
Solving Scheduling Problems with Setup Times and Alternative
Resources

F.Focacci 1 and P.Laborie 2 and W.Nuijten2

I Dip. Ingegneria: Univ. Ferrara, Via Saragat, 41100 Ferrara. Italy

email: ffocacci@deis.unibo, it
2 ILOG S.A., 9 rue de Verdun: BP 85, F-94253 Gentilly: France

(:maih {wnuijten,plaborie}@ilog. fr

Abstract

In this paper a general shop scheduling problem with
sequence dependent setup times arid alternative r[.~
sources is considered, where optimization criteria are
both makespan and sum of setup times. Two coop-
erative models for the problem based on Constraint
Programming arc proposed. The first is used to model
the scheduling constraints, while the second is a muhi-
path model used for setup optimization. Integrating
lower bounding techniques for the sum of setup times,
the multi-path model perforins propagation based on
reduced cost fixing. A solution method based on a
two phase algorithm is described, ,’rod a computationM
study is performed both on instances known from lit-
erature as on newly proposed instances. It is shown
that the cooperation of the two models significantly
improves performance. Although the aim of the pa-
per is to study the problem including alternative re-
sources, for several known instances without alterna-
tive resources, we were able to improve on the best
known results.

Introduction

The scheduling problem studied in this paper is a gem
eral shop problem with sequence dependent setup times
and alternative resources for activities. The setup time
between two activitics ,4, and A2 is defined as the
amount of time that must elapse between the end of
A1 and the start of A.,., when -4x precedes A.~. If au
activity can be scheduled on any one resource from a
set S of resources, we say that S is tl,e set of alternative
resources for that activity. We consider two criteria as
objective functions: makespan and sum of setup times.
A large part of the motivation for this study was found
in our experience with industrial applications. There
we found that, both sequence dependent setup times
and alternative resources are very commonly encoun-
tered properties of scheduling problems. What’s more,
both properties are also often important in the sense
that not considering them leads to unacceptable solu-
tions. The importance of setup times and setup costs
has also been investigated in several other studies. AI-
lallverdi, Gupta, ,and Aldowaisan, in reviewing the re-
search on scheduling involving setup considerations (AI-

Copyright (~) 2000, American A~ociation for Artificial In-
telligence (www.aaai.org). All rights reserved.

l~dlverdi, Gupta, & Ahlowaisan 1998), discuss the im-
portance of schedulil,g with sequence dependent setups
in real world applications, ~md encourage rcsem’chers
to work on the sul)ject. Our experience with indus-
trial applications also formed the basis for the motiva-
tion for considering both makespan and sum of setup
times, and, nmre specifically of trying to find a sched-
ule with a good makespan and a minimal sum of setup
times. We chose to use Constraint Programming (CP)
~Ls it has been proven to be a very flexible fr;mmwork to
model and solve scheduling problems. Numerous indus-
trial applications have been ,lc.velot)e(i using (’onstraint-
based scheduling both because of its modeling capabil-
ity as of the efficiency of specialized Operations R~-
search (OR) algorithms that are embedded in global
constraints. For more detailed discussions of constraint-
based scheduling we refer to (Nuijten 1994; Baptistc,
Le Pape, & Nuijten 1995; Caseau & Laburth(: 1995;
Le Pape & Baptiste 1996; Nuijten &" Le Pape 1998;
Beck 1999). We introduce two CP based models captur-
ing two different aspects, i.e., the scheduling aspect mid
the nmlti-path aspect. The constrai~,ts representing the
two models and a constraint linking them are described.
The scheduling representation is essentially used to en-
force feasibility, while the nmlti-path representation is
used to effectively minimize the svm of setup times us-
ing OR techniques, i.e., lower bound calculation and
reduced costs fixing. We propose a two phase t)roce-
dure to solve the scheduling prol)lem. In the first pl,ase
a good solution with respect to the makesl)~m is f(nmd,
afl.er which in the second phase a local improvement
nmthod aims at minimizing tlle sum of setup times
while maintainb,g a limit on the maximal makesp~m
equal to the best makespan found during the first phase.

Problem Definition

We are given a set of n activities AI , A, and a set
of .m unary resources (resources with maxim~d capacity
equal to one) RI, ..., R,,. Each ax:tivity Ai has to be
processed on a resource R~ for Pi time units. Resource
Rj can be chosen within a given subset of the m r~
sources. Sequence dependent setup times exist among
activities. Given a setup time matrix Sk (square ma-
trix of dimension n), s~A) represents the setup time b(.~

tween activities Ai and Aj if Ai and Aj are scheduled

92 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

sequentially on the same resource Rk. In such a case,
k There may furthermore exist astartj ~ endi + sO.

setup time su~ before the first activity Aj can start
on resource Rk and a teardown time td~ after the last
activity Ai finishes on resource R#. Activities may be
linked by precedence relations Ai -~ Aj. In this case
activity Aj cannot start before the end of activity Ai.
Constraints of the problem are therefore defined by the
resource capacity, the transition times, the temporal re-
lations, and the time bounds of the activities (releasc
date and due date). The goal we will follow is to first
find a schedule with tile best possible makespan after
which we will try to minimize the sum of setup times.

Related Work
A comprehensive review of the research on scheduling
involving setup considerations was given in (Allahverdi,
Gupta, & Aldowaisan 1998). The authors review the
literature on scheduling problems with sequence depen-
dent and sequence independent, setup times, on single
mac]line and parallel ma~:hines. They finally suggest di-
rections for future research in the field. In this paper we
follow some of these directions, i.e., emphasis on multi-
machine scheduling problems, on multi criteria objec-
tives, and on a generalized shop environment. An im-
portant reference for the work we propose is the paper
of Brucker and Thiele (Brucker & O.Thiele 1996) where
the authors propose a branch and bound ~flgorithm for
a scheduling problem with sequence dependent setup
times. We generalize the problems described in this
paper by considering alternative machines. Moreover,
while for the authors the makespan is the only objective
that is taken into account, we consider both nmkespan
and sum of setup times. For general considerations on
cost-based filtering used in the setup optimization we
refer to (Focacci, Lodi, & Milano 1999a).

Models

Scheduling Model

The scheduling part of the problem is modeled by using
ILOG Scheduler (Scheduler 1999). Each activity Ai
represented by using two variables being its start time
starti and its end tinm end~. These two variables are
constrained by the relation endi - starti = Pi. Each
resource Rk is represented by a unary resource.

A partition of the whole set of resources into alter-
native resource sets Mh is given. Each activity Ai is to
be processed on a given alternative resource set Mh;
it means that the activity will have to be executed
on a resource Rk chosen among the resources belong-
ing to M’h. res~mrcei E {1,...,m) denotes the vari-
able whose value represents the index k of the resource
Rk E Mh that will be chosen for activity Ai. Setup
times are represented in the scheduling model via a
n square matrix Sk associated with each resource Rk.
Precedence constraints and time bound constraints are
posted on the variables starti and endi of activities.
As we will see in section Scheduling Constraints, the
scheduling model allows the propagation of precedence,

time bound, setup times and resource availability con-
straints over the ~riables of activities starti, endi and
resourc£i.

Path Model
We use a path model as a relaxation of the schedul-
ing problem. We have a set of stagY, nodes, a set of
intezTtal nodes, and a set of end nodes. Each internal
node i represents ~ activity Ai. ~,Vo are looking for m
disjoint paths in the graph defined by these three sets.
Each path represents a ditferent resource. It starts in
tile start node of the resource, traverses a sequence of
internal nodes, and er, ds in the end node of the re-
source. More precisely, let I = {0,1,2,...n- 1} be.
a set of n nodes, E = {n,n-{- 1,...,n + m - 1}, and
S = {n-I- m, n + m + 1,..., n + 2, m - 1} be two sets of
m nodes. Nodes in I represent internal nodes, nodes in
S, and in E represent start and cnd nodes respectively
(see Figure 1). A global constraint PathCst cml be de-
fined ensuring that m different paths P0,Pi,... ,Pro ex-
ists such that all internal nodes are visited exactly once
by a path starting from a node in S, and ending into a
node in E. Start nodes n-l-m, n+m-I-1 , n+2*m- 1
belong respectively to paths Po,pl,... ,pro. End nodes
.n., n -I- 1,..., n -I- m - 1 belong respectively to paths
l~,Pt Pro. Moreover, sets P of possible paths cml
be associated to e~wh intexnal node. We define three do-
main variables per node. Domain variables Nexti and
Prcvi identif.v the nodes visited just after and just be-
fore node i respectively. Domain variables Pathi iden-
tify the path the node helongs to. Ttle domain of vari-
ables Nexti, and Previ contaivs values [(I..n + 2, m
the domain of ~ariables Path.i contains values [0..m-~]i
Each start and end node has its path variable bound
(Path.n = [0],...,Path.,~+,,_x = [m - 1];Path,,+,. =
[01,..., Pathn+~.,,-~ = [m - 1]). In order to maintain
a uniform treatment of all nodes inside the constraint,
each start node n + m + k has its Prevn+m+k variable
bound to the corresponding end node (Prev,+,,,+k
[n+k]): and each end node rt + k has its Next,+~ vari-
able bound to the corresponding start node (Nextn+k
= [n+m+k]). A feasible solution satis~’ing the con-
straint PathCst is an assignment of a different value to
each next variable (the next node in the path) avoiding
sub-tours (tours containing only internal nodes) such
that

Ne.xti = [Jl ~ Prevj =[’il (1)

Nexti = ~1] ~ Pathi = Pathj (2)
A transition cost function can be associated to the path
constraint, such that if node i is decided to bc next to
node j on a path k (Nexti = [j], Pathi = Pathj = k)
a cost ti~ nmst be considered. In this case an op-
timal solution of the problem is the one minimizing
~,,-i tVath~ If the transition cost fimction does riot

/----0 i Nezti"
depend on the selected path, the path constraint defines
a multiph: travelling salesman problem (MTSP) on
digraphG = (~,A) where V =0,1 n+2,m.-1
is the vertex set, and A = (i,j):i,jEV is the arc

Focaccl 93

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

set. Cost cU is associated to each arc (i,j); cij = ti1
if j E Nexti; (:~j = c~ otherwise. As said, the path
model described represents a relaxation of the sche.dul-
ing problem. If an internal node i has its next variable
assigned to another internal node j.. activity .4i directly
precedes activity Ai; if an internal node i has its next
variable assigned to an ending node n + k, activity .4~ is
the last activity scheduled on resource R#. The transi-
tion cost function of tin.’ path model represent dm trml-
sition time (setup time) among activities: therefore the

e ,(-’-n-- 1 ~Pathlminimization ox 2..,i=o ~ N~,f, in tim path model corre-
sponds to the miniInizatioil of the sum of setup times
in the scheduling model.

Capacit~ S I E

.~:..}.: ,: ¯ ,~,:........ ~,
........ ~ ,-- i_~- r i.k-5.~::~.z, ’ "] "~,,,e "~-I- ""° + :^b-~,’ ¯

. _j.+,KI", ~ -

Time Ne~[6] = 4
Path[6] = 0
(:ost[6] = t".~.,

Figure 1: Models

In Figure 1 a schedule of 6 activities on 2 resources is
shown with its correspondent path model. The schedul-
ing model and the path inodel can be linked together
and can cooperate for the solution of the problem by
exploiting different views of the same problem.

Scheduling Constraints

In this section, we briefly describe the scheduling con-
straints that are used to perform propagation on the
scheduling model.

Temporal Constraint The temporal constraints
represent the precedences between activities given in
the problem definition. The precedem:e constraint b~
tween two activities Ai ,’lIl(l Aj is propagated as a con-
straint endi <_ startj. If a precedence graph is used
(see section Precedence Graph Constraint), these prc(’e-
dencc constraints are also taken into account by the
precedence graph.

Disjunctive Constraint The disjunctive constr~tint
aims at discovering new precedences by looking at pairs
of activities that require the same unary resource. If
Ai is ~m activity of the problem, we respectively denote
stain.i, smaxi, emin~ anti cmaxi the earliest start tinm,
latest, start time, earliest end time and latest end tinm of
activity Ai. Let A~ a~d Ai be. two activities that require
the same unary resource Rk. If ern.inj + s~i > srttaxi,
it means that activity ,41 will not have enough time
to execute before, activity Ai. See an illustration on
Figure 2 where we suppose that the setup time between
At mid A2 is 5. Thus, as both activities require the

same unary resource Rk, Ai will have to be processed
ou Rk before Aj and the following domain reduction
(’an be performed1: srninj = MAX(smini,emini +

.CA and = On the
example of the figure, it leads to a new earliest start
time of 20 for activity A2 and a new latest end time
of 15 for activity A,. Whenever the earliest end time

emin(A I) cmax(A l)

pl=lO
~

._, 30

t.
" "t ~ ’ "$,_.._ " ._A 20

smim A I) smax{ A I)

Rk

02=20 A2

m .~-~. ’--) 20
smin{A2} smax(A2)

emin(A2) emaxCA2)
3o (..... _3 40

Rk

Figure 2: Disjunctive Constraint

,n" the latest start tinm of an activity Ai changes, the
disjunctive constraint traverses the set of ~u:tivitics Aj
that are to be processed on the same resource as Ai in
order to perform this propagation.

Edge-Finding Constraint The edg(~finding con-
straint is a constraint more powerfill than the disjunc-
tive constraint. It, propagates the start and end time
of one activity with respect to a subset, of other activi-
ties. In general the edge-finding constraint c,’m deduce
that one activity ..ti is to be scheduled before or after
a set S of activities that are all to be scheduled on the
same resource. In Figure 3 we give an example of such
a deduction. For a ,nore detailed description we refer
to (Nuijten 1994). In the exmnple of Figure 3: the sum
of the processing times on resource Rk on the time in-
tcr~xd [0,30) is Pi +1>-’ +P3 = 25. Thus, on this resource
not enough slack time exists to allow the processing of
activity A (whose duration is 20) on the interval [0, 30).
Activity A must thus be processed ou Rk after act.iv-
ities A~, A2, and A3 aud its new propagated earliest
start time is 25. A similar reasoning allows the edge-
finding constraint to restrict the domain of the possible
end times of activities by proving that a given activity
nmst be processed before a subset of activities.

Alternative Resource Constraint As seen in the
scheduling model, each activity Ai may be processed
on a resource R~ chosen within a given set of possible
alternative resources ~lh = {Rh.l Rh.t,}. Alterna-
tive resources are propagated ms if the activity Ai was
sp]it into p alternative activities Ai,~ where, each ~u:tiv-

~If a precedence graph is used (see section Precedence
Graph Constraint), this domain reduction will be performed
by the precedence gral)h constraint. In that ca.st;, the dis-
.iunctive constraint only adds the new precedence to the
graph.

94 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

o Al ZO M--$ Rkf
5 A2 25 p2=lO Rk....

I0 A3 30 pS=~O Rk
l_ --1-

0 A

.~min(A)

p=l O 40

-}- Rk
emax(A)

Figure 3: Edge-Finding Constraint

ity Ai,k requires resource Rh,~ (see an illustration on
Figure 4 for an activity Ai that must be processed ei-
ther on R1 or R2). The alternative resource constraint
maintains the constructive disjunction between the. "al-
ternative activities Ai.k that is, it, ensures that,:

¯ s.min~ = MI’¥~=t..v smin(Ai.k)

¯ smaxi = /~’/A.¥k=l..p smax(Ai.a.)

¯ em.ini = MINA.=I..n emin(Ai,~.)

¯ emaxi = MAXk=l..p emax(Ai,k)

.~~--~

:.) Ai,l

(__~_..-9

Rl

- R2

Ai

time

Figure 4: Alternative Resource Constraint

The scheduling constraints (disjunctive, edge-finding
constraint) deduce new bounds for the alternative ac-
tivities Ai,k on the alternative resources Rk. Whenever
the bounds of a~ activity Ai.k turn out to be incoherent,
the resource Rk is simply removed ti’om the set of pos-
sible alternative resources for activity Ai. This is dolm
by removing k from the possible values of the variable
resou.rce~ that represents the resource on which activity
Ai will be processed.

Path Optimization Constraint

In this section, we describe the cost-based donmin fil-
tering algorithms previously used in (Focacci, Lodi,
Milano 1999b) and (Focacci, Lodi, & Milano 1999a)

for TSPs, TSPTW, and Matching Problems, and pro-
posed as a general tedmique in (Focacci, Lodi, & Mi-
lano 1999a). The idea is to create a global constraint
embedding a propagation algorithm aimed at. removing
those assignments from ~ariable domains which do not
improve the best solution found so far. Domain filter-
ing is achieved by optimally solving a problem which is
a relaxation of the original problem.

In this paper, we consider the Assignment Problem
(AP) (Dell’Amico & Martello 1997) as a relaxation
the Path Model described (and consequently of the
global scheduling problem). The AP is the graph theory
problem of finding a set of disjoint sub-tours such that
all the vertices in a graph are visited and the overall
cost is minimized.

The Path Model (PM) looks for a set of m disjoint
paths each of tllem starting from a start node and end-
ing into the corresponding cnd nod(: covering all nodes
in a graph. Considering each end node connected to
the correspondent start node, the Path Model looks, in
other words, for a set of m disjoint tours each of them
containing a start node. A correspondent AP can be
fornmlated on the graph defined by the set. of nodes
in PM and the set of arcs (i,j) such that j E Nexti.
The cost on arc (i,j) is the minimal transition cost
mink{t~j}. The optimal solution of the AP is obvi-
ously a lower bound on the optimal solution of the PM.
The primal-dual algorithm described in (Carpaneto,
Martello, & Toth 1988) provides an optimal integer so-
lution for the AP with a O(n3) time complexity. The
AP relaxation provides: the optimal AP solution, i.e.,
a variable assignment; the value of the optimal AP so-
lution which is a lower bound LB on the original prob-
lem; a reduced cost matrix e. Each ~ij estimates the
additional (:()st to be added LB if variable Nexti is
assigned to j. We have used these results to perform
domain filtering and to define branching strategies. The
lower bound value LB is trivially linked to the variable
Z representing objective fimction of the sum of setup
times through the constraint LB <_ Z. More interesting
is the propagation based on reduced costs. Given the
reduced cost matrix 5 of element 5ij, it is known that
LBNe~t~=j = LB + ~ij is a valid lower bound for the
problem where Nexti is assigned to j. Therefore we
(’.a~ impose:

Vi,j LBNea.t,=j > Z, na~ ~ Nexti ~ j (3)

An improvement on the use of the reduced costs can
be exploited as follows: wc want to evaluate if value j
could be removed from the domain of variable Nexti
on the basis of its estimated cost. Let Nexti = k and
Nextl = j in the optimal AP solution. In order to as-
sign Nexti = j, l and k must be re-assigned. The exact
(:()st of this re-assignment can be calculated in O(n2),
thus increasing the global complexity of the filtering al-
gorithm. In (Focacci et al. 1998), two bounds on this
cost have been proposed, whose calculation does not
increase the total time complexity of the filtering ’,fig()-
rithm which therefore remains O(n’~). The events trig-
gering this propagation are changes in the upper bound
of the objective function variable Z and each (:hang(,’

Focacci 95

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

in the problem variable domains (next.. prev, and path
variables). Note that the AP solution is re.computed
only when the cost of azl arc lid) that is part of tile
current AP solution increases its value over a certain
threshold. The threshold T cazl be calculated as the
minimum between the ininimal reduced cost on row i
and tile minimM reduced cost on cohnnn j (excluding
the zero reduced cost 6~j).

T = min(,min.h¢j (5.ih), m.iuk¢i (i~kj)) (4)

The AP recomputation is needed every time the re-
moved value j from Nexti lmhmgs to the solution of
the assignment problem (cost tij is set to infinite), mill
it, may be needed when the domain of Path i increases
the minim~d cost ti* j that is to be paid to go from i to j
in any of the remaining possible paths. In Ml other cases
no recomputation is needed since ml increase in cost, of
an arc that does not belong to the optimal solution does
not, chmtge the optimal solution itself. The solution
of tile AP relaxation at the. root node requires in the
worst case O(n3), whereas each following AP recomlm-
t, afion ,lue to domain reductiou can be etficientlv com-
puted in O(n") tinm, see (Caxpancto, Martello.. & Toth
1988) for details. The reduced cost matrix is obtained
without extra comlmtational effort during the AP so-
lution. Thus.. the total tinm complexity of the filter-
ing algorithm is el.n-°). Reduced cost fixing appem’ed
to be particularly suite(1 for Constraint Programming.
In fact, while reduced cost fixing is extensively used
in OR framework, it is usually not exph)ited to trigger
other constraints, but only in the following lower bound
computation, i.e., the fi)llowing branching node. When
embedded in a CP framework, the reduced cost fixing
produces domain reduction whidl usually triggers other
problem constraints through shared variables.

Precedence Graph Constraint
We now need a way to link the path model and the
scheduling model. This is done thanks to a precedence
graph constraint. This constraint maintains for (’,adl re-
source Rk ,’m extended precedence graph Gk that ~flh)ws
to represent and propagate temporal relations 1)etwcen
pairs of activities on the resource as well as to dynam-
icMly compute the transitive ,:losure of those relations
(Laborie 1999). More precisely, Gk is a graph whose
vertices are the ~flternative activities A~.k that may ex-
ecute on resource Rk. A node Ai,k is said to sumhd
t:ont~ibute if resource Rk is the only possible resource
on which Ai can be processed. Otherwise, if activity
Ai can "also be processed on other resources: the node
Ai,k is said to possibly contribute. Two kind of edges
are represented on ek:

¯ A precedence edge between two alternative activities
Ai.k --+ Aj.k means that if resource Rk is chosen for
both activities Ai and A j, then Aj will have to b,’
processed after Ai on Rk.

¯ A next edge between two alternativc activities Ai,k
Aj,k means that if resource Rk is chosen for both ac-
tivities Ai and Aj then, Aj will have to be processed
directly ,after Ai on Rk. No activity m~, be processed
on Rk between Ai and Aj.

96 AIPS-2000

The tirst role of the precedent:e graph is to increlnen-
tMly maintain the closure of this graph when new edges
or vertices are inserted, i.e., to deduce new edges giwm
the ones alreadv posted on the graph. The fifllowing
two rules gwe a flavor of how tins closure ~s computed’:

1. If .4i.k --~ ,4t,~. -+ Aj.k and Al.k surely (’.ontributes
then Ai.k --~ A.i.k (Trrmsitiw: closure through con-
tributor).

2. If Ai,k ~ Ai,k mid ,4t.~. --+ Aj.k and AI,k surely con-
trilmtes then ,4i,k --* Aj.k (Next-Edge closure on the
left).

As shown in Figure 5, new edges are automatically
added on the precedence gral)h G~ by tilt, s(’hedul-
ing constraints (precedence, disjunctive, edge-finding
constraints) and by the path ol)timization constrmnt
(whenever a variable Nexti is bound a new Next-edge
is added). Besides computing tim in(’rementM closure,
the precedence graph also incrementally maintains the
set of activities that are possibly next to a given activity
Ai.k given the current topology of Gk. It allows to ef-
fectively reduce tim domain of the variables Nc:r.ti and
Prcv~ in the path model. Furthermore, the precedence
graph constraint propagates the current set of prece-
dence relations expressed on Gk on the start mid end
variables of ac~ ivities.

PATII MOI)EL Domain
..-" "’- reduction

¯ , Ne.tli ""
f Preri ~ ~
\" I’athi j’/ --

Domain
mductior

New edges

Precedence Graph I
Constraint

Domain
reduction

/f startlAi)
.~ endtAi)"~. re.wmrt’efAi) //’

SCHEDULING MODEL

Path Optimization
Constraint

Temporal, Disjunctive,
Edge-Finding
Constraints’

Figure 5: Ardfitecture

Problem Solving

The problem is solved in two l)ha.~es: during the first
phase a good sohltion w.r.t, makespan is searched for.
Let the best luakespan found in this phase be m*. In
the second pha.~e a constraint is added to the system
imposing that any fizrther solution will have a makcspazx

2For reasons of space, the set of rules we describe here
is not complete. The set of rules for ensuring a complete
closure contains 5 rules (Laborie 1999).

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

smaller or equal to m*. Local improvement methods are
used to minimize the sum of setup times.

First Phase Heuristic

A time-limited, incomplete branch and bound method
is used to find solutions trying to minimize the
makespan. At each node of the search tree we admin-
ister for each resource which activity has been sched-
uled last. The set B contains all these activities. By
analyzing the precedence graph: we choose an activity
Ax among the set of activities that arc: still unsched-
uled and can be next to one of the activities in B. We
branch on the relative position of Ai forcing A~ to be
either next or successor but not next of one activity in
B. Among all activities that can be chosen we select
the one having the earliest possible start time and. in
case of ties, the one having the smallest latest end time.
In the left, branch of the tree, imposing Ai next to one
activity in B, we also need to choose the resource as-
sigmnent for Ai. If one or more resource assignments
are feasible we heuristically choose one of them, other-
wise we backtrack. We choose the resource assigmnent
that allows to schedule the activity as early as possible,
and in case of ties, the one which generates the smallest
setup tinm.

Setup Optimization
In the setup optimization phase, given a solution hav-
ing a makespan equal to m*, and a total setup equal to
s*, we call for solutions having makespan less or equal
to m*, minimizing the sum of setup times. Tim im-
provement technique used is a time window based local
optimization procedure. A time window [TI.{~, TW~.]
defines a subproblem PTW~ in the following way: in
every resource, all activities on the left. of the window
are fixed (their start times and resource assigmnents are
fixed); all activities on the right of the time window have
their resource assignment fixed, and the sequence of the
activities is also fixed (the variable next is fixed); all ac-
tivities within the current window are completely free.
On each subproblem a time limited branch and bound
search is used to (possibly) find the optimal solution for
PTWk. The branch and bound technique used to mini-
mize the sum of setup times can effectively exploit the
optimization constraint to reduce the search space, and
eventually guide the search. In fact, the computational
results will show that when the optimization constraint
is used most subproblems are quickly solved up to opti-
mality. Two different methods have been used to select

Figure 6: Setup optimization

the current window: a simple gliding window method

and a lower bound based method.

Gliding Window When the gliding window method
is used, given a fixed size of the window l’~ize, and a
window offset |~;dell,,, we start the setup optimization
at. PTwo defined by window [0, l~ize], we optimize the
problem, then we move the right mtd left bound of the
window of I’t"’ddt, tO the left.

PTW~+, ~-- [T~.~ + W,~dt~, T~ + IVd,~U,] (5)

We repeat this until the end of the schedule is reached.
At the end of each loop, the window size and offset
can eventwally be modified and another loop can be
performed.

LB-based Window Selection The method de-
scribed here is based on the idea to work first on the
part of the schedule where we can hope to obtain the
highest improvement. For a given subproblem PT’u.’~,
defined by window [TWk, TWt~] we can calculate the
expected improvement on the objective function ETWk
as the difference between the current sum of setup times
in that window, and the lower bound calculated in that
window. After subproblem PTWh is defined, variable
Z identifying the sum of setup times contains the in-
formation of the lower bound calculated by the opti-
mization constraint together with the precedence graph
constraint and the scheduling constraints. Therefore if
s* is the total setup value of the current best solution
fimnd, ETW~ is simply equal to s* -- Z,,i,. In the LB-
based window selection we first calculate the expected
improvement on the objective function Erw~ for a cer-
tain re,tuber of subproblems (depending on parameters
similar to It~i~e and l’V~dt~), and then sort the sub-
problems in descending order of ETw~. All subprob-
lems that may lead to all improvement of the objective
function are labeled as improvable. We run the branch
~md bound algorithm on the first ranked subproblem
that can lead to all improvement, and change the label
of the window. If a better solution is found, the current
solution is updated, and the values ETw~ of all windows
on the right of the modified one are recalculated since
they may have been changed by the new solution. Also,
the labels of the windows on the right are updated. The
windows are then re-.sort and the procedure is repeated
until no window exists that is labeled as improvable.

Computational Results
In the computational results wc primarily try to show
that the integration of lower bounding OR techniques in
Constraint-Based Scheduling can improve pel~ormances
both in terms of computation time and quality of solu-
tions. We show that the large neighborhood defined by
a time window containing between 30 and 60 activities
can very effectively be solved by means of the interac-
tion among the optimization constraint based on a lower
bound calculation and reduced cost fixing, the prec~
dence graph, and the scheduling constraints a~ilable
in ILOG Scheduler. We have tested the proposed mod-
els on real world applications, moreover, the definition
of the problem itself, and of the objective flmctions is a
direct consequence of the real applications considered.

Foca~ 97

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

bl tile following we will describe the generation process
of the instances that we used to be abh; to compare our
results with, hopefully, different approaches that could
be presented. We will finally show the computational
results.

Instance generation

Following tile computational studies in (Brucker
& O.Thiele. 1996), we run experi,nents on open-
shop, gener~d-shop mid job-shop problems. We
use the instances of Brucker and Thicle (avail-
able on the Web at. http://www.mathematik.uni-
osnabrueck.de/research/OR) to test the approa~’h on
scheduling problems with setup times without resource
alternatives. Wc then duplicate and triplicate these
instances to gelmrate scheduling problems with setup
times and alternative resources. In order to generate
~m instance with the alternative choice of k resources,
for each activity and each resource in the original in-
stance k activities and k resources are created. If in
the original instance activity Ai requires resource Rs,
in the k-nnfltiplied instance each one of the Aih iden-
tical activities requires or, e out of the k identical re-
sources Rjh. The, temporal constraints among activ-
ities are also dt.plicated st,ch that if it temporal con-
straint exists in the original instance Ai -+ A j, tl,e set of
temporal constraints Aih --+ Ajh exist in new it,stance.
For all instavees without alternative resources we can
qualitatively compare our results with the results pub-
lishcd in (Brucker & O.Thielc 1996). Nevertheless.
real comparison cannot be done since in (Brucker
O.Thiele 1996) the objective is the minimizatiol, of th,,
makest)an, while we want to ndninfize the sum of setup
times in a probh;m constrained by a maximal makespav.
Tile open-shop problems considered contain, in the non-
alternative instazlces, 8 machines and 8 jobs (16 ma-
chine and 16 jobs for the 2-alternatives instances etc..).
The general-shop problems considered also contain, in
the non-alternative instances, 8 machines and 8 jobs,
and derives from the olmn-stmp problems with the ad-
dition of the temporal constraints described in (Brucker
& O.Thiele 1996). The job-shop problems considered
contain 5 machines and 20 jobs in the non-alternative
instances.

Results

Tables 1 to 3 report results on open-shop, general-shol~,
asld job-shop instan(:es. Table 1 reports results for the
original instances from (Brucker & O.Thiele 1996). Ta-
ble 2 and 3 report results for the 2 and 3-multilflied
instances respectively, generated as descril)ed above, as
alternative resources problems. For each problem we
report the results obtained by the first solution I)hase.
and the setup optimization phase in t(:rms of sum of
setup times (su), and makespan (inks). We finally
port the results published in (Brucker & O.Thiele 1996)
in terms of makespan for all the instances without al-
ternative of resources. All tests run on a Pentium II
300 MHz. The results published in (Brucker & O.Thiele
1996) were obtained on a Sun 4/20 workstation where
time limit of 5 hours was set for open-shop and general-

98 AIPS-2000

shop problems, ,and a time limit of 2 hours was set for
the job-shop probh;nls.

Cohunn First.Sol reI)orts results in terms of makespan
and sum of setup times of the best solutions obtained
using the time limited branch m~d bound strategy de-
scribed in section First Phase Heuristics. The tim(;
limit given was 60 seconds, and a Limited Discrep-
ancy Search tree exploration was used, see (Ha~’vey
Ginsberg 1995; Perron 1999). The solution obtained
after this phase is thought to be a good solution w.r.t.
makcspml nfinimization. For example, for all the prob-
lems without alternative resources the makcspan ob-
tained is vr.ry ch)se to the best known solution pub-
lished in (Bruc, ker ~ O.Thiele 1996). In half of the
instances considered, the makespan found in the first
solution phase improves the best known published in
(Brucker & O.Thiele 1996). These results were used
starting point fin" setup optimization.

In the setup optinfization phase we iixed an initial
window size of 30 activities (i.e. each subproblem ham
30 completely free activities), and we used a 5 seconds
time limited brastch mid bound algorithm to minimize
the sum of setup times in each subproblem. In order
to compare the results obtained with and without the
optinfization constraint, we used always the same very
simple br~mching strategy: we choose the variable next
with the smallest donmin and we branch on its possi-
ble values st;u’ting from the one generating tim smallest
setup time. Given an initial window size, the setup
optimization methods (cohmms noLB GW, LB GW,
LB Rank) are called until a locaJ minimum is reached,
then the window size is increased 20% (e.g. from 30
free activities to 36 free activities), and the procedures
,ire repeated until a glob~ time limit is reached. Col-
umn noLB GW ml(l cohmm LB GW report the results
obtained by the gliding window method described in
section Gliding Window. The algorithm used for col-
unto noLB G W does not calculate the lower bound on
the sum of setup times, while the algorithm used for
column LB GW makes fifll usage of the pruning based
of the lower bound calculation and the reduced cost
fixing. Column LB Rank reports the results obtained
by tile method described in section LB-ba.s(:d Window
Selection.

For the open-shop and general-shet) instances of Ta-
ble 1 (containing 64 activities each) the global time limit
used is 30 seconds. For the job-shop instances of Table
1 (containing 100 ~ctivities each), for the open-shop,
and general-shop instances of Table 2 (containing 128
activities each) the global time limit used is 60 seconds.
For the job-shop instances of Table 2 (containing 200
activities each), for the open-shop, a~ld general-shoi)
instazlces of Table 3 (containing 192 activities each)
th(, global time limit used was 120 seconds.]~br the
job-shop instances of Table 3 (containing 300 activities
c~a(’h) the global time limit used is 240 seconds.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

[FirstSol [noLBGV~" I LBGW [LBRank [BT96
open-shop

.... k,I s. I inks I,,, I mksl,u I ,.k.,I inks
TAIBS81 2630[942 [1740[928 [1620l 919 [1480T 936 [914"
TAIB585 3480 1113 2180 985 [1280[1108[1280 T 1108[890"
TAIS81 1460 699 980 693 890"[600" 980 | 693 713
’rAIS85 1850 755 1260 748 700"1 748 850 / 754 747"

~eneral-shop
su mks su | inks su [inks su mks[inks

TAIBGS81 1680 763 1410T 763 1410 r 763 1470[759" 837
"FAIBGS85 2010 86.9 1150[862 870"[667 [870"[867 [762"
TAIOS81 1510 734 ° I190| 734" 1150[734" 1190 734" 858
TAIGS85 1540 749 1210[745" lOlO[747 1160 747 783

job-shop
su inks su inks su inks zu [inks I inks

’F2-P$12 1710 1450 1640 1450 1640 1450 1530[1448T 1528
"F2-PSI3 1930 1669 1041)[1607 16401 16671 1430[16581 1549"
T2-PSSI2 1480 1367 1300 1307 13001 1367 1220[13627 1384
T2-1-’SS12 1290 1522 1220 1522 I140~ 1522 1220[1518[1483"
Table I: Origimd instancesfronl Brucker & Thiele 1996,

] FirstSo] I noLB GW I LB (i"d/ l I.B Rank
open-shop

su inks su rake su [inks su [inks
"I’AIBS81 3920 908 3760[903 [2760] 904 [2840] 905
TA[BS85 4520 942 4260 940 2580[939 I 2380] 942
TAIS81 2220 723 2060 723 1540] 723 1590[723
TA[S85 2280 690 2110 889 17301 690 1950[689

~ertera.l-shop
Stl rnks Stl]1| k~l S1.[] ~’Jk~ 8u. nlks

"PAIBGS81 2220 1023 2140 1023 12701 1008 1490] 1017
’rA[BGS85 2640 1031 2350 1019 1300[1020[1150] 1026
TAIGS81 2510 766 2430 764 1900[766 [1720] 756
TAIOS85 24.q0 748 2450 748 1810[743 J 17101 748

job-shop
su inks su inks su J mks su inks

T2-P512 3410 1562 2980 1537 2330~ 1552 2510J 1551
72-PS13 2890 1593 2670 1593 2270| J584[2240] 15<,13
T2-PSS12 2090 1515 1820[1.179J 1810j 1505 1540] 1515
"r2-PSS12 2120 1578 J720 1576 1520"] 1574 1590[1545

Table 2: Instances with alternative of two re.sources.

I FirstSol [noLB O~’ [LB GW [LB Rank
open-shop

SU El]ks Su izlkS SU []]Z k.q St] 1Rlks
"J’AIBS81 4780 1002 4380 999 3320~ 990 3520J 986
TAIBS85 5320 8"/’5 5280 875 4180[870 4160~ 885
TAIS81 2910 802 2440 802 2100[800 2090~ 802
TAIS85 2R60 756 2540 758 2020[755 690’1 757

I~eneral-shop
su inks su inks su J inks [su [inks

’I’AIBGS81 I 2230] 1083 I 2140 I 1067 I 1380] 1079] 1540J 1083
TAIBGS85 2240 1280 2080 1280 15~0/ 1208 1410] 1268
TAIOS81 2470 887 2430 887 1740] 887 1670"] 885
TAIGS85 I 2900[789 J 2710 I 789 [17601 789 [1850[787

job-shop
BU lll~$ SU nlk8 $1.1 I|l~$ SU ~ r~kH

T2-PS12] 2870[1593] 2740[1593[2040J 1587[221U1
1585

T2-PSI3] 2600 I 1585 I 2600 I 1585 I 2400] J585 I 2500| 1585
¯ r2-PSS122500 1455 2360 1455 2240] 1455 2290j 1455
T2-PSS12 2100 z562 1850 1562 1770[1562 1730"] 1562

Table 3: Instances with alternative of three resources.

When the optimization constraint is used in collab-
oration with scheduling propagation algorithms the so-
lutions obtained are always a lot better than the ones
obtained without the optimization constraint. The inl-
prow:men] in the solution quality is particularly im-
portant for problems with two and thrc~’ ~drcrnative
resources. Problems without alternative resources are
easier and even without the optimization constraint., in
each window, the local optimal solution can often be
found. Nevertheless, even in these cases, when the op-
timization constraint is used the subproblenls are solved
up to optimality in a shorter time.

More difficult is the comparison between the LB-
based Window Selection and the Gliding Window
method since the best solutions are equally distributed
between the two methods. We cannot at this point
claim that the LB-based Window Selection method out-
performs the simpler Gliding Window methocl. Indeed,
if the scheduling problem is sm~fll enough to allow one

or several complete gliding window loops, the LB-based
method may loose some interest: if all windows axe con-
sidered, the order in which they axe solved may not be
too important. On the other hand, for very large prob-
lems a complete gliding window loop may not be possi-
ble within the CPU time available. In such a case, a fast
evaluation of the most promising area for improvement
may play an important role. Further analysis of the rel-
ative advantages of the two methods will be subject of
future work. In Figures 7-9, the plot of Table 1-3 is re-
ported; the x-ax represents the problem instance, while
the ration between the final sum of setup times, and
the sum of setup times of the first solution is reported
on the y-ax.

1,2 ...

i : tilstgoI

0,15 ~ -- -- noLB GW
; LB GW

0,4 ..__ LEI Rank

0.2

, , , , , ,
1 2 3 4 0 15 7 8 g 10 11 12

problem

Figure 7: Instan(:es without alternative

1,2 .. ,

| I ,,,.,..i
I m ~ noLB GW

E
i LB GW

i I ---.,...,
~ 0.4

0.2

1 2 3
, , , , , ,

4 5 iS ? 8 @ 10 ti 12

problem

Figure 8: Instances with two resources alternativc

It is interesting to look in more details at the results
obtained by the optimization constraint compared to
the ones ol)tained without the lower bound calculation.
In Table 4 we report, for each type of problem, the

Focacci 99

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

1,2

0.8

[.....
1 ~ hOLD ~W

0.8
~LB GW

.... LB Rank
0,4

0.2

D , , , , , ,- , , ,--ll
1 2 3 4 5 6 7 U g 10 11

problem

Figure 9: lnstan(’es with three resour(’es alternative

I
!
I
i
i

__!
J

f

:0 ;~ 3n 35 40 45 60 5 m. 0.-

s, zl

Figure 10: Instances without ahernativc

average mnnber of subproblems created, the avcrag(’
number of subproblems solved up to optim;flity (in pt’r-
centage), and the average time spent in each window,
when one single gliding window loop is performed. ’W~
recall that the time limit for each window is 5 seconds,
therefore whenever the average tium spent per window
is (:lose to 5 seconds it nmans that most windows could
not be solved up to optimality.

..... pi ti i. I °’~ [ti in I ,,),t I ti,.~,]
l instance I 2 instances I 3 instanct.s /

open-shop /,,oL~ :, I ~0~ I 2,0 I 7] ".u% I 4,~ I 1°.71 o% i 4.s J
I.B .3 I 100%[0,2] 7 100% 0,3 [10.7 9n% [0.9

gc e’a-shop
,,oLD .~ I s:~ I 1.4 I "’" I 20~ I .i..t I ,.2 I 13~ I 4.T I

100% (1 6 2 84% 1 3 9.2 94~ t).~Ln 3 I I , I ¯ I ¯ I , I I I I
JoI)-S up

noLB 5,2 80°~ 1 7 12 8% 4 ~ 1g.3 3% .5 {

LB 5,2 90~ l’,l 12 56% 3 1’~:3 73% 2,3

Table 4: %Vindows statistics

We can see that when the optimization const,’aint is
used we can solve, on average, 80c/¢ of the subproblcms
up to optimality (with the proof of optimality) within
the 5 seconds ,allocated. On the other hand, when tile
optimization constraint is not used, the percentage of
subproblems solved up to optimality quickly drops from
an average of 70~ for the problelns without alternative
resources to an average of less than 10~. for the prob-
lems with alternatives of three resour(:es. More(we,’,
the average time spent on each window when the opti-
mization constraint is used always rcm.~ins very small.
Figure 10 and 11 (:ompare the perh)rmam:e of solving
(and proving optimality) of a setup minimization t)rob-
lem with and without the LB calculation for increasing
problem size (in number of activities). Instances with
up to 60 activities were easily solved within one minute.

One small remark on the fact that although the aim of
the rnethods proposed is to study the problem inchld-
ing alternative resources, for sever,’d known instances
without alternative resources, we were able to improve
on the best known results.

Finally, some tests were run on small instances with-

z~ ...

qu

au

i
.;n,

iv J- i
1

i~ :o .’s]o 15 an ~ so 55

~ze

Figu,’e 11: Inst;mt’es with three resources alternative

out alternative of r,,sources taken fornl (Bru,’k(,r
O.Tl,iele 1996). ()pen-shop ~md general-shop prol)lems
contain .1 tua,’hi,ms ;rod 4 jobs. while job-shop contain
5 machine and 10 jobs. For each problem two results
arc reported in Table 5. Column BcstMk - BestSu re-
ports the results obtained }W optimizing the makespau
iu a first l)ha.se, aud the sum of setup times in a sec-
oud phase where the makespan was liufited by the best
v~duc found in the first phase. Column BestSu - BestMk
reports the results obtained by optimizing the su,n of
setup times iu a first phase, and the makespan in a sec-
ond phase where the sum of setup times was limited by
the value fi)und in the first phase.

10o AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

open-shop
BestMk - BestSu BestSu- BestMk

su inks time su inks time
TAIBSOI 380 306 0.38 320 384 2..58
TAIBS05 44O 395 0.22 320 563 0.72
TAIS01 190 240 0.28 160 34.1 1.03
TAIS05 220 348 0.27 160 ..523 0.33

euera op
BestMk - hestSu BestSu - BestMk

su inks time su mks time
TAIBGS0! 28O 322 0.16 160 527 0.06
"I’AIBGS05 280 491 0.33 160 747 0.06
TAIGS01 230 285 0.44 160 362 0.39
TAIGS05 300 384 0.22 160 .546 0.16

jo 1o
BestMk - BestSu Be~tSu - Best.’vlk

8u inks time 6u inks time
T2-PS01 710 798 250 2368
T2-PS02 630 784 88,42 2.50 2221
T2-PS03 550 749 144,2 250 1932
T2-PS04 670 730 388,31 250 1665
T2-PS05 710 691 30,43 250]899

Table 5: Kesults on small instances.

In all cases where a computation time is reported, the
optimal solution could be proven in both phases. For
e~xaznple, in problem TAIGS05 the optimal makespan
is 384, and given such a makespan, the optimal sum
of setup times is 300; on the other hand, tile optimal
sum of setup times also for problem TAIGS05 is 160,
and given a limit oil the sum of setup times equal to
160, the optimal makespan is 546. Where the time is
not reported, optimality could not be proven within 30
minutes.

Two consequences can be taken from these results:
the first consequence is that the minimization of only
one objective between makespan and sum of setup times
may generate poor quality solutions for the other objec-
tive. For this reason we think it is necessary, in practice,
to consider multi criteria objectiw~’s. The second conse-
quence is that the algorithm proposed., for small prob-
lems, is able to fix any linfit for one objective and find
the optimal solution for the other objective. Therefore
the method could be used to optimize any combination
of makespan and sum of setup times, and to find a set
of pareto-optimal solutions.

Conclusion and Future Work
A general scheduling problem with a multi criteria ob-
jective function was defined which, to our experience,
is of great practical interest. The problem was modeled
using a CP approach based on ILOG Solver and Sched-
uler. A multi-path model was defined to take care of
the sequence dependent setup view of the problem. We
integrated OK lower bounding techniques and reduced
cost fixing in the multi-path constraint, in order to effec-
tively prune the search space. A large neighborhood for
setup optimization was proposed and wc showed that
the local optimal solution within the neighborhood can
effectively be reached. We generated new problem in-
stances to test thc describcd approach. The comlm-
tational results show that the cooperation between the
scheduling and multi-path model can efffectivcly be used
to minimize the sum of setup times while maintaining
the makespan constrained to be under a given thresh-
old. Although the aim of the paper is to study the prob-
lem including alternative resources, for several known
instances without alternative resources, we were able to
improve on the best known results. We plan to extend

our approach in several directions. We are working on
the definition of sever’,d different neighborhoods, and
are experimenting on the combination of them. More-
over, the use of the optimization constraint could also
be exploited for generating more sophisticated branch-
ing strategies and heuristics.

References
Allahverdi, A.; Gupta, J.; and Aldowaisan, T. 1998. A re-
view of scheduling research involving setup consideration.
Omega forthcoming.
Baptiste.. P.; Le Papc, C.; and Nuijten, W. 1995.
Incorporating efficient operations research algorithms in
constraint-based scheduling. In Proc. 1st International
Joint Workshop on Artificial Intelligence and Operations
Research.
Beck, J. C. 1999. Texture measurements as a basis
for heuristic commitment techniques in constraint-directed
scheduling. Ph.D. Dissertation, University of Toronto.
Brucker. P., and O.Thiele. 1996. A branch and bound
method for the general shop problem with sequence de-
pendent setup-times. OR Spektrum 18:145 161.
Carpaneto, G.; Martello, S.: and Toth.. P. 1988. Algo-
rithms and codes for the assignment problem. Annals of
Operations ReseaT~h 13:193-223.
Caseau, Y., and Laburthe, F. 1995. Disjunctiw; schedul-
ing with task intervals. Technical report, Ecole Normale
Superieure.
Dell’Amico, M., and Martello, S. 1997. Linear assign-
ment. In Dell’Amico, M.; M’,Lffioli, F.; and Martello, S.,
eds., Annotated Biblio9raphies in Combinatorial Optimiza-
tion. Wiley.
Focaeci, F.; Lodi, A.; Milano, M.; and Vigo, D. 1998. Solv-
ing TSP through the integration of OR and CP techniques.
Proe. CP98 Workshop on Large Scale Combinatorial Op-
timisation and Constraints.
Focacci, F.; Lodi, A.; and Milano, M. 1999a. Cost-based
domain filtering. Proe. h~ternational Conference on Prin-
ciples and Practice of Constraint Programming CP99.
Focacei, F.; Lodi, A.; and Milano.. M. 1999b. Soh’ing tsp
with time windows with constraints. In ICLP’9g Interna-
tional Conference on Logic Programming.
Harvey, W., and Ginsberg, M. 1995. Limited discrepancy
search. Proc. IJCA195.
Laborie.. P. 1999. Modal precedence graphs and their usage
in ILOG Sc-heduler. Technical Report OIR-1999-1, ILOG.
Lc Pape, C... and Baptiste, P. 1996. Constraint propaga-
tion techniques for disjunctive scheduling: The preemptiw,~
case. In Proc. 12th European Con]ere.nee on Artificial In-
telligence.
Nuijten, W... and Le Pape, C. 1998. Constraint-based .job
shop scheduling with ILOG SCHEDULER. Journal of Heuris-
tics 3:271-286.
Nuijten, W. 1994. Time and Resource Constrained
S¢:heduling: A Constraint Satisfaction Approach. Ph.D.
Dissertation, Eindhoven University of Technolo&v.
Perron, L. 1999. Integration into constraint programming
and parallelization of or/ai search methods. In CP-AI-
0R’99 Workshop on Integration of AI and OR techniques
in Constraint Programming for Combinatorial Optimiza-
tion Problems.
Scheduler. 1999. 1LOG Scheduler 4.4 User’s Manual and
Reference Manual. ILOG, S.A.

Focacd IOI

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

