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Abstract

Model checking representation and search lechniclueS
were recently shown to be efficiently applicahle to
planning, in particular to non-deterministic plam,ing.
Ordered Binaxy Dt:cision Diagram.~ (OBDD.~) encode 
planning domain as a non-det ermi nist i c finite’ aul.oma-
ton (NI:A) and fast algorhhms fi’om moclel checking
search for a solution plan. With proper encodings.
OBDDs (’all effectively scale and can provide t,niversal
phms for complex plmming domains. We are particu-
larly interested in addressing the complexities arisivg
in non-deterministic, mtdti-agem domains. In this pa-
per, we present U.MOP,1 a IIPW univct.’sal OBDD-hased
planning framework applicable to non-deterministic
and muhi-agent dom~fins. We introduce a new plan-
ning domain th.script.ion lazlguage, :\)~DL,2 to include
the specification of such non-deterministic, multi-
agem domains. The langoage contrilutles the explicit
d(.finit ion of t’ont reliable agent., and uncoltt rollablc en-
vironm(,nt agents. We describe I he Sylll ax and sclnan-
tics of NI41)L m,d show how to huikl an efficient OltDI)-
1rased representation of an :VADL descripl.ion. The
UMOI’ planning sysl.cms uses ;\i..![.)[. ;.rod it inch,des the
previot,sly developed st tong and strong cyclic plamfing
algorithms (C.imatti et al.. 199s~a. 1998b). In addition.
we introduce a new optimistic platming algorithm,
whit:h relaxes opl.imality gum’aaltee.,, anti generates
plausible universal plans in some domains where no
st tong or strong cyclic solution exists. We presenl, em-
pirical results in a previously tested non-deterministic
domains. We also iutroducc three new multi-agent
domains with complex environment actions. [)’MOI’ is
shown to bc a rich emd etficit,nt plannivg system.

Introduction
T~atlitional plan(ring algorithms can be classified m’-
cordiug to their search spat:(’ representation as either
slate-space, plan-slm(’e, or hierarchical task network
planners, as surw~yed by Weld (1994).

A more recent research trvnd has been to develop
new encodings of planning problems in order to adopt
efficient algorithms From other research area.s, leading

~Univers;fl Multi-ageut OBDD-based Planner
2Non_deterministic Agent I)omain Langvage.

to siglfificant dew~lopments it, planning algorithms, as
svrveyed by Weld (1999).

More recently, another uew planner MaP (Cimatti
et al.. 1998b) was introduced that successfully encodes
a planning domain as a non-deterministic finite au-
tomaton (NFA) rel)rescnted by an Ordered Binary I)e-
cision l)iagram (OaDl)) (Bryant, 1986). MaP effectively
extends to non-determilfistic domains producing uni-
versal plans. Due to the scalability of the underlying
lnodel checking representation and search techniques,
MBP call be showrl to be an efficient non-deterministic
planner (C.imatti et al.. t998a. 1998b).

One of err main research objectives is to develop
pin(ruing systems suitable for planning in uncertain,
and in particular muhi-agent environments (Veloso
et al., 1998: Stone ,~" Veloso. 1999). The universal
planning al~proach, a-s originally develol~ecl (Schoppers.
1987). is al)pealing for this type of environntents, as 
universal plan is a set of slate-action rules that aim
at covering the possible multiple sit.cations in the non-
&,terministic environment.

However, the limitations of universal l)lanning have
been righlly pointed out (e.g.. Ginslwrg. 1989), due 
the potential exponent ial growth of the size of the uni-
versal plau size wit h t he number of proposit ions defin-
ing a (lontain state. An important contribution of MBP
is thus the use of OBI)Ds to represent universal plans.
In the worst case, this represetfl at ion may also grow ex-
ponentially with the mmtber of dotnai,i propositions,
but because OBDDs art’ very compact representations of
boolean tim(lions, this is often not the case for domains
with a regular structure (Cimatti et al.. 1998a). There-
fore. we believe that an OBDD-based planning approach
,’ombined with appropriate encodings and actiwr learn-
ing is a I)romising approach to a robust integration
of plannit,g and real execution in a lmn-detern,inistic
world.

msP specifies a planning domain in the action (le-
scription language .AR. (Giunchiglia et al., 1997) anti
translates il to a corresponding NFA. hcnce lintited
to planning problems with finite state sl)aces. The
transit ion relation of the automaton is encoded as an
Ore)D, which allows for the use of model checking par-
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allel breadth-first search..MBP includes two algorithms
for universal planning called stlYm9 and st<on9 cyclic
planning.

In this paper we present, our OBDl)-based plan-
ning system. UMOP. standing for Universal Multi-agent
OBDD-bmsed I’lanner, which uses a new OBDl)-ba.sed
encoding, generates iiniversal plar,s in muh i-agent ,ton-
deternfinisl.ir domains, and includ<.s a new oplimisth:
planning algorithm.

Our overall approach for desigoing an ore)D-based
planner is sinfilar to the approarh dew’loped lk~r
MBP. Our wain cont,ribt, tion is an effi,’ient etlc’od-
ing of a new fronl end domain description language.
NADL (NADL st,a,ds for No,-deterministi<’ Agent I)o-
main I.anguage.). Ai.41)L has more resemblam’e wilh
previous plam,i,g languages than the act,ion descrip-
tion language .A’R. currently used by MBP. It, has pow-
erful action des<’riptions tl,at, can perform aritl,nlel.ir
operations on t,umeri<’al domail, variables. /)omai,ls
comprised of syochronized agents c’an be modelled I)y
introducing concurrent act,ions based o, a re,all.i-agent,
decomposition of the domai,.

In addition, :%-IDL introduces a separate and expli,’it.
environment, model defined as a set, of uncontmllabh
agents, i.e.. agents whose actions cannot be a part of
the generated plan. :~:.li)l. has been carefully designed
to allow for efficienl OBDD-encoding. Thus, in coal r;mt
to .A~. ,%IDL allows UMOP to generate a parlitioned
transition relation representat,ion of the NFA. which is
known from rnod~l checking To scale up well (Ihm’h
et al., 1991). Our tunpirical experiments s,ggesl that.
this is also the case for L’MOP.

I~MOP includes the previo,sly developed algorit hn,s
for OBDI.)-ba.sed universal plauning, h, ~utdil.ion. we
inl.roduce a new optimistic planning algorithm, which
relaxes optimality g,araotees and generates plausible
tmiversal plans in some domains where no strong or
strong cyclic soh,t ion exists.

The paper introduces NADL and t’MOi’. It, also it,-
eludes a brief overview of OBDDs which may be skipped
by readers already familiar with tl,e subject.

The paper preseot,s empirical experiments l l,at in-
clude domains previously lested by MBP showit,g
that, our UMOP approach and implementation with
its :X, IDL ext,ension t,o multi-agent and ex,viro,,,,wnt
agents is of co|nparable effectiveness. Finally, we in-
troduce and show results in a few new multi-agent
non-deterministic domains that we hope to contribute
to <,he general multi-agent planning and execution re-
search commonil.y.

Introduction to OBI)I)s

An Ordered Binary Decision Diagram (Bryant, 1.981~)
is a canonical representation of a boolean fimct,ion wit h
n linear ordered arguments a’l, z-, ..... xn.

All OBDD is a rooted, directed acyclic graph with
one or two t,erminal nodes of out-degree zero Iabeh,d
I or 0. and a set of variable nodes u of out-degree

two. The two outgoing edges at,’ given by the time< ions
high(u) and lou’(u) (drawn a.s solid and dotted arrows).
Each variable node is associated wil.h a prol~r, sitional
variable in the boolean function the OBI)I) represents.
’[he g’raph is ordered in the sense that all paths in the
graph respect lhe ordering of the variables.

An OSDD representing the fit,el ion f(zl. J".,) = J’t 
.r.2 is shown in Figure 1 (left). Given an assigmuont of
the arguments .r~ and ~’..,. the x~,hle Of f is detertnined
by a path starling al. Ihe root uo<h" and iteratively
following the high edge. if 1he +u, soriated variable is
true. and llu, low edge. it" the ass+wiated variable is
false. Tile vain<, of f is True i f t he label of t he reach,’d
lerminal node is I; otherwise it is False.

!1 V II

I"igure I: An OBI)D representing th+’ function
f(.rt,.r2) = .el A .r.,. True and +;’dse edges are drawn
solid and dotted, respectix’ely. (a) and {b) R<.d,<’tions
of OBI)I)s.

All ()Bill) graph is reduced lhal no twodisl .im’t
nodes a and r have Ihe same variable name and low
and high suct’ess,>rs (Figure I(a)). t,¢~variable nocle
u t,as ident ical low and high successors (Fig,,’<. I (b)).

"]’he OBI)D rel)restqtl,alion has two .later ,’~lvant ages:

First. ,n,)st conmlonly elt<’OUlltered fimctions have a
re;mona ble represenl.at ion (Brya,lt. I !)~(J). SeCO,l, any
oi~eration on two OBDDs. corresponding to a boolean
operation on the time<ions they represent, has a low
COmldexity bounded by the proclucl of their node
conlliS.

In OBDD-ba.qed planning OBDDs are ,Ised to r~.pre-

sent, the tr~tnsilion relation semantics of the planni|lg
domain. This OBDI) representation of [initt. state tran-
sition systems origins from model checking (McMillan,
I ~J93).

..VAI)I.
In this section, we first discuss the properlies of
A.:tDL based on an informal definition of the language
and a domain encoding example. We then describe <,he
formal syntax and semantics of :Y41)!..

An :VADL domain description consists of: a defini-
!ion of stale variables, a description of sysh m and vn-
rironment a.qcnts, and a specification of an initial and
9oal condil ions.

The set of state variable assignments defines <,he
state space of the domain. An agent’s description is
a set of aclions. The agent.s change the state of the
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world by performing actions, which are assumed to be
executed synchronously and to have a fixed and equal
duration. At each step, all of the agents perform ex-
actly one action, and the resulting action tuple is a
joint action. The system agents model the behavior of
the agents controllable by tile planner, while the en-
vironment agents model the uncontrollable world. A
valid domain description requires that the system and
environment agents const rain a disjoint set of variables.

An action has three parts: a set of state variables, a
p~z’condition formula, and an effect formula. Intuitively
the action takes responsibility of constraining the val-
ues of the set of state variables in the next state. It
further has exclusive access to these variables during
execution.

There are two causes for non-determinism in
NADL domains: (1) actions not restricting all their
constrained variables to a specific value in the next
state, and (2) the non-deterministic selection of envi-
ronment actions.

A simple example of an A:4DL domain description is
shown in Figure 2: The domain describes a plan-
ning problem for Schoppers" (1987) robot-baby do-
main. The domain has two state variables: a numerical
one, pos, with range {0, I, 2, 3} and a propositional one.
robot _works. The robot is the only system agent and it
has two actions Lift-Block and Lower-131ock. The baby
is the only environment agent and it has one action
Hit-Robot. Because each agent nmst perform exactly
one action at each step, there are two joint actions
(Lift-Block, Hit-Robot) and (Lower-Block, Hit-Robot).

Initially the robot is assumed to hold a block at
position 0, and its task is to lift it up to position 3.
The Lift-Block (and Lower-Blot’k) action has a con-
ditional effect described by an if-then-else operator:
if robot_works is true, Lift-Block increases the block
position with one, otherwise the block position is un-
changed.

Initially robot_works is assumed to be true, but, it
can be made false by the baby. The baby’s action
Hit-Robot is non-deterministic, as it only constrains
robot_works by the effect expression ~l~bot_works
",robot_works~. Thus, when robot_works is true in the
current state, the effect expression of Hit-Robot does
not apply, and mbot_u,orks can either bc true or false
in the next state. Otl the other hand, if ~v~bot_a:orks
is false in the current state, Hit-Robot keeps it false in
the next state.

An NFA representing the domain is shown in Fig-
ure 3.

The explicit representation of constrained state vari-
ables enables any non-deterministic or determinist ic cf-
h:ct of an action to be represented, a.~ the constrained

"a(.rnquotecl, e.g. pos and quoted variables, e.g. pos’
refer to the current raid next state, respectively. Another
notation like post and post+I could have bccn used. We
have chosen the quote notation because it is the common
notation in model checking.

variables
nat(4) pos
boo] robot_works

system
agt: Robot

Lift-Block
con: pos
pre: pos < 3
eft: robot_works --~ pos~ = pos + 1, pos~ = pos

Lower-Block
¢2on-" po~
pre: pos > 0
elf: robot_works --+ pos’ = pos - 1, pos’ = pos

environment
agt: Baby

Hit-Robot
con: robot_works
pre: truc
eft: -~robot_works =~ -~robot_works’

initially
pos = 0 ^ robot_works

goal
pos = 3

Figure 2: The robot-baby NADL domain: An example.

robot_works

pox

Figure 3: The NFA of the robot-baby domain. The
Lift-Block and Lower-Block actions are drawn with
solid and dashed arrows, respectively. States marked
with "T’ and "(;" are initial and goal slates.

variables can be assigned to any value in the next state
that satisfies the effect formula. It further turns out
to have a clear intuitive meaning, as the action takes
the "responsibility" of specifying the values of the con-
strained variables in the next state.

Compared to the action description language A’/~
ll,at is the only prior language used for non-
deterministic OriDD-ba.sed planning (Cimatti ct al.,
1998a, 1998b), .:E.’IDL introduces an explicit environ-
ment model, a multi-agent decomposition and numer-
ical state variables. It cat] filrther be shown that
NADL can be used to model any domain that can be
modelled with .A~ (see Appendix A).

in NADL actions cannot be performed cot]currently
if: 1) they have inconsistent effects, or 2) they con-
strain an overlapping set of state variables. The first
condition is due to the fact that state knowledge is ex-
pressed in a monotonic logic which cannot represent
inconsistent knowledge. The second rule addresses the
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probhun of sharing resources. Consider for example
two agents trying to drink tile same glass of water.
If only tile first rule defined interfering actions both
agents, could siuu,ltaneously empty tile glass, aa lhe
effect .qlass_cmpty of the two actions would be consis-
tent. With the second r,le added, these ax’lions are
interfering and cannot be performed concurrently.

Syntax
formally, an :\~iDL description is a 7-tuplc D =
(S~ . S. 1:’. Acl, d. I. (/). where:

¯ .qV finite set of propositional and numerical state
variables.

¯ 5’ is a fit,ite, nom’mpty set of system age.ts.

¯ If is a finite set. of environment agnnts.

¯ Act is a set of act ion desrriptions (c. p, e) where e 
ihe state variables constrained by the action, p is a
I~recon,lil.ion st ale formula in the set, ,ql.brm and e is
an effect formula in the sel. ]"orn~. The sets .qt’brm
and /"’m’m are defined below.

¯ d : ..Igl -+ 2Ac< is a function ln,tl)ping agents (Agt 
S U E) to their actions.

¯ I E ,qForm is the initial condition.

* G’ E Sl’brm is tit(" goal condition.

The set of formulas /-brm. are arithmetic and boolean
expressions on state variables of the current, altd next
stal.e. Sl,’orm C Form. is a subset of the formulas only
referring to eu trent st ate variables. These formula.s are
called slate formulas.

OBI)I) Representation 

X4DL Descriptions

The formal semantics of a domain description I) 
(St; .q, E. .4ct. d, 1, (;) is given in terms of all NFA M:

Definition 1 (NFA)
A Non-dete.r.mi, iMic J"inilc :lutomatoa is a .3-1uple,
M = (Q, ~,~). u,hcrcQ is a set of states, E is a ,set
of input values and ti : Q x ~ ~ 2~ is a next slah.
funcl.ion.

Th," states Q of M equals the set of all possible variable
assignments. The input ~ of AI is the set of joint
actions of system agents. In order to defiue the nex!
state function t~ we express it a.s a transition relation
T(s, i, I) =(. ,d E d(,, i) ) and represent itby an OaO

qb construct 7=’ we must define a set of boolean vari-
ables to represent the current state s, the joint action
inl)ut i and the next state d. Joint action inputs are
represented in the following way: a,ssulne action a is
identified by a nuluber p a, nd can be performed by
agent a.. a is then defined to be the action of agent
a.. if the number expressed binary by a set of boolean
variables .’i,.,, used to represent the a~’tions of n, is
equal to p. PropositionM state variables of the current

state s and next state s’ are represented by a single
boolean variable, while numerical state variables are
represented binary by a set of boolean variables.

Let .L, to A++IBI and A.,, to A,H denote sets of
boolean variables used to represent the.ioint action of
system and environlnent agents. Further, let. x~, and
r’k denote I,he k’lh boolean variabh, used to represent’ t+./

state variable v.i E SV in the current and next state.
An ordering of the boolean variables, known to be ef-
ficient fronl model checking, puts the input variables
first followed by an interleaving of the boolean vari-
ables of current state and next state variables:

Act ~ "’" ~ -d, ell,, I "~ :l~ t -’< "’" < ASl.~l

t I j.m t lm l

-~ 3’ l ,/:11 .rn~rt Ima
~,, "< "r,, -’< "’’"g c,, -’<a’e,,

where mi is the number of boolean variables used to
represent state variable vi and n is equal to ISVI. An
OBI)I} representing a logical expression is bnih in the
staadard way. Arithmetic expressions are represented
as lists of OBDDs defining the corresponding binary
nunlher. T]loy collapse to single OBDDs when related
hy arithmetic relations.

"[’ is a conjunction of three relations :i, 1" and ]. We
first build a transition relation with the joint actions
of both system and environment agents a8 input and
t}u,,t reduces il to a transition relation with only joint
actions of system agOlllS as input.

..i ,h’lines the constraints on the current state and
next state of joint ~u:tions. In order to |mild ..! we
need to refer to the values of the boolean variables
representing the actions. Let i(t+) be the fuucl.ion I.hat
maps an agent t~ to the value of l.he boolean variables
relJre.~t,nting its action and let b(a) be the identifier
value of action a. Further let P(a) and /’~’(a) denote
OBI)D representations of the precondition and eft’eel
fornmla of an action a. ,-/is then given by:

¯ = A (,l,,.I ,-:l,,I)
r~ E Agl
a E d(~)

Note that logical operalors denote the corresponding
OBDD operators in the above formula. A also ensures
that aclions with inconsistent effects cannot be per-
formed concurrently, as ..i reduces to false if a.y pair
of actions in a joint action have inconsistent effects.
Thus...i also states the first rule for avoiding interfer-
elite betweell C’Oli<’llrrent actions.

P is a frame relation ensnring that unt:ollstrained
variabh,s maintain their value:

= ( , )A ( = ’.’ ¢ c(a))) .,,, = s,, 
t.~sv c~ E Agl

,r, ~ d(,O
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where c(a) is the set of constrained variables of action
¯ ’ expresses that all current and next statea and st = sv

boolean variables representing v are pairwise equal.
The expression v ~ c{a) evaluates to True or Fulsc
and is represented by the OaDn for True or False.

ensures that concurrent ar.tions constrain a non
overlapping sot of variables and thus states the sec-
ond rule for avoiding interference between concurrent
actions:

i = A
(al.a_~) ¯ ’-~

(al, a.,) ̄  C(al, o~.)

A (,lo,I - ,,I,,,I).
(~t. a’,) ̄  E-"

(al. a.~) ̄ c(m. a,_,)

where c(ol,a2) = {(at,a~.)[(al,a=,) d(c~t) x d(a.,) A
e(al) nda2) 

Finally t he OBDD representing the transition relation
7’ is the conjunction ol’~.~, F and ] with action variables
of the environment agents existentially quantified:

?-- 3Aex,"’,AVl~ I.-4A [’Ai

Partitioning the transition relation
The algorithms we use for generating universal plans
all consist of a backward search from the states sat-
isl~’ing the goal condition to the states satisfying the
initial condition. Empirical studies in model checking
have shown that the most comph’x operation for lifts
kind of algoril Inns normally is to find the preima.q~, of
a set of visited states V.

Definition2 (Preinmgc)Giren an Nt’)t M 
(Q,~:J) and a sd of slahs V C_C_ Q. the in, image of 
i.~ the mt of stales {s I "~ ¯ Q A 3i ¯ ~,s’ ¯ ~(s,i).s’ 
V}.

Note that states already belonging to V can also be
a part of the preimage of V. Assume that tile set of
visited states are represented by an OBDD expression ~::"
on next slate variabh~s and that we for iteration pt,r-
poses, want to generate the preimage/5 also expressed
in next state variables. An ellicient way to cakudate
the preinmge is to use a partit!oned representation of
the transition relation (T = 1~, A -.- A T,~ combined
with early quantification (Butch et al., 1991):

~" = (=Ix’,,. Tn A.-. (=1~. T._, A (:1,~’1. 2, A (:))..-)[.~1~’]

= 37’. 5-
--’~ denote input, current state alld nextwhere i. ~.j and xj

state variables of partition j, and [.Fi/£j] denotes tim
substitution of current state variables x~:ith next slale
variables of partition j. "[’~ can refer to all variables,

can refer to all variables except ~, "/:~ can refer to
all variables except ~ and ~ and so on.

The set expressed by (t consists of state input pairs
(s. i), for which the state s belongs to the preimage 
V and the input i may cause a transition from s to a
state in V.

The input of an NFA representing a planning domain
is actions. Thus, for a planning domain tile elements
in ~" are state-action pairs. The generated universal
plans of the universal planning algorithms presented
in the next section are sets of these state-action pairs.
We refer to the state-action pairs aa slate-action rules,
because they associate states to actions that can be
performed in these states.

:\)IDL has been carefully designed to allow a parti-
tioned transition relation representation. The relations
A, F and / all consist of a conjunction of subexpres-
sions that normally only refer to a subset of next state
variables.

()aDD-based Universal Planning
Algorithms

ILL this section we will describe two prior algorithms
for OSDD-based universal planning and discuss which
kind of domains they are suitable for. Based on this
discussion we present a new algorithm called optimistic
planniag that seems to I)e suitable for some domains
not covered by the prior algorithms.

Tim Ihree universal planning algorithms discussed
are all based on an iteration of preimage calcula-
tions. The iteration corresponds to a parallel back-
ward breadth first search starting at the goal states
and ending when all initial states are included in the
set of visited states (see Figure 4). The main differ-
em’e between the algorithms is the way the preimage
is defined.

Strong and Weak Preimages

I,e! us inlroduce two different kinds of prcimages
namely strong and weak pmimages. A strong preim-
age is defined by:

Definition 3 (Strong Prelmagc) Givt’n an NFA
M = (Q,E.~) and a set ofstalcs V C_ Q. lhe strony
pro.image of V is the set of states {sis ¯ Q ̂  3i ¯
x. i) c v 1.
Thus, for a state s belonging to the strong preinaage of
a set of states V, there exists at least on,’ action i where
all the transitions from s aa~)ciated with i leads into V.
Consider the example shown in Figure 4. The dots and
arrows in this figure denote states and transitions for
an NFA with a single action, l~r the set of goal states
shown in the figure the three states having a tral~sition
into the goal set is a strong preimage (indicated by 
solid ellipse), aa all transitions from these states load
to a goal state.

A weak preimage is equal to an ordinary preimage
defined in Definition 2. Thus, in Figure ,1 all Ihe slrong
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.’" Pre.~ .- .... ...’’..’~

/ ._ .. ....-r,,., -...?y

Figure 4: Preimaw calculations: Solid and <lashed el-
lipses denote l)reimages that are hot h strong and weak.
and only weak. respectively. Tilt, domain has <.,nly one
action. Dashed transitions cause a state to belong to
a weak preimage rathor than to a strong preimage.

preinlages are also weak preimages, but the preimages
shown by dashed ellipses are only weak preimages, as
the dashed transitions do nc, t satisfy the strong preinl-
age definit ion.

Strong and Strong Cyclic Planning

A st tong or st rong cyclic pLan is the uniou of the state-
m’tion rules I" |’ound when calculating the preinmges
necessary for cow, ring the s~t of initial states.

Strong planning only considers strong I)reitntages. If
a scquem:e of ,,,.trent preimages starting at Ihe set of
goal states call be cah’ulat ed, sn¢’h that the set of ini! ial
states is covered, strong planning succeeds and returns
tile universal plan consisting of the union of all the
stale-action rules of tile cah:ulated strong preimages.
Otherwise it fails.

Conskler the example in Figure .t. As del)icted ill
the figure a strong preimage can be fi)und in the lirst
preimage <’ah’ulation, Inn only a weak preimage can
be fotmd ill the second calculation. Thus, no strotlg
solution exist for this i)rol)lem.

Strong planning ix complete with respect to strong
solutions. If a strong plan exists for some planning
problem the strong planning algorithm will ret,rn it.
otherwise, it returns that no solution exists. Strong
planning is also optimal till<’ to the breadth lirst searcln.
Thus, a strong plan with the lowest nunlber of steps in
the worst case is returned.

Strong cyclic planning is a relaxed version of strong
planning, because it also considers weak preimages.
Strong cyclic planning finds a strong plan, if it. ex-
ists. Otherwise, if the algorithm at some point ill the
iteration is unable to find a strong preinaage it adds a
weak preimage. It then tries to prune this preinlagp by
removing all states that have transitions leading out of
the preimage and the set of visited states V. If it sue-
ceeds, the remaining slates in the preimage are added
to V and it again tries to add strong preimages. If

it fails, it adds a uew. weak preiruage and repeats tile
pruning process.

Figure .I shows a strong cycli," solution that could
<-ould haw, been computed by the strong cyclic phm-
ling algorithnl. A str,,ng cyclic plan only g, uarantees
progress towards the goal in the strong parts. In tile
weak parts, cycles Call occur.

Strengths and Limitations of Strong and
Strong Cyclic Planning

Strong plannillg and strong cyclic planning algorithms
contribute I,y providing <’ornpletP ()tll)D-Imsed algo-
rithms for universal planning.

A Limitation of strong and strong cyclic planning ix
that they carl not find a solution ill (IottJaivns wh<,rt- no
strong or strong cyclic plan exists. Tilt., dtnnains that
strong and strong cyclic planning fail in are character-
ized I>y having unrecow:rable ,lead-ends that cannot be
guaranteed to be avoided.

I’nfortunately, real world domains often have tlwse
kinds of dead-ends. Consider. for example. S,’hol~pers"
robot-baby domain. As depicted in Figure 3. no uni-
w,rsal plan represented by a set of state-at’ti<)n rules
,’an guarantee the goal to I)e reached in a finite or in-
finite nttnlber of steps, as all relevant a,’l.ions tnay 1,+ad
t.o an vnre<’overable dea(I-en, I.

Another litnitation of strong and strong cyclic plan-
niHg is the inimrent p~,ssimisnt of these algorithms.
(’onsitl<,r for exatnph" tile dornain (I)onmin 1) ill,s-
trated in i,’igure 5. The domain consists ,)f’ n + 
states and two different actions (dashed and soli¢l).
The strong cyclic algorithnl returns a strong plan

IS ........ GS
0 I n

Figure 5: I)omain I.

{(0..solid), (i. solid),-.., (n - L, solid)}. Tiffs I,lan
would have a best and worst ca.se lengt.h of n. But
a strong cyclic plan {(0. da.shcd). (u. - I, solid) } also
exists and eoukl be preferahle because the best case
length of I of the cyclic solution may have a nnm’h
higher probability tha0 the infinite worst case length.
Strong cy(:lie planning will ahvays prefer to return 
strong i)lan, if it exists, even though a strong ,’yclie
plan may exist with a shorter, best case plan length.

By adding all unrecoverable (h’ad-end for l, he
dashed a(’tion and making solid actiolls nOll-
deterministic (see l)Olllaill 2. Figure 6). strong
cyclic i)lanning no++" returns the st.rol[g cy<’l’tc plan
{(0. solid), ( I. solid),..., (n - I. solid)}. Btlt we might
still be interested ill the plan {(O, dashcd).(n-
I,solid)} even though the goal is not guaranteed to
h,e ;whieve(l.
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Figure 6: I)omain 2.

Optimistic Planning

The analysis in the previous section shows that there
are domains and platming problems for which we may
want to use a fidly relaxed algorithm that always in-
cludes the best. case plan and returns a solution cecil.
if it includes dead-ends which cannot, be guaranteed
to be avoided. An algorithm similar to the strong

procedure OptimisticPlanning( [nit. Goal)
tqsitvdStates := Goal
Unit, ersalPlan := 0
while ( Init f~ VisitedStatcs)

StateActions := Preimage(~qsitedSlates)
PrunedStateActions := Prune( Statc..lctions, t"i.dtedStatfs)
if StateActions ~ g then

UnivcrsaIPlan := UnivcrsalPlan U PruncdStateAclions
VisitedStatcs := VisitedStatts
LI StatesOf(PrunedStateActions)

else
return ".No optimistic plan exi.qs"

return UniversalPlan

l"igure 7: The optimistic planning algorithm.

planning algorithm that adds an ordinary preimage
in each iteration has these properties. Because state-
action rules h, ading to unrecow’rable dead-ends may he
added to the universal plan, we call this algorithm op-
tirnistic planning. The algorithm is shown in Figure 7.
The function Preimage(Visitcd,qtates) returns the set
of state-action rules U associated with the preimage of
the visited states. Prune(StatcAclions. l."isited,qlates)
removes the state-action rules, where the state al-
re,’u:ly is included in the set of visited states, and
StatesOf(PrunedSlateActions ) returns the set of states
of the pruned state-action rules. IJMoP includes the
optimistic planning algorithm.

The purpose of optimistic planning is not to sub-
stitute strong or strong cyclic planning. In domains
where strong or strong cyclic plans can be found and
goal achievement has the highest priority these algo-
rithms should be used. On the other hand, in domains
where goal achievement cannot be guaranteed or the
shortest plan should be included in the uniw:rsal phm,
optimistic planning might be the better choice.

Consider again, as an example, tim robot-baby do-
main. For this problem the optimistic solution makes
the robot try to lift the block when the position of the
block is less than 3 and the robot is working. This

Donl,’fin Strong Strong Cyclic Optimistic
best worst best worst best ] worst

1 n tl 1 o¢. 1
2 H Tt 1 D

Table 1: The best and worst case plan lengtl, of strong,
strong cyclic and optimistic planning in Domains 1 and
2 (see Figure 5 and 6). "-" tneans that no solution
exists. "’D" means that a solution exists, but rn~, lead
to an unrecoverable dead-end.

seems to be the only r,~asonable strategy.
For domains 1 and 2 shown in Figure 5 and

6. optimistic planning returns a universal plan
{(0. dotted), (n - 1, solid)}. For both domains this is
a universal plan with the shortest best case length.
Compared to the strong cyclic solution the price in
the first domain is that the plan may have an intinite
length, while the price in the second domain is that a
dead-end may be reached. The results of strong, strong
cyclic and optimistic planning in Domain 1 and 2 are
summarized in Table i.

Empirical Results
The input to UMOP is an NADL description 4 and a
specification of which planning algorithm to use. This
description is then converted to a set of OBDI)s repre-
senting the partitioned transition relation. The OI~DD
representation is used t~" either the Strong, Strong
Cyclic or Optimistic plauning algorithm to generate
a plan. The output of (’MOP is an universal plan if it
exists.

In the following four subsections we presf,nt results
obtained with the UMOP planning system.5 A more
detailed description of the experiments can be found
in Jensen (1999). NADL descriptions of lhe domains
are posted at http://www, cs. cmu. edu/’runej.

Domains Tested by MaP

One of the domains ~olved by .MBP is a non-deterministic
tr~msportation domain. The domain consists of a set of
locations and a set of actions like drive-truck, drive-train
and fly to move between the locations. Non-determinism
is caused by non-detcrmbfistic actions (e.g.. a truck may
use the last fuel) and environmental changes (e.g., tog 
airports}. We defined the two dom~dn examples te.~ted by
MBP for strong and strong cyclic planning in :~:4DI. aal<l
rm~ UMOP using strong and strong cyclic phmnivg. Both
examples were solved in less than 0.05 secomts. Similar
results were obtained with MBP.

The problem in the beam walk domain is for an agent t.o
walk front one end of a beam to the other without falling
down. If the agent falls, it has to walk back to the end of the

41n fact, the A:4DL description accepted by the current
implementation includes only the arithmetk: operators +
~md -, but an implementation of the remaining operators
is st raightforward ~md is a part of our current work.

SAil experiments were carried out on a 45{} MHz Pen-
tium PC with I GB RAM running Red Hat l.inux 4.2.
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beam +rod try agalm The finite state machine of the domairl
is shown in Figure ,% The propositional state variable up
is true if the agent is on the beam. The nunterical state
variabh, pos denotes the position of the agent either OtL the
beam or on the ground.

up

,+,,, --0 .® Q--O

IJ I 2 n-2 n- I po.v

Figure 8: The beam walk domain. The propositior,al
slal.p variabh+ up is true if the agent is on the beam.

We imlflemcnted a generator
program for A:..II)I. descriptions of heant walk domains and
produced domains with .I Io-10.q6 posil.ions. Ilecause the
domain only contains two state variables, t.:MOI.’ ¢’anllo|. cx-
ploit a partitioned traalsit.ion relation for" this domain. As

10000 , , , , , , ,

lOOO -
lOO

lO

1

o.1
4

0.01 --

0.001

UMOP
MBP -+-

I I I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Beam Locations

Figure 9: C~otnl)arabl<’ platming time of t’MOP and MaP
in the beam walk donmin. The .MBP data h+m been
extr+u’ted with some loss or" accuracy front (C’.ittratli
et al., 1.9.qga).

shown in ]:igure 9 the perlbrmatlce of I’MOP is comparable
tO MBP whell using a monolithic trmlsition relation.

The Magnetic Bar Domain
The magnetk" bar domain has been coast.rutted to show all
the rt|odellirlg feal.ures of NADL . It. further demonstrates
how t he different univel.’sal plarming algorithms can be used
to extract information about the domain structure.

The Magnetic liar I)omaln is a muhi-agent domain con-
sisting of two moving bat,’s and two metal objects. By mag-
netizing the bra’s, the objects can be lifted a,rl moved. The
goal is to move the objects from random positions on a a × f~
grid to a drop zone in the upper right corner of the grid. A
solution to an instance of this problem is shown in Figurc
10.

To make the problem non-trivial we assume that the ob-
jects and bars can interact in the following way: an object
located in front of some moving object blocks its way. An

V

H
5 6 7

Figure 10: A soh,l.ion example tbr the Magnetic Har
l)omain. Notice the needed collaboration betwet, n the
bars in moving the left object into the drop zoue.

object altached to a bar blocks the way" h+r the other bar.
Thus in I.he first state in I-’igure 10 the object under the
vertical bar would block the horizontal bar from moving
up if the verl.k:al bar was magnetized. Finally, The don,fin
is m~le non-det.erntinist it" by adding an environnwnt agent
that. at any time can occupy a random grid position. When
a grkl posilion is occupied a bar can not pass it.

The ,V..II)I. description of the domain has three agertt, s:
Two system agents one for" each bar and one enviroltrnent
agent that can occupy grid po..,il.ions. The size of l.he state
¯ ,,pace is 22r. To stale a universal plasming problem the
initial states ,’we defined Io be all other states than the goal
st ales.

I~sing the universal planning algorithms Lo attalyze tile
domain it ttn’|ls Ollt that r’MOP ill less than 0.89 seconds
fails to find a strong solution {only one strong preimage
call be computed). This is nor surprising as the occupation
of grid positions can prevent progress towards the goal. A
strong cyclic: solution is fottnd by UMOP in 002 seconds after
59 preintage. Thus, despite the restrictions there is in fact
a cyclic ,~olul.iort covering all the initial states.

The genera! ed plan is large (45 MB) but has a sulficiently
low Iookt,p tinte to be used in a practical implementation
(less than 0.001 secondL Partitioning of the transition re-
lation (6 partitions in this case) is crucial for the efficiency
of IIMOP. Wil.h a monolithic transition rehd.ion UMOP is

magnitudes slower and uses more mentory after thc’ fifth
preintage calctttation than is used after the l~t. preimage
calculation when using a partitioned transition relation.

The Power Plant Domain

The power plant domain demonstrates a multi-agent do-
nmin with an enviroument model +u,d further" exentplifies
optimistic: planning, h consists of reactors, heat, exchang-
ers, I, urbines attd valves. A domain example is showt| in
Figure 11. In the power plant dontain each cotttrollable
unil, is associated with an agent such that all control ac-
lions can be performed simull,,’meously. The environntent
consists of a single agent that at any time can fall a mtm-
ber of ]teal c’xchaa>ges and turbines attd ensure that ah’eady
failed units remain failed.

The state space of the power plea1[ can be divided into
three disjoint sets: good, bad and failed states. In the good
states, therefore the goal states, tile power plant satisfies
its safety and activit.y requirements, ht our example the
safety rc’quirenlc’nts ensure that energy can be transported
away fl’om the plant, and that failed units are sht,t down.
The activity rcquiremenl.s state that the energy production
equals the demand attd Ihat all valves to working turbines
are opell.
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Figure 11: A power plant domain with [’our heat ex-
changes (HI-H4) and turbines (T1-T4). The ok vari-
ables capture the working status of the units.

In a had state tile platlt does not satisfy the safety and
activity requirements, but on the other hand is ,lot. unre-
coverably failed. In a failed state all beat exchangers or
turbines are failed.

T|,e environntent can fail any number of units during
execution, thus, for any b,ut state the res,dting joint action
may loop back to a had state or cause tile plaz~t to end in
a failed state. For this reason no strong or strong cyclic
solution exists to the problem.

An optimistic solution simply ignores that joint actions
can loop back to a bad state or h’ad to a failed state and
finds a solution to the problem after one preimage calcula-
tion.

The size of the state space of lhe above power plant
domain is 2’’4. An optimistic solution was generated by
UMOP ill 0.92 seconds and contained 37619 OBDD ,,odes.

The Soccer Domain

The purpose el" the soccer domain is to demonstrate a
muhi-agent domain with a more elaborate environment
model them the power plant domain. It. consists of two
teams of players that cat, move in a grid world and pass
a ball to each other. Tl,e t.~gk i~ to generate a univer.~al
plan for one of the teams that can be applied, whet,ever
the team possesses the ball in order to score a goal.

A simple NADL description of The team possessing the
hall and the opponent team is modeled by a set of system
,’rod environment agents, respectively. The goal of the uni-
versal plan is I.o move a player possessing the ball in front
of the opponent goal without having any opponents in the
goal area.

We implemented atl A[41)l, generator for soccer domains
with different fiekt sizes and nnmbers of agents. The Multi-
Agent graph in Figure 12 shows I’MOP~s planning time using
the strong planning algorithm in soccer domains with 64
locations and one to six players on c~mh team.

The planning time seems to grow exponential with the
number of players. This is not surprising as not only the
state space but also the number of joint actions grow ex-
ponential with tl,e ntlmber of agents. To investigate the
complexity introduced by joint actions we constructed a
vel~ion of the soccer domain with only a single system and
environment agent and ran UMOP again. The Single-Agent
graph in Figure 12 shows the dramatic decrease ill conlpu-
tation time. Its is not obvious though, that a parailelization
of domain actions increases the computationM load. its this

10000 , , , , ,
Multi-Agent -c--

Single-Agent --v-- /"1000 .- ta Power Plant .n--/-

1 .-

0.1 - /

0.01 I t t I J
0 2 4 6 8 10 12

Number of Players

Figure 12: l’lanning time of UMOP in soccer domains
with 1-6 players per team.

normally also reduces the number of preimage calculations,
because a larger nunlber of states is reached in each itera-
tion. Indeed, in a deterministic version of the power plant
domain we found the planning time to decrease (set: the
Power Platit graph in Figure 12), when more agents were
added (Jensen, 1999).

Previous Work

Uniw.rs’dd planning was introduced Iw Schoppers (1987)
who used decision trees to represent plans. Recent ap-
proaches include Kabanza et al. (1997) and Cimatti et al.
(1998a. 1998b). Kabanza et M. (1997) represents universal
plans as a set of Situated Control Rules. Their algorithm
incrementally adds .qCRs to a final plat,. The gem is a
formula in temporal logic that must hold on any valid se-
quence of actions.

Reinforcement l.earning (ILL) (Sutton & G.. ]998) 
also I)(. regarded ,~ universal plmming. In HI. the goal 
represented by a reward function in a Markov Decision Pro-
cess (MDP) model of the domain. In the precm~or version
of RL, the Ml)P is assumed to be known and a control
policy maximizing the expected reward is found prior to
execution. Because RL is a probabilistic approach, its do-
main representation is more complex than the domain rep-
resentation used by a non-deterministic planner. Thus, we
nlay expect non-deterministic platmers to be able to hatRUe
clomains with a larger state spare than RI,.

All previous approaches to universal planniug, except
(’imatti et al. (1998a, I99gb), use an explk:it representation
of the universal plan (e.g., SCP, s). Thus, in the general
case exponential growth of tt,e plat, size with the number
of propositions defining a domain state must be expected.
as argued by Ginsberg (1989).

The compact and implicit representalion of universal
plans obtaint’d with OBDDs does not necessarily grow ex-
pol,entially for regular domains as shown by Cimatti et M.
(1998a). Further, the OaDD-b,x~ed representation of the
NI’A of a non-deterministic domain enables the application
of efficient search aigorithnm from model checking, capable
of ha’idling very large state spaces.
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Conclusion
In this paper we have presented a new OBDl)-based plan-
ning system called IrMOP for planning in non-deterntinistic.
muhi-agent domains. An expressive domain description
language called f(.IDL F, as been developed and an efficient
OBDD representation of its NFA semmxtics has been de-
scrit)ed. Vqe have analyzed previoos planning algorithms
for OBDD-based platming attd deepened the understanding
of when these planning algorithms are alqwopriate. Fi-
nally, we have proposed a planning algoritl, m calh’d opti-
mistic planning for finding sensible solutions in some tlt)-
m,’fins where no stroutg ox’ s)rcmg cyclic sohntion exists.

I",tture challenges include extending AI.1I)L to handle con-
st ruf:l.ive .,,ym.rgetic effects and adding domain knowledge
by stating the go~d as a formula in teml)oral logic on the
seqnencc of actions le~uling to tl,(. goal. F’twthcr. wt: are
interested in introducing abstraction in OBDD-ba.sed plm,-
ning mid defining specialized planning algorithms hw ml,h i-
agent donlains and deterministic domains (Jensco et al..
2000).
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Appendix A. NADL includes .A’R
Theorem 1 If..l is a domain description in som~ A’R lan-
guage, then theft exists a domain description D in N..IDL
a.ith thf same semantics as .4.

Proo.~. let M, = (Q. E,~) denote the Nl-kA. (see l)elit,ition 
equal to the semantics of A a-s defined by Giundfiglia et al.
(1997). An .~.IDI, domain description D with .,,emantics
equal to Ma can obvim,sly be constructed in the followiug
way: let D be a single-agent domain, whertr all lluents are
encoded as ,mmerical state variables and there is at, action
for each element in the alphabet ~ of Ala. Consider the ac-
tion a s~sociated to input i E E. I.et the s(.t of const.raJned
stale variables oft equal the set of state variables in D.
T]te precondition of a is an expression that defines t.h(. set
of stales having an outgoing transition for input i. The
effect condition of a is a conjunctio,t of conditional effects
(/~ =~ N, ). There is one conditional etfect for each state
that has an outgoing trmlsition for input i. I~ in the con-
ditional effect associated with state s is the characteristic
expression for s and N: is a ehas’acterisl.ic expression for
the set of next states 6(s.i). 
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