. Numerous indus-
trial applications have been developed using constraint-
based scheduling both because of its modeling capabil-
ity as of the efficiency of specialized Operations Re-
scarch (OR) algorithms that are embedded in global
constraints. For more detailed discussions of constraint-
basced scheduling we refer to (Nuijten 1994; Baptiste,
Le Pape, & Nuijten 1995; Caseau & Laburthe 1995;
Le Pape & Baptiste 1996; Nuijten & Le Pape 1998;
Beck 1999). We introduce two CP based models captur-
ing two different aspects, i.e., the scheduling aspect and
the multi-path aspect. The constraints representing the
two models and a constraint linking them are described.
The scheduling representation is essentially used to en-
force feasibility, while the multi-path represcntation is
used to cffectively minimize the sum of setup times us-
ing OR techniques. i.e., lower bound calculation and
reduced costs fixing. We propose a two phasc proce-
dure to solve the scheduling problem. In the first phase
a good solution with respect to the makespan is found,
after which in the second phase a local improvemnent
method aims at minimizing the sum of setup times
while maintaining a limit on the maximal makespan
equal to the best makespan found during the first phase.

Problem Definition

We are given a sct of n activities 4,,..., 4, and a set
of 1n unary resources (resources with maximal capacity
equal to one) Ry,...,R,. Each activity A4; has to be
processed on a resource R for p; time units. Resource
R; can be chosen within a given subset of the m re-
sources. Sequence dependent setup times exist among
activities. Given a setup time matrix S* (squarc ma-
trix of dimension n), s’,-"j represents the sctup time be-
tween activities A; and A4; if A; and 4; are scheduled
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sequentially on the same resource Ry. In such a case,
start; > end; + sfj. There may furthermorc exist a

setup time suf before the first activity A; can start

on resource I, and a teardown time td* after the last
activity A; finishes on resource Ry. Activities may be
linked by precedence relations A; — A;. In this case
activity A; cannot start before the end of activity A4;.
Constraints of the problem are therefore defined by the
resource capacity, the transition times, the temporal re-
lations, and the time bounds of the activities (releasc
date and due date). The goal we will follow is to first
find a schedule with the best possible makespan after
which we will try to minimize the sum of setup times.

Related Work

A comprehensive review of the regsearch on scheduling
involving setup considerations was given in (Allahverdi,
Gupta, & Aldowaisan 1998). The authors review the
literature on scheduling problems with sequence depen-
dent and sequence independent setup times, on single
machine and parallel machines. They finally suggest di-
rections for future research in the field. In this paper we
follow some of these directions, i.e., emphasis on multi-
machine scheduling problems, on multi criteria objec-
tives, and on a generalized shop environment. An im-
portant reference for the work we propose is the paper
of Brucker and Thiele (Brucker & O.Thiele 1996) where
the authors propose a branch and bound algorithm for
a scheduling problem with sequence dependent setup
times. We generalize the problems described in this
paper by considering alternative machines. Moreover,
while for the authors the makespan is the only objective
that is taken into account, we consider both makespan
and sum of sctup times. For general considerations on
cost-based filtering used in the setup optimization we
refer to (Focacci, Lodi, & Milano 1999a).

Models
Scheduling Model

The scheduling part of the problem is modeled by using
ILOG Scheduler (Scheduler 1999). Each activity A; is
represented by using two variables being its start time
start; and its end time end;. These two variables are
constrained by the relation end; — start; = p;. Each
resource R} is represented by a unary resource.

A partition of the whole set of resources into alter-
native resource sets M}, is given. Each activity .4, is to
be processed on a given alternative resource sct Afy;
it means that the activity will have to be executed
on a resource R; chosen among the resources belong-
ing to M. resource; € {1,...,m} denotes the vari-
able whose value represents the index k of the resource
Ry € M, that will be chosen for activity 4;. Setup
times are reprcsented in the scheduling model via a
n square matrix S* associated with each resource Ry.
Precedence constraints and time bound constraints are
posted on the variables start; and end; of activities.
As we will see in section Scheduling Constraints, the
scheduling model allows the propagation of precedence,

time bound, setup times and resource availability con-
straints over the variables of activities start;, end; and
resource;.

Path Model

We use a path model as a relaxation of the schedul-
ing problem. We have a set of start nodes, a set of
internal nodes, and a set of end nodes. Each internal
node i represents an activity A;. We are looking for m
disjoint paths in the graph defined by thesc three sots.
Each path represents a different resource. It starts in
the start node of the resource, traverses a scquence of
internal nodes, and ends in the end node of the re-
source. More precisely, let I = {0,1,2,...n — 1} be
a set of n nodes, E = {n,n+1,...,n+m — 1}, and
S={n+m,n+m+1,...,n+2xm— 1} be two sets of
m nodes. Nodes in I represent internal nodes, nodes in
S, and in E represent start and end nodes respectively
(see Figure 1). A global constraint PathCst can be de-
fined ensuring that m different paths pg,p1,...,pm cx-
ists such that all internal nodes are visited exactly once
by a path starting from a node in S, and ending into a
node in E. Start nodes n+m,n+m+1,...,n+2*xm—1
belong respectively to paths pg.p;,...,pm. End nodes
nw,n+1,....n 4+ m — 1 belong respectively to paths
P0sDis- -+ Pm. Morcover, sets P of possible paths can
be associated to cach internal node. We define three do-
main variables per node. Domain variables Next; and
Prey; identify the nodes visited just after and just be-
fore node i respectively. Domain variables Path; iden-
tify the path the node belongs to. The domain of vari-
ables Nert;, and Prev; contains values [(..n+2*mn—1];
the domain of variables Path; contains values [0..m—1}.
Each start and end nodc has its path variable bound
(Path, = [0],...,Pathyym—1 = [m — 1]; Pathyi;,m =
[0],...,Path,t2em—1 = [m — 1]). In order to maintain
a uniform treatment of all nodes inside the constraint,
each start node n + m + k has its Prev,4,+¢ variable
bound to the corresponding end node (Prev,pm+4r =
[n+k]), and each end node n + k has its Next, vari-
able bound to the corresponding start node (Nezt, i
= [n+m+k]). A feasible solution satisfying the con-
straint PathC'st is an assignment of a different value to
each next variable (the next node in the path) avoiding
sub-tours (tours containing only internal nodes) such
that

Next; = [j] & Prev; = [i] (1)

Next; = [j] = Path; = Path; (2)

A transition cost function can be associated to the path
constraint, such that if node 7 is decided to be next to
node j on a path k (Nezxt; = [j], Path; = Path; = k)
a cost tfj must be considered. In this case an op-
timal solution of the problem is the one minimizing
Sy thark, . If the transition cost function does not
depend on the sclected path, the path constraint defines
a multiple travelling salesman problem (MTSP) on a
digraph G = (V, 4) where V" =0,1,...,n+2+m—1
is the vertex set, and A = (i,7):¢,7 € V' is the arc
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set. Cost ¢;; is associated to each arc (i,j); ¢ij = ¢&;;
if j € Next;; ¢ij = oo otherwise. As said, the path
model described represents a relaxation of the schedul-
ing problem. If an internal node i has its next variable
assigned to another internal node j, activity A; directly
precedes activity Aj;; if an internal node ¢ has its next
variable assigned to an ending node n + k, activity 4; is
the last activity scheduled on resource ;. The transi-
tion cost function of the path model represent the tran-
sition time (setup time) among activities: therefore the
minimization of 37y ! s, in the path model corre-
sponds to the minimization of the sum of setup times
in the scheduling model.

Capacity;

Next]o] = 4
Pathl6] = 0

Cost[6] = t'y;

Figure 1: Models

In Figure 1 a schedule of 6 activities on 2 resources is
shown with its correspondent path model. The schedul-
ing model and the path model can be linked together
and can cooperate for the solution of the problem by
exploiting different views of the same problem.

Scheduling Constraints

In this section, we bricefly describe the scheduling con-
straints that are uscd to perform propagation on the
scheduling model.

Temporal Constraint The temporal constraints
represent the precedences between activities given in
the problem definition. The precedence constraint be-
tween two activities 4; and A; is propagated as a con-
straint end; < stert;. If a precedence graph is used
(see section Precedence Graph Constraint), these prece-
dence constraints are also taken into account by the
precedence graph.

Disjunctive Constraint The disjunctive constraint
aims at discovering new precedences by looking at pairs
of activities that require the same unary resource. If
A; is an activity of the problem, we respectively denote
smin;, stnax;, emin; and emaz; the carliest start time,
latest start time, carliest end time and latest end time of
activity 4;. Let 4; and 4; be two activities that require
the same unary resource Ry, If emin; + s;‘-',- > srnar;,
it means that activity A; will not have enough time
to cxceute before activity A;. Sce an illustration on
Figure 2 where we suppose that the setup time between
Ay and A, is 5. Thus, as both activities require the
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same unary resource Iy, A; will have to be processed
on Iy before 4; and the following domain reduction
can be performed!: smin; = MAX(smin;,emin; +
sf;) and emar; = MIN (emax;, smaz; — s¥;). On the
example of the figure, it leads to a new carliest start
time of 20 for activity A, and a new latest end time
of 15 for activity 4,. Whenever the earliest end timne

— Rk
s "2
smin(Al) smax(Al)
emin(A2) cmax(A2)
30( )40
2=2() A2
L i — . — . Rk

W d_"2
smin(A2) smax(A2)

Figure 2: Disjunctive Constraint

or the latest start time of an activity A4; changes, the
disjunctive constraint traverses the set of activities A;
that are to be processed on the same resource as A; in
order to perform this propagation.

Edge-Finding Constraint The edge-finding con-
straint is a constraint more powerful than the disjunc-
tive constraint. It propagates the start and end time
of one activity with respect to a subset of other activi-
ties. In general the edge-finding constraint can deduce
that one activity A; is to be scheduled before or after
a set S of activities that are all to be scheduled on the
same resource. In Figure 3 we give an example of such
a deduction. For a more detailed description we refer
to (Nuijten 1994). In the example of Figure 3, the sum
of the processing times on resource Ry on the time in-
terval [0, 30) is p; +po +p3 = 25. Thus, on this resource
not enough slack time exists to allow the processing of
activity A (whose duration is 20) on the interval [0, 30).
Activity 4 must thus be processed on Ry after activ-
ities A;, A2, and A3 and its new propagated earlicst
start time is 25. A similar rcasoning allows the edge-
finding constraint to restrict the domain of the possible
end times of activities by proving that a given activity
must be processed before a subset of activities.

Alternative Resource Constraint As scen in the
scheduling model, each activity A; may be processed
on a resource Ry chosen within a given sct of possible
alternative resources Mp = {Ra.1,..., Rpp}. Alterna-
tive resources are propagated as if the activity 4; was
split into p alternative activities 4;; where cach activ-

'If a precedence graph is used (see section Precedence
Graph Constraint), this domain reduction will be performed
by the precedence graph constraint. In that case, the dis-
junctive constraint only adds the new precedence to the
graph.
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Figure 3: Edge-Finding Constraint

ity A; s requires resource Ry (see an illustration on
Figure 4 for an activity A4; that must be processed ei-
ther on R; or Ry). The alternative resource constraint
maintains the constructive disjunction betwcen the al-
ternative activities A; ;. that is, it cnsures that:

o smin; = MIN— p smin(A;g)
o smaxr; = MAXy=). p stnaz(Ais)
o emin; = MINi=1.p emin(A; )

o emair; = MAX—| , emar(4d; )

R1
R2
__.....f__—___ - time

Figure 4: Alternative Resource Constraint

The scheduling constraints (disjunctive, edge-finding
coustraint) deduce new bounds for the alternative ac-
tivities A; » on the alternative resources ;. Whenever
the hounds of an activity A, turn out to be incoherent,
the resource Ry is simply removed from the set of pos-
sible alternative resources for activity A;. This is done
by removing k from the possible values of the variable
resource; that represents the resource on which activity
A; will be processed.

Path Optimization Constraint

In this section, we describe the cost-based domain fil-
tering algorithms previously used in (Focacci, Lodi, &
Milano 1999b) and (Focacci, Lodi, & Milano 1999a)

for TSPs, TSPTW, and Matching Problems, and pro-
posed as a general technique in (Focacci, Lodi, & Mi-
lano 1999a). The idea is to create a global constraint
embedding a propagation algorithm aimed at removing
those assignments from variable domains which do not
improve the best solution found so far. Domain filter-
ing is achieved by optimally solving a problem which is
a relaxation of the original problem.

In this paper, we consider the Assignment Problem
(AP) (Dell’Amico & Martello 1997) as a relaxation of
the Path Model described (and consequently of the
global scheduling problem). The AP is the graph theory
problem of finding a sct of disjoint sub-tours such that
all the vertices in a graph are visited and the overall
cost is minimized.

The Path Model (PM) looks for a set of m disjoint
paths each of them starting from a start node and end-
ing into the corresponding end node covering all nodes
in a graph. Considering each end node connected to
the correspondent start node, the Path Model looks, in
other words, for a set of m disjoint tours each of them
containing a start node. A correspondent AP can be
formulated on the graph defined by the set of nodes
in PM and the set of arcs (Z,j) such that j € Next;.
The cost on arc (i,7) is the minimal transition cost
min {t};}. The optimal solution of the AP is obvi-
ously a lower bound on the optimal solution of the PM.
The primal-dual algorithm described in (Carpaneto,
Martcllo, & Toth 1988) provides an optimal integer so-
lution for the AP with a O(n®) time complexity. The
AP relaxation provides: the optimal AP solution, i.e.,
a variable assignment; the value of the optimal AP so-
lution which is a lower bound LB on the original prob-
lem; a reduced cost matrix &. Each ¢;; estimates the
additional cost to be added to LB if variable Next; is
assigned to j. We have used these results to perform
domain filtering and to define branching strategies. The
lower bound value LB is trivially linked to the variable
Z representing objective function of the sum of sctup
times through the constraint LB < Z. More interesting
is the propagation based on reduced costs. Given the
reduced cost matrix ¢ of element ¢;;, it is known that
LBper;=j = LB + @ is a valid lower bound for the
problem where Next; is assigned to j. Therefore we
can impose:

Vi,j LBNez-t.-:j > Zmaer = Next; 75.7 (3)

An improvement on the use of the reduced costs can
be exploited as follows: we want to evaluate if value j
could be removed from the domain of variable Next;
on the basis of its estimated cost. Let Next; = k and
Next; = j in the optimal AP solution. In order to as-
sign Next; = j, [ and k£ must be re-assigned. The exact
cost of this re-assignment can be calculated in O(n?),
thus increasing the global complexity of the filtering al-
gorithm. In (Focacci et al. 1998), two bounds on this
cost have been proposed, whose calculation does not
increase the total time complexity of the filtering algo-
rithm which therefore remains O(n?). The events trig-
gering this propagation are changes in the upper bound
of the objective function variable Z and each change

Focacci 95



From: AIPS 2())8& Proceedi %(())pl)r/lrl ht ©,2000, AAAI gwww aai.qrg). All rigﬂs reserved.

in the problem variablce ains (next, prev, and path
variables). Note that the AP solution is recomputed
only when the cost of an arc (i,j) that is part of the
current AP solution increases its value over a certain
threshold. The threshold T can be calculated as the
minimum between the minimal reduced cost on row i
and the minimal reduced cost on column j (excluding
the zero reduced cost ;).

T = min(minpe;(Gn ), mingzi(tr;)) (4)
The AP recomputation is needed every time the re-
moved value j from Next; belongs to the solution of
the assignment problem (cost ¢;; is set to infinite), and
it may be needed when the domain of Path; increases
the minimal cost ¢}; that is to be paid to go from i to j
in any of the remaining possible paths. In all other cases
no recomputation is needed since an increase in cost of
an arc that does not belong to the optimal solution does
not change the optimal solution itself. The solution
of the AP relaxation at the root node requires in the
worst case Q(n3), whereas each following AP recompu-
tation due to domain reductiou can be efficiently com-
puted in O(n?) time, sce (Carpancto, Martello, & Toth
1988) for details. The reduced cost matrix is obtained
without extra computational cffort during the AP so-
lution. Thus, the total time complexity of the filter-
ing algorithm is O(n?). Reduced cost fixing appeared
to be particularly suited for Constraint Programming.
In fact, while reduced cost fixing is extensively used
in OR framework, it is usually not exploited to trigger
other constraints, but only in the following lower bound
computation, i.e., the following branching node. When
embedded in a CP framework, the reduced cost fixing
produces domain reduction which usually triggers other
problem constraints through shared variables.

Precedence Graph Constraint

We now need a way to link the path model and the
scheduling model. This is done thanks to a precedence
graph constraint. This constraint maintains for cach re-
source I} an extended precedence graph Gy, that allows
to represent and propagate temporal relations between
pairs of activities on the resource as well as to dynam-
ically compute the transitive closure of those relations
(Laborie 1999). More precisely, G is a graph whose
vertices arc the alternative activities 4; ; that may ex-
ecute on resource . A node A; is said to surely
contribute if resource Ry is the only possible resource
on which A; can be processed. Otherwise, if activity
A; can also be processed on other resources, the node
A; . is said to possibly contribute. Two kind of edges
arc represented on Gy:

e A precedence edge between two alternative activitios
Aix = Ajx means that if resource Ry is chosen for
both activities 4; and A4;j, then 4; will have to be
processed after A; on Ry.

e A nezt edge between two alternative activities 4; 5 =
Aj x means that if resource Ry is chosen for both ac-
tivities A; and A; then, A; will have to be processed
directly after A; on Ri. No activity may be processed
on Ry between 4; and A;.
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1e first role of the precedence graph is to incremen-
tally maintain the closure of this graph when new edges
or vertices are inserted, i.e., to deduce new edges given
the ones already posted on the graph. The following
two rules give a flavor of how this closure is computed?:
L If 4,4 = Air = Ajr and Ay surely contributes
then 4;x — Ajx (Transitive closure through con-
tributor).

2. If 4 = Aig and A = Aj, and Ay surely con-

tributes then 4 x — A% (Next-Edge closure on the
left).

As shown in Figure 3, new cdges are automatically
added on the precedence graph G by the schedul-
ing constraints (precedence, disjunctive, edge-finding
constraints) and by the path optimization constraint
(whenever a variable Next; is bound a new Next-cdge
is added). Besides computing the incremental closure,
the precedence graph also incrementally maintains the
set of activities that are possibly next to a given activity
A; ¢ given the current topology of Gg. It allows to cof-
fectively reduce the domain of the variables Next; and
Prev; in the path model. Furthermore, the precedence
graph constraint propagates the current set of prece-
dence relations expressed on G on the start. and end
-ariables of activities.

PATHMODEL  yopain

g i Nexti .-"'\_mduc"u" Path Optimization
i Previ H ~ .
g onstraint
e Pathi rd ¢
Domain New cdges

reduction

Precedence Graph

Constraint
Pomuin .. .
reduction New edges Temp‘oral, l')-uﬂfnctwe,
Edge-Finding
U Constrainty
y starlAij ™\
H end(Ai) 3

/

. resourcelAi)
\ /

SCHEDULING MODEL

Figure 5: Architecture

Problem Solving

The problem is solved in two phases: during the first
phase a good solution w.r.t. makespan is scarched for.
Let the best makespan found in this phase be m*. In
the second phase a constraint is added to the system
imposing that any further solution will have a makespan

?For reasons of space, the set of rules we describe here
is not complete. The sct of rules for ensuring a complete
closure contains 5 rules (Laborie 1999).
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used to minimize the sum of setup times.

First Phase Heuristic

A time-limited, incomplete branch and bound method
is used to find solutions trying to minimize the
makespan. At each node of the search tree we admin-
ister for cach resource which activity has been sched-
uled last. The set B contains all these activitics. By
analyzing the precedence graph, we choose an activity
A; among the set of activities that are still unsched-
uled and can be next to one of the activitics in B. We
branch on the relative position of A; forcing 4; to be
either next or successor but not next of one activity in
B. Among all activities that can be chosen we select
the one having the earliest possible start time and, in
case of tics, the one having the smallest latest end time.
In the left branch of the tree, itnposing A; next to one
activity in B, we also need to choose the resource as-
signment for A;. If one or more resource assignments
are feasible we heuristically choose one of them, other-
wise we backtrack. We choose the resource assignment
that allows to schedule the activity as early as possible,
and in case of ties, the one which generates the smallest
setup time.

Setup Optimization

In the setup optimization phase, given a solution hav-
ing a makespan equal to m*, and a total setup equal to
s*, we call for solutions having makespan less or equal
to m*, minimizing the sum of setup times. The im-
provement technique used is a time window based local
optimization procedure. A time window [TW§, TWE

defines a subproblem Pryu+ in the following way: in
every resource, all activities on the left of the window
are fixed (their start timnes and resource assignments arc
fixed); all activities on the right of the time window have
their resource assignment fixed, and the sequence of the
activities is also fixed (the variable next is fixed); all ac-
tivities within the current window are completely free.
On each subproblem a time limited branch and bound
search is used to (possibly) find the optimal solution for
Pry.. The branch and bound technique used to mini-
mize the sum of setup times can effectively exploit the
optimization constraint to reduce the search space, and
eventually guide the search. In fact, the computational
results will show that when the optimization constraint
is used most subproblems are quickly solved up to opti-
mality. Two different methods have been used to sclect

ol b
e e
MakespanMaxl Tyme

Figure 6: Setup optimization

the current window: a simple gliding window method

.aaai.org). All rig
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Gliding Window When the gliding window method

is used, given a fixed size of the window Wj;.., and a
window offsct Wy, we start the sctup optimization
at Pryo defined by window [0, W], we optimize the
problem, then we move the right and left bound of the
window of Wy, to the left.

Prysenr « [TWE + Woactta, TWE + Waata) (5)

We repeat this until the end of the schedule is reached.
At the end of each loop, the window size and offset
can eventually be modified and another loop can be
performed.

LB-based Window Selection The mecthod de-
scribed here is based on the idea to work first on the
part of the schedule where we can hope to obtain the
highest improvement. For a given subproblem Ppyx,
defined by window [TW§,TWE| we can calculate the
expected improvement on the objective function Epyys
as the diffcrence between the current sum of setup times
in that window, and the lower bound calculated in that
window. After subproblem Pry.: is defined, variable
Z identifying the sum of setup times contains the in-
formation of the lower bound calculated by the opti-
mization constraint together with the precedence graph
constraint and the scheduling constraints. Therefore if
s* is the total sctup value of the current best solution
found, Eqy-» is simply equal to s* — Z,,;,. In the LB-
based window selection we first calculate the expected
improvement on the objective function Epy« for a cer-
tain number of subproblems (depending on parameters
similar to Wi and Wyeye), and then sort the sub-
problems in descending order of Ery». All subprob-
lems that may lead to an improvement of the objective
function are labeled as improvable. We run the branch
and bound algorithin on the first ranked subproblem
that can lead to an improvement, and change the label
of the window. If a better solution is found, the current
solution is updated, and the values Ery-+ of all windows
on the right of the modified one are recalculated since
they may have been changed by the new solution. Also,
the labels of the windows on the right are updated. The
windows are then re-sort and the procedure is repeated
until no window exists that is labeled as improvable.

Computational Results

In the computational results we primarily try to show
that the integration of lower bounding OR techniques in
Constraint-Based Scheduling can improve performances
both in terms of computation time and quality of solu-
tions. We show that the large neighborhood defined by
a time window containing between 30 and 60 activities
can very cffectively be solved by mcans of the interac-
tion among the optimization constraint based on a lower
bound calculation and reduced cost fixing, the prece-
dence graph, and the scheduling constraints available
in ILOG Scheduler. We have tested the proposed mod-
els on real world applications, moreover, the definition
of the problem itself, and of the objective functions is a
direct consequence of the real applications considered.
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pwing we will describe the generation process
of the instances that we used to be able to compare our
results with, hopefully, different approaches that could
be presented. We will finally show the computational
results.

Instance generation

Following the computational studies in (Brucker
& O.Thicle 1996), we run cxperiments on open-
shop, general-shop and job-shop problems. We
use the instances of Brucker and Thicle (avail-
able on the Web at http://www.mathematik.uni-
osnabrueck.de/research/OR) to test the approach on
scheduling problems with setup times without resource
alternatives. Woe then duplicate and triplicate these
instances to gencrate scheduling problems with setup
times and alternative resources. In order to generate
an instance with the alternative choice of k resources,
for each activity and each resource in the original in-
stance k activities and & resources are created. If in
the original instance activity A4; requires resource R,
in the k-multiplied instance each one of the 4;, iden-
tical activities requires onc out of the A identical re-
sources R;,. The temporal constraints among activ-
ities are also duplicated such that if a temporal con-
straint exists in the original instance 4; — 4 j» the set of
temporal constraints Ay, — Aj, exist in new instance.
For all instances without alternative resources we can
qualitatively compare our results with the results pub-
lished in (Brucker & O.Thicle 1996). Nevertheless. a
rcal comparison cannot be done since in (Brucker &
O.Thiele 1996) the objective is the minimization of the
makespan, while we want to minimize the sum of setup
times in a problem constrained by a maximal makespan.
The open-shop problems cousidered contain, in the non-
alternative instances, 8 machines and 8 jobs (16 ma-
chine and 16 jobs for the 2-alternatives instances etc..).
The general-shop problemns considered also contain, in
the non-alternative instances, 8 machines and 8 jobs,
and derives from the open-shop problems with the ad-
dition of the temporal constraints described in (Brucker
& O.Thiele 1996). The job-shop problems considered
contain 5 machines and 20 jobs in the non-alternative
instanccs.

Results

Tables 1 to 3 report results on open-shop, general-shop,
and job-shop instances. Table 1 reports results for the
original instances from (Brucker & O.Thiele 1996). Ta-
ble 2 and 3 report results for the 2 and 3-multiplied
instances respectively, generated as described above, as
alternative resources problems. For cach problem we
report the results obtained by the first solution phase.
and the setup optimization phase in terms of sum of
sctup times (su), and makespan (mks). We finally re-
port the results published in (Brucker & O.Thiele 1996)
in terms of makespan for all the instances without al-
ternative of resources. All tests run on a Pentium II
300 MHz. The results published in (Brucker & O.Thiele
199G} were obtained on a Sun 4/20 workstation where a
time limit of 5 hours was sct for open-shop and general-
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shop problems, and a time limit of 2 hours was set. for

the job-shop problems.

Column FirstSol reports results in terms of makespan
and sum of setup times of the best solutions obtained
using the time limited branch and hound strategy de-
scribed in section First Phase Heuristics. The time
limit given was 60 secouds, and a Limited Discrep-
ancy Search tree exploration was used, sce (Harvey &
Ginsberg 1995; Perron 1999). The solution obtained
after this phase is thought to be a good solution w.r.t.
makespan minimization. For example, for all the prob-
lems without alternative resources the makespan ob-
tained is very close to the best known solution pub-
lished in (Brucker & ().Thicle 1996). In half of the
instances cousidered, the makespan found in the first
solution phase improves the best known published in
(Brucker & O .Thiele 1996). These results were used as
starting point for setup optimization.

In the setup optimization phase we fixed an initial
window size of 30 activities (i.e. each subproblem has
30 completely free activities), and we used a 5 seconds
time limited brauch and bound algorithm to minimize
the sum of setup times in each subproblem. In order
to compare the results obtained with and without the
optimization constraint, we used always the same very
simple branching strategy: we choose the variable next
with the smallest domain and we branch on its possi-
ble values starting from the one generating the smallest
sotup time. Given an initial window size, the setup
optimnization methods (columns noLB GW, LB GW,
LB Rank) are called until a local minimum is reached,
then the window size is increased 20% (c.g. from 30
free: activities to 36 free activities), and the procedures
are repeated until a global time limit is reached. Col-
umn noLB GW and column LB GW report the results
obtained by the gliding window method described in
section Gliding Window. The algorithm used for col-
umn noLB GW does not calculate the lower bound on
the sum of setup times, while the algorithm used for
column LB GW makes full usage of the pruning based
of the lower bound calculation and the reduced cost
fixing. Column LB Rank reports the results obtained
by the method described in section LB-based Window
Selection.

For the open-shop and general-shop instances of Ta-
ble 1 (containing 64 activitics each) the global time limit
used is 30 seconds. For the job-shop instances of Table
1 (containing 100 activities cach), for the opcen-shop,
and general-shop instances of Table 2 (containing 128
activities cach) the global time limit used is 60 seconds.
For the job-shop instances of Table 2 (containing 200
activities cach), for the open-shop, and general-shop
instances of Table 3 (containing 192 activities cach)
the global time limit used was 120 seconds. For the

job-shop instances of Table 3 (containing 300 activities

cach) the global time limit used is 240 seconds.



open-shop

su mks | su mks | su mks | su mks | mks
TAIBS81 2680| 942 1740 928 1620{ 919 148017 936 914"
TAIBS85 3480| 1113]| 2180] 985 1280] 1108| 1280f 1108| 899"
TAISB1 1460| 699 98B0 693 890 600*| 980 693 713
'TA1S85 18560| 755 1260] 748 T790%| 748 850 754 747"

general-shop
su mks | su mks | su mks | su mks | mks

TAIBGSS1 1680 763 14107 763 14101 763 | 1470] 759%| 837

TAIBGS85 2010] 869 | 1150] 862 8707| 867 | 8707 867 | 7627

TATGSE1 1510 v34%| 1190] 734" | 1150 7347 1190] 734™| 838

TAIGS85 1540] 749 | 1210[ 7457 1010 747 | 1160] 747 T 783

ob-shop
su mks | su mks | su mks | su mks | mks
T2-PS12 1710] 1450] 1640[ 1450 1640] 1450] 15307 1448] 1528
‘T2-PS13 1930] 1669| 1640] 1667] 1640| 1667| 1430 1658] 1549~

T2-PSS12 1480] 1367| 1300] 1367) 1300| 1367] 1220 1362] 1384

T2-PSS12 1290| 1522]| 1220] 1522} 1140 1522]| 1220| 1518] 1463~

Table 1: Original instances from Brucker & Thicle 1996.

[ _FirstSol | nwoLBGW | LB GW__ | LB Rank
open-shop

su mks [ su mks | su mks | su niks
TAIBS81 3920 ] 908 3760 ] 903 2760°] 904 2840 | 905
TAIBS85 4520 | 942 4260 | 940 2580 | 939 23807 942
TAIS81 2220 ) 723 2060 | 723 15407 723 1590 | 723
TAISES 2280 | 690 2110 | 689 17307 €90 1950 | 689
general-shop
su mks | su mks | su mks | su mks

TAIBGS81 2220 1023 ] 2140] 1023} 12707 1008 [ 1490] 1017
TAIBGS85 2640 [ 1031 ]| 2350 | 1019 ] 1300} 1020 [ 11507 1024
TAIGS81 2510 | 766 2430 | 764 1900 | 766 17207 756
TATGS856 2490 [ 748 2450 | 748 1810 | 743 17107 748

job-shop
su mks | su mks | su mks | su ks
T2-PS12 3410 1562] 2980 ] 1537 23307 1552 ] 2510] 1551
T2-PS13 2800 1593 | 2670 1593 [ 2270 [ J584 1 22407 1593

‘T2-PS512 2090 [ 1515]| 1820 1479 1610] 1505 15407 15135
T2-PSS12 2120 | 1578 ] 1720 ]| 1576 | 15207 1574 | 1590] 1545

Table 2: Instances with alternative of two resources.

[ FirstSol | noLB GW | LB GW__| LB Rauk
open-shop

Su mks | su mks | su mks T su mks
TATBSS8T 4780 | 1002 | 4380 | 999 33207 999 3520 | 986
TATBSRS 5320 h 5280 | 875 4180 | 870 31607 &85
TAIS81 2910 | 802 2440 | 802 2190 | &00 20007 #02
TAISRS 2660 | 758 2540 | 758 2020 ] 7H5 1690% 757

general-shop
su mks | su mks | su mks | su mks

TAIBGS&1 2230{ 1083 | 2140 ] 1067 13807 1079 1540] 1083
TAIBGES&’5 2240 [ 1280 2080 | 1280 | 1550] 1268 14107 126X
TAIGS81 2470 | 887 2430 | /87 1740 | 887 16707 885
TAIGS85 2000 | 789 2710 ] 789 17607 789 1R50 | 787

job-shop
su mks | su mks { su mks | su mks
T2-P512 2870 | 1593 2740 1593 | 2640 | 1587 | 221u" 1585
T'2-PS13 2600 ] 1585] 2600 | 1585 ] 24007 1585 | 2500 [ 1585

‘T2-PSS12 2500 | 1455 2360 ] 1455 ] 22407 1455 [ 2290 | 1455
‘I'2-P5512 21001 1562[ 1850 ] 1562 | 1770 I562] 17307 1562

Table 3: Instances with alternative of three resources.

When the optimization constraint is used in collab-
oration with scheduling propagation algorithms the so-
lutions obtained are always a lot better than the ones
obtained without the optimization constraint. The im-
provement in the solution quality is particularly im-
portant for problems with two and three alternative
resources. Problems without alternative resources arc
easier and even without the optimization constraint, in
each window, the local optimal solution can often be
found. Nevertheless, even in these cases, when the op-
timization constraint is used the subproblems are solved
up to optimality in a shorter time.

More difficult is the comparison between the LB-
based Window Selection and the Gliding Window
method since the best solutions are equally distributed
between the two methods. We cannot at this point
claim that the LB-based Window Selection method out-
performs the simpler Gliding Window method. Indeed,
if the scheduling problem is small enough to allow one

i-atg). All rights reserved.

or several complete gliding window loops, the LB-based
method may loose some interest: if all windows are con-
sidered, the order in which they are solved may not be
too important. On the other hand, for very large prob-
lems a complete gliding window loop may not be possi-
ble within the CPU time available. In such a case, a fast
evaluation of the most promising arca for improvement
may play an important role. Further analysis of the rel-
ative advantages of the two methods will be subject of
future work. In Figures 7-9, the plot of Table 1-3 is re-
ported; the x-ax represents the problem instance, while
the ration between the final sum of setup times, and
the sum of setup times of the first solution is reported
on the y-ax.

2 °° Ve ,
g — V4 i|e - - -tiistSol
E 0.8 j |— — nolLB 6w
£ : LB ow
g 0.4 &v LB Rank
0.2
c T T T T T T T T T T T 1
1 2 3 4 35 ] 7 8 e 10 11 12
problem
Figure 7: Instances without alternative
1,2 o i = = i e s = o i o A &
1 }
—— ="
—_
- H
0.6 —* PaN :
i 7‘3‘ i [F- - -fistsol
4 P —noLB 0w
E o8 LB oW
E s LB R RK
S a4
0.2

problem

Figure 8: Instances with two resources alternative

It is interesting to look in more details at the results
obtained by the optimization constraint compared to
the ones obtained without the lower bound calculation.
In Table 4 we report, for each type of problem, the
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Figure 9: Instances with three resources alternative

average number of subproblems created, the average
number of subproblems solved up to optimality (in per-
centage), and the average time spent in cach window,
when one single gliding window loop is performed. We
recall that the time limit for ecach window is 5 seconds,
therefore whenever the average time spent per window
is close to 5 seconds it means that most windows could
not be solved up to optimality.

win | opt | time] win [opt | time| win [ opt [ time

1 instance 2 instances { 3 instances
open-shop
nolLB 3 T350% [ 26 | 7 | 21% | 4.0 | 107 ] 9% ] 4.8
I.B 3 ] 100%[ 0,2 |7 1 1007%Z] 0.3 [ 10.71 0% | 0.9

general-shop

woLB 3 | #a% | 14 | 6.2 | 0% | .t | 0.2 | 13% | 4.7

L.} 3 [100%] 0,3 | 6.2 8% | 1,8 | 9.2 | 94% | 0.6
ob-shop

noLB 5.2 | 80% [ 1.7 | 12 3% | 19 | 1IR3 3% [ 5 1

LB 3.2 | 90K | 1.1 | 12 56% | 3 | 1%.3 ] 73% | 4.3 |

Table 4: Windows statistics

We can see that when the optimization constraint is
used we can solve, on average, 80% of the subproblems
up to optimality (with the proof of optimality) within
the 5 seconds allocated. On the other hand, when the
optimization constraint is not used, the percentage of
subproblems solved up to optimality quickly drops from
an average of 70% for the problems without alternative
resources to an average of less than 10% for the prob-
lems with alternatives of three resources. Moreover,
the average time spent on each window when the opti-
mization constraint is used always remains very swmall.
Figure 10 and 11 compare the performance of solving
(and proving optimality) of a setup minimization prob-
lem with and without the LB calculation for increasing
problem size (in number of activitics). Instances with
up to 60 activities were easily solved within one minute.

One small remark on the fact that although the aim of
the methods proposed is to study the problem inclid-
ing alternative resources, for several known instances
without alternative resources, we were able to improve
on the best known results.

Finally, some tests were run on small instances with-
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Figure 10: Instances without alternative

Figure 11: Instances with three resources alternative

out alternative of resources taken form (Brucker &
O.Thiele 1996). Open-shop and general-shop problems
contain <1 machines and 1 jobs. while job-shop contain
5 machine and 10 jobs. For each problem two results
are reported in Table 5. Column BestMk - BestSu re-
ports the results obtained by optimizing the makespan
in a first phase, and the sum of sctup times in a see-
ond phase where the makespan was limited by the best
value found in the first. phase. Column BestSu - BestMk
reports the resulrs obtained by optimizing the sum of
sctup times in a first phase, and the makespan in a scc-
ond phase where the sum of setup times was limited by
the value found in the first phase.
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BestMk - BestSu

su mks time Fin mks time
TAIBS01 380 308 0.38 320 384 2.58
TAIB305 440 395 0.22 320 563 0.72
TAIS01 190 249 0.28 160 344 1.03
TAIS05 220 348 0.27 160 523 0.33

general-shop
BestMk - BestSu

BestSu - BestMk

su mks timne su ks time
TAIBGS01 280 322 0.16 160 527 0.06
TAIBGS05 280 491 0.33 160 747 0.06
TAIGS01 230 285 0.44 160 362 0.39
TAIGS05 300 334 0.22 160 546 (.16

job-shop
BestMk - BestSu ~ BesiSu - BestMk

Su mks time sUu mks time
T3 PS01 710 798 - 250 2368 -
T2-P502 6830 784 88,42 250 2221
T2-P303 550 749 144,2 250 1932
T3-PS04 670 730 388,31 | 250 1665 -
T32-PS05 710 691 30,43 250 1899 -

Table 5: Results on small instances.

In all cases where a computation time is reported, the
optimal solution could be proven in both phases. For
example, in problem TAIGS05 the optimal makespan
is 384, and given such a makespan, the optimal sum
of setup times is 300; on the other hand, the optimal
sum of setup times also for problem TAIGS05 is 160,
and given a limit on the sum of setup times equal to
160, the optimal makespan is 546. Where the time is
not reported, optimality could not be proven within 30
minutes.

Two consequences can be taken from these results:
the first consequence is that the minimization of only
onc objective between makespan and sum of setup times
may generate poor quality solutions for the other objec-
tive. For this reason we think it is necessary, in practice,
to consider multi criteria objectives. The second conse-
quence is that the algorithm proposed, for small prob-
lems, is able to fix any limit for one objective and find
the optimal solution for the other objective. Therefore
the method could be used to optimize any combination
of makespan and sum of setup times, and to find a set
of pareto-optimal solutions.

Conclusion and Future Work

A general scheduling problem with a multi criteria ob-
jective function was defined which, to our experience,
is of great practical interest. The problem was modeled
using a CP approach based on ILOG Solver and Sched-
uler. A multi-path model was defined to take care of
the sequence dependent setup view of the problem. We
integrated OR lower bounding techniques and reduced
cost fixing in the multi-path constraint in order to effec-
tively prune the search space. A large neighborhood for
setup optimization was proposed and we¢ showed that
the local optimal solution within the neighborhood can
effectively be reached. We generated new problem in-
stances to test the described approach. The compu-
tational results show that the cooperation between the
scheduling and multi-path model can effectively be used
to minimize the sum of setup times while maintaining
the makespan constrained to be under a given thresh-
old. Although the aim of the paper is to study the prob-
lem including alternative resources, for several known
instances without alternative resources, we were able to
improve on the best known results. We plan to extend

WWW.aaai.org). Al

Iorl'xgrhtafﬁfeﬁ%rgﬁﬁ' in several directions. We are working on
the definition of several different neighborhoods, and
are experimenting on the combination of them. More-
over, the use of the optimization constraint could also
be exploited for generating more sophisticated branch-
ing strategics and heuristics.
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