
Merging Plans with Quantitative Temporal Constraints, Temporally
Extended Actions, and Conditional Branches

Ioannis Tsamardinos
Intelligent Systems Program

University of Pittsburgh
t samard@cs, pitt. edu

Martha E. Pollack
Dept. of Computer Science and

Intelligent Systems Program
University of Pittsburgh
pollack@cs, pitt. edu

John F. Horty
Philosophy Department and

Inst. for Adv. Computer Studies
University of Maryland
horty@umiacs, umd. edu

Abstract

We develop ml algorithm for merging plans that
m’c represented in a richly expressive language.
Specifically. we arc concerned with plans that have
(i) quantitative temporal constraints, (ii} at.lions
that are not instantaneous, but rather have tem-
poral extent, and (iii) conditional branches. Given
a set ~q of such plans, our algorithm finds a set of
constraints that jointly ensure that the plans in
8 are mutually consistent, if such a set of con-
straints exists. The algorithm has three phases.
In the first, it employs a new data structtu-e, a
conditional simple temporal network (CSTN).
identify conflicts between the plans. Next. it uses
an approach developed by Yang (1997) to sug-
gest a potential resolution of the identified con-
flicts. Finally, the CSTN is again used to check
whether the proposed resolution observes all the
temporal constraints. We have implemented our
approach, mid we present preliminary experimen-
tal evidence about domain factors that influence
its performance.

Introduction

In this paper, we develop an algorithm for merging
plans that are represented in a richly expressive lan-
guage. Specifically, we are concerned with plans that
have (i) quantitative temporal constraints, (ii) actions
thai. are not instantaneous, but rather have temporal
extent, and (iii) conditional branches. Given a set
of such plans, our algorithm finds a set of constraints
that jointly ensure that the plans in S are mutually
consistent, if such a set of constraints exists.

Our interest in plan merging is motivated by our work
on developing agents for dynamic environments. In
these environments, an agent may adopt a goal for a
future activity, form a possibly incomplete plan for it,
and then consider, commit to, and plan for additional
goals before completing---or possibly even beginning--
execution of the first plan. Thus, as time proceeds, the
agent is continually forming plans for new goals in the
context of its existing goals and plans.

Copyright (~) 2000, American Association for Artificial in-
telligence (www.aaai.org). All rights reserved.

Various approaches could be used to generating plans
in the context of prior plans. A simple approach would
rely on traditional AI methods of planning for conjunc-
tive goals. With this approach, whenever the agent en-
countered a new goal G in a setting in which it already
held goals Gl G,~. it would form a new planuing
problem for the conjoined goal Gt A... G,, A (7. While
straightforward, this al)proach has at least two serious
problems.

¯ It is computationally inefficient. I With each new
goal, all the previous planning is thrown out, and
a new plan is generated from scratch.

¯ It may result in highly unstable plans. With com-
plete replanning, the agent never fully commits to its
plans, but only to its top-level goals: all of its planned
activities are constantly up for reconsideration. The
resulting instability may be particularly harmful in
multi-agent domains, in which stability of pla,s is
requisite for coordination: a change in one agent’s
commitments may propagate to another agent, who
nmst then make changes that impact a third agent,
and so on.

An alternative appro~u’h that avoids these problems
is to hold fixed the plans for GI G,, and merge into
them a new plan for G. The plan for G might be gcuer-
ated from scratch, or it might result from the contple-
tion of a skeletal plan, as, for example, in case-l)a.sed
planning (Hammond 1989; Karnbhanlpati & Hendler
1992; Hanks gz Weld 1992; Veloso & Carbonell 1994).
Our focus in this paper is on the process by which the
new plan can be merged into a set of existing plans, so
that the resulting set is consistent.

The most well-developed prior work on plan merg-
ing is that of Yang (1997, Chap. 7), whose algorithms
apply to classical plans, i.e., plans expressed using the
STRIPS representation.2 Yang’s central idea is to era-

I In the section on "Related Work", we discuss the rela-
tionship between this claim and apparently related results
(Nebel & Koehler 1995).

2Yang’s hook develops several important algorithms.
What we describe hcre as "plml merging" is what he calls
"global conflict resolution": it is the process of finding con-
straints that guarazltee that two plans do not negatively

264 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

piny constraint satisfaction processing, modeling the
conflicts between plans--the threats--with constrained
variables whose domains are their possible resolutions.
A solution to this CSP is then a set of constraints that
jointly resolve all the threats. We employ Yang’s ap-
proach as the second of a three-phase process for merg-
ing more expressive plans. In the first phase, we iden-
tify conflicts between the plans that are to be merged,
using a new data structure, conditional simple tem-
poral networks (CSTNs); CSTNs are an extension
STNs (Meiri 1992). In the second phase, we use Yang’s
method to suggest a potential resolution to the identi-
fied conflicts. Finally, the CSTN is again used to check
whether the proposed resolution observes all the tem-
poral constraints. We have implemented the algorithm
and conducted experiments to evaluate it, and include
preliminary results in this paper.

Plan Representation
We represent plans as tuples of the form P =<
S, T, L, A >, with the components defined as follows3:

¯ S are the plan steps. As usual in the planning liter-
ature, each step is associated with a particular oper-
ator, which has preconditions, effects, and resources.
In contrast to the standard approaches, we associate
two time points with each step, one representing its
start and another representing its end, and we assume
functions Start and End that identify these.

¯ T is a set of temporal constraints. Elements of T are
all of the form: f(si)- g(sj) where si, sj ES,
f and g are either start or end, and d is a real
number. Temporal reasoning problems that. are re-
stricted to constraints of this form can be represented
with Simple Temporal Networks (STNs), and it has
been shown that they can be solved in polynomial
time, as opposed to more general temporal constraint
satisfaction problems which are NP-complete (Meiri
1992). The crucial difference between STNs and gen-
eral TCPs is that STNs do not allow disjunctive con-
straints. With the language of STNs, we can still
represent the standard ordering constraints of tradi-
tional planning systems ("st precedes sj"). We can
also represent a wide range of other constraints, as
illustrated in Figure 1. To express explicit time as-
signments (e.g., "si begins at 9a.m. Monday") we
make use of an initial reference point denoting aa ac-
tual clock time (see the second example in the figure).

¯ L is a set of causal links, defined in the usual way:
< sl,e, sj >, where e is both an effect of si and a
precondition of sj.

interact with one another. Yang reserves the term "plan
merging" to refer to the process of combining two or more
steps of the same type. We prefer to refer to this latter
process as "step merging".

SFor ease of presentation, we foctLs in this paper on
propositional plans. However. our approach can be di-
rectly extended to handle plans containing parameterized
predicates.

¯ A is a set of alternative-context links (AC links).
In general, a conditional plan may include branch
points, which separate some subsequent steps in
the plan into distinct contexts of execution. We
model each branch point with a dummy step of type
branch, which has outgoing AC links. An AC link
< si,r, sj > indicates that if condition r is true at
the time of the branch slep si, then step sj should
be executed. The condition r specified on any At’
link will be a conjunction of literals. We will as-
sume that the set of AC links emanating from any
branch step will reprt.~ent an exhanstive and nm-
tually exclusive set of conditions; this assumption
is consistent with the prior literature on conditional
planning (Peot & Smith 1992; Pryor &; Collins 1996;
Onder & Pollack 1997). Note that in this prior litera-
ture, branch points are typically equated with obser-
vation actions. However, we do not want to restrict
our focus to cases in which the observation of a condi-
tion immediately precedes the decision about which
actions to perform.

To properly handle conditional plans, we need to la-
bel each step with the contexts in which it will be ex-
ecuted. Again following the literature on conditional
plans, we label steps by propagating AC-link conditions
through the plan. We say that two steps occur in con-
sistent contexts whenever it is possible for both of them
to occur during a single execution of the plan.

An example is given in Figure 2: wt, ich represents
a plan to go to a meeting that will begin in 60 lime
units. It is not good to get to the meeting too early,
nor to get there late: thus there is a temporal constraint
requiring that the agent arrive at the meeting at most
5 time units early. Depending upon the weather, the
agent may either walk or drive. If it is sunny (S in the
figure), she will walk, and it will take exactly 30 time
units. Otherwise, she will drive, taking exactly 10 time
units. In either case, the agent must forward her phone
calls to her secretary, no more than 1 time unit belbre
departing. Context labels are shown in italics below a
step: for instance, the context label for "~drive~ is -~S.
We stress that what matters is whether it is sunny at
the time of the branch step. If the example plan were
to be extended, there might be another, later branch
point that also depended upon the condition ’~sunny":
however, it would refer to the weather conditions at that
later time. For clarity, in our examples we will never re-
use the same propositional letter, but will btstead use
different letters to denote, for example, "sunuy at time
1~ and ~sunny at time 2".

Finally, we define a (Type 1) Conflict as follows:

Definition 1 (Type 1 Conflict) A Type I Conflict
exists between steps sv and st in plan P =<
S, T, L, A > if and only if:

1. < sp,e, su >E L.
2. Step st has an effect "-e.

3. Steps sv and st occur in consistent contexts.

Tsamardinos 265

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

i "lb Express: I Use: I
¯ ~i precedes sj
si begins at. 9am
Mon.

cnd(si) - start(sj) < 0
ref - start(si) < -9
start(si) -- ref < 9
assuming ref is 12am Mort.

8 i lasts between 2 end(st) - start(si} <
and 3 hours start(si) -end(si)

end(si) - start(sj) < -48si occurs more than
48 hours before si

Figure 1: Temporal Constraint Examples

Driving takes 10 time units.
Walking takes 30 time units.
Forwarding the phone has to be done at most I minute
before walking or driving.

The meeting occurs in 60 time units from the initial state.
We must not arrive more than 5 time units early.

Figure ’2: Example of a Conditional Plan

4. Step st might begin before step su ends, i.e.,
start(st) - end(s~) isconsistent with T.

5. Step st might end after step sp begins, i.e., start (sp)-
e mt(st) < isconsistent wit h T.

This delinition generalizes the notion of threats ill clas-
sical plans, in which clauses 3, 4, and 5 would be re-
placed by a simpler requirement that st may possibly
come between h, and su. In this paper, we make the
conservative assumption that an intended effect of an
action--the effect labeling a causal link--begins at the
start of the producing step sp and must persist, to the
end of the consuming step su. Other situations could
be handled by modifying requirements 4 and 5. A sim-
ilar definition of conflicts appears in tile lxTeT system
(Ghallab k.: Laruelle 1994); for further discussion of Ix-
’tk’T. see the section "Related Research".

By including steps with extended duration, we can
also model constraints on conditions that occur during
action performance. Each step s in a plan may have
an associated set of resources, and no other step may
"use" one of those resources while s is executing. (That
is, if sl and s2 have overlapping resources, then their
times of execution may not overlap.) Our treatment
of resource constraints derives from the approach orig-
inally developed for the Time Map temporal database
(Dean & McDermott 1987), and used in systems such

as HSTS (Muscettola 1994). The use of resources has
turned out to be important for many of tile actions we
have modeled in an intelligent workflow/calendar man-
agement system we are building (Pollack, Tsamardinos,
& Horty 1999). For exaznple, in modeling the action of
"having a meeting", it is important to record the fact
l.hat the agent is busy throughout the duration of the
meeting, and therefore is prohibited from scheduling
another meeting at the same time. This can readily
be done by attaching a resource- the attention of the
person attending the meeting--to the "have a meeting’~
operator.

The inclusion of resources requires a generalization
of the definition of conflict. We thus also define Type 2
Conflicts.
Definition 2 (Type 2 Conflict) A Type 2 Cortllict
exists between two steps si and sj if and only if:

1. Step si and sj both have the same resource ei.
2. Steps si and sj occur in consistent context.~.
3. Steps si and sj might overlap, i.e., start(si)

end(sj) < and sl arl(sj) -e nd(si) _<0 areboth
consistent with T.
Our plans are inherently parallel: all steps that are

not constrained to occur at different times may be ex-
ecuted simultaneously. The use of resources makes it
straightforward to prohibit co-occurrence of step,~ that
would have harmful interactions with one another.

The Plan Merging Algorithm
Our goal is to take two plans expressed in the rcp-
resentation language described above, and find tem-
poral constraints that ensure their consistency. Let
Pj =< S1,T1, L1,AI >, and P2 =< S2,T2, L2, A.z >.
As described in the introduction, ill a dynamic environ-
ment Pt will represent the conjunction of the agent’s
existing plans, and P’z will represent its plan for a
new goal. Let P be tile piecewise union of /°1 attd
P2, i.e., P :< Pt U Pz, TI UT2, Lt U L2, A1U A.2 >.
Then we seek to find a set of temporal constraints "1"
that (I) are consistent, with Tl U T2 2) are such that
P’ =< P~ U P2, Tt UT2UT’,Lx U L.2, A~ U.42 > is
conflict-free.

As mentioned above, this question was addressed for
the case of classical plans by Yang(1997). Given a plan
P~ that is the piecewise union of two other plans, Yang
first identifies its conflicts as defined in the classical
framework. Such conflicts can be computed by consid-
ering each pair of steps in P’, checking the effects of one
against the causal links emanating from the other. Af-
ter identifying all the conflicts, Yang constructs a con-
straint satisfaction problem (CSP) in whk’h the nodes
represent all the threats iu P~, and the dornain of each
node is the set of its possible resolutions--promotiov,
demotion, and separation, as standardly defined. We
will call this a conflict-resolution CSP. Efficient con-
straint processing techniques can then be applied to find
a solution, which represents a way of jointly resolving
all the conflicts in the plan.

266 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Although Yang’s approach works well for classical
plans, it is not adequate on its own for the more ex-
pressive plans with which we are concerned in this pa-
per. First, the conflict identification technique for clas-
sical plans is not sufficient for plans with rich temporal
constraints. Second, a solution to a Yang-style conflict-
resolution CSP will not necessarily respect all the tem-
poral constraints of an expressive plan. For example,
consider the plan segment in Figure 3. Both step Sl
and step Sj conflict with step Sk, because Sk has ef-
fect --p. Because Yang’s algorithm ignores temporal
information, it could produce a solution in which Sk is
promoted to occur after Si and also demoted to occur
before Sj. This solution is consistent if we ignore the
quantitative temporal constraints. However, our plan
in fact has temporal constraints: the duration of Sk is
at least 20 time units, and Sj must start at most 10
time units after the end of Si. Then the proposed so-
lution is obviously not valid: it is not consistent with
the~ temporal constraints.

Sj must follow Si by at most l0 time units
S~ takes at least 20 time units.

Figure 3: Example of the need for the STN

To address these problems, we have developed a
three-phase plan merging algorithm, shown in Figure 4.
At initialization (Step 1), a plan structure is created
performing a piecewise union of the components of the
existing plan and the new plan to be nterged in. In the
first major processing phase (Steps 2-3), we rely on
new data structure, Conditional Simple Temporal Net-
works (CSTNs), defined below. A CSTN is constructed
and then used to identify all the cottflicts in the plan.
In the second phase (Steps 4-5), a conflict-resolution
CSP is constructed to represent the conflicts found in
Step 3. Constraint satisfaction techniques are applied
to find a solution to it. Finally (Steps 6-8), the CSTN
is used again, to dleck whether the proposed solution
respects all the plan’s temporal constraints. If it does
not. then backtracking in the conflict-resolution CSP is
performed and an alternative potential solution is pro-
duced: this process is repeated until either a solution is
found that is consistent with the temporal constraints,
or no more solutions to the conflict-resolution CSP ex-
ist. We next provide details of each of the three main
phases of the algorithm.

CSTN Construction and Conflict
Identification
To support reasoning about the temporal constraints in
our plans, we make use of a new data structure, a Con-
ditional Simple Temporal Network (CSTN). CSTNs ex-

Merge-Plans(P1, P2)
1. Let P --- P1 U P2.
2. Construct a CSTN representing P.
3. Use the CSTN to identify all conflicts in P.
4. Construct a conflict-resolution CSP encoding

the identified conflicts.
5. Find a solution, C, to the conflict-resolution

CSP. (Set backtrack point.) If there are no more
solutions, return failure.

6. Add tire constraints in C to the CSTN and check
to determine whether it is consistent.

7. If the updated CSTN is consistent, then return
C,

8. Else, restore the CSTN to its original state, and
backtrack at line 5.

Figure 4: The Top-Level Algorithm

tend Simple Temporal Networks, a well-known data
structure from the temporal-reasoning literature. An
STN is a graph consisting of nodes that represent
events, and arcs that represent constraints on the time
intervals between the events. As mentioned earlier, each
constraint in an STN has the form:

Xi - Xj < d
indicating that event associated with node Xi must oc-
cur no later than d units of time after the event associ-
ated wlth node Xj. The value d is called the weight of
the arc.

STNs are not expressive enough for our purposes. Al-
though we could use them to model and reason about
plans with rich temporal constraints, they do not sup-
port reasoning about conditional branches. We there-
fore extend STNs, by importing the idea of context la-
bels from conditional plans. Specifically, we define a
CSTN to be an STN in which each node has an associ-
ated set of context labels.

We can construct a CSTN from a plan using the al-
gorithm in Figure 5. The idea is straightforward: the
nodes in the CSTN correspond to the start and end
points of the steps in the plan, and the arcs in the
CSTN represent both explicit temporal constraints and
implicit ones that are derived from causal and AC links.
The derived CSTN for the example of Figure 2 is shown
in Figure 64.

Having constructed the CSTN for a given plan, we
next use it, along with the original plan itself, to iden-
tify the conflicts using two definitions given above. We
use the plan to find steps that may potentially be in con-
flict with one another and we use the CSTN to check
whether the temporal constraints permit the affected
steps to overlap. To determine whether two steps over-
lap, we have to construct a distance graph for the CSTN

4To simplify the figure, we adopt the standard STN ap-
proach of displaying a single are from .¥i to .\’~ labeled
[!, u] as an abbreviation for the two arcs associated with
Xj - Xi <_ u and Xi - Xj < -l.

Tsamardinos 267

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

I. Given a. plan P -< S, 7-., L, A >
2. For each step si in S: create two nodes in the

CSTN, one for the start of si and the other for
its end.

3. Label each node ill the CSTN with the context
label from its corresponding step in P. For each
causal and AC. link < si, r: sj > in L. add all arc
from slart(sj) to end(s~) with weight 0.

¯ l. For each ten,poral constraint f(si) - g(sj)
add an arc from g(sj) to f(si) with weight d.

Figure 5: Constructing a CSTN from a Plan

[55.601 ~

~ [0,01

-,5" --5
All edges not .’mnor*ted with an mte~al am assumed [0, -1

Figure 6: Derived CSTN for the Plan in Figure 2.

as explained below in the section on Solution Valida-
t.ion.

Conflict-Resolution CSP Construction and
Candidate Solution Generation

]taving identified all the conflicts between the plans,
our algorithm enters its second phase. Here we follow
Yang’s approach directly: we construct a CSP with a
node for each conflict and set the domain of each node
to be the set of possible resolutions. Because we are
focusing on propositional plans here, this set will con-
tain simply promotion and demotion; in the nmre gen-
eral case, it would also contain separation. For exam-
pie, as already mentioned, the plan segment of Figure
3 contains two conflicts, one between Sl and Sk, and
the other between Sj and Sh. The Conflict-R~solution
CSP will contain variables P~,k and ~’~,k, correspond-
ing to the two conflicts with domains Dl,k ---- {{Sk <
s,}, {s~ < sk}}, and rb.k = {{sk < sj}, {s,. < &}}
respectively.

We then extend Yang’s definition of consistency be-.
tween variable assignments in the conflict-resolution
(’SP, to take into consideration the quantitative tem-
poral constraints and the conditions. Let d be in the
domain of some constrained variable P~ and let f be
in the domain of another variable I~, both variables in
the conflict-CSP for a plan P. Let C be the CSTN for
a plan P as it is output by the algorithm at Figure 5.
Then ~,~ = d is inconsistent with ~ = f if and only if
the CSTN C LId U f is inconsistent. The assignments
Vi = d and l~/= f arc consistent if and only if they are

[7,71

Figure 7: An Inconsistent STN and its Distance (Iraph

not inconsistent. Informally, a C.STN is inconsistent if
there is no assignment of values to variables that satis-
fies all the constraints; a more precise definition is given
in a later section.

Again illustrating with Figure 3 at,(I the two conllicts
l~,a and |~,k thai it. itlt.ro(luces, 1.he following assign-
ment is inconsistent < ti.k = {,q~ < .qt}. l"/.k = {S,,, <
,5’k } >, as is < l"~.k = { 5’i < ,S’k }. I")’.k = { Sk < .S’.i I >.
The Latter assignment is inconsistent because of tl,e
quantitative constraints on the duration of sl.,.l~ ,5’t~ at,(I
the rnaxinnnn temporal separation of steps 5; and ,b’k.

Efficient. constraint processing techniques can be used
to search for a solution to the confli(’t-resohnion (’SP.
For instance, we can compute arc-consistency and/or
k-consistency., followed by search in the space of vari-
able assignments. Optimization techniques from thc
CSP literaturc, such as forward checking, back jumping.
and so on, can also be applied. Yang also describes a
problem-specific snbsumption relation that can be used
to prune variables and values from the sear(’h.

This second phase of our main algoritima terminates
with a candidate solution to the plan merging problem.
But. as we observed in Figure 3, this candidate may not
actually be valid. Thus a third phase of processiog is
required.

Solution Validation

TO check the consistency of the proposed solution with
the fill set of temporal constraints, we attgment l.he
CSTN built it] step 2 of the main algorithm wit.l, the
temporal constraints from the solution proposed in step
5. We then check to see if the resulting (:’STN is con-
sistent.

CSTN consistency is modeled on STN consistency.
An STN is consistent if and only if it is possible to as-
sign a time point to each event represented in tit(, STN
while guaranteeing that all the temporal cons(raints are
satisfied. The top part of Figure 7 illustrates an iucon-
sistent STN. To respect the constraints, si would have
to occur exactly four time units after the reference point
(i.e., "at time 4"), sj would have to occur exactly two
time units later (i.e., at time 6), but sj would also hax, e
to occur at exactly time 7). In contrast, if the time
between si and sj was constrained to be between 1 and
3 time units, the STN would be consistent.

268 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

STN consistency can be computed using shortest-
path algorithms such as Bellman-Ford (Cormen, Leis-
erson, &. Rivest 1990), which axe known to be relatively
efficient (i.e. polynomial time in the number of nodes
in the STN). For any STN we can construct a distance
graph in which the arc from Xi to Xj is labeled by the
length of the shortest path from Xi to Xj in the original
STN. It has been shown (Meiri 1992) that:

¯ An STN is consistent iff its distance graph contains
no negative cycles, and

¯ if the arc from Xi to Xj in the distance graph has
label d, then Xi - Xj _< d is entailed by the original
STN; moreover, d is the smallest such number for
which this is true.

Note the negative cycle between Ref and si in the bot-
tom part of Figure 7, which is the distance graph 5 for
the STN above it.

CSTN Consistency The notion of consistency in a
CSTN is not as straightforward. Intuitively, we would
like to use a very similar definition, and say that a
CSTN is consistent precisely when we can assign time
points to the represented events in such a way that
all constraints are respected. However, each event in
a CSTN has an associated context label that specifies
the contexts in which it will be executed. Events in the
same CSTN may occur in inconsistent contexts. Recall,
for example, our meeting example: walking only occurs
when the weather is sunny at the time of the first branch
action, while driving occurs only when the weather is
not sunny at that time. There are a finite number 12
of distinct ezecutions--or ~ways the plan might go"--
depending on the conditions that occur. For the library
example, there are only two executions. The maximum
number of possible executions is no greater than 2c,

where c is the number of propositional symbols used to
describe conditions.

We can identify several different notions of consis-
tency with which one might be concerned. A CSTN
will be consistent in a very strong sense (strong consis-
tency) if there exists an assignment of time points to
events in the CSTN such that the temporal constraints
will be respected regardless of the context in which the
represented plan is actually executed. Strong consis-
tency is a highly desirable property for a plan to have.

Unfortunately, many times the proposed solution to
a plan merging problem will not be strongly consistent.
Assume that our meeting plan in Figure 2 (with derived
CSTN in Figure 6) is part of a solution to a merging
problem: At the time that the agent is considering this
solution, she does not know what the weather will be
like at the appropriate time in her plan. Indeed, her
meeting may not even occur until a few days after she
adopts the pla~l for it. Yet, as the reader can determine

S’rechnicaUy, when there is a negative cycle all shortest
paths go to negative infinity. We show what would be the
output of the Floyd-Warshall algorithm (Cormen, Leiserson,
& Rivest 1990)

from Figure 6, the agent needs to forward her phone
calls between time points 24 and 25 (relative to the ref-
erence point) if she is going to walk to the meeting, but
needs to forward the phone calls between time points
44 and 45 if she is going to drive. Thus for this example
there is no single assignment of times to events that will
guarantee that all the temporal constraints are satisfied
regardless of the context of execution. However, if the
agent is able to determine the execution context before
plan execution begins, then she will be able to make a
satisfactory temporal assignment to all the steps. In a
situation like this, we will say that the plan is wcakly
consistent: for each possible execution, there exists an
assignment of time points to events that respects the
temporal constraints, but different possible executions
may require different time assignments. In our exam-
pie, forwarding the phones can be assigned time 24 for
the sunny context of execution, and time 44 for the
opposite case.

A range of intermediate cases occur between strong
and weak consistency, having to do with situations in
which the agent determines the context of execution in-
crementally during execution itself. Very informally, a
plan will be dynamically consistent if and only if all the
information is learned "soon enough" to ensure time
assignments can be made such that all temporal con-
straints will end up being respected.

Strong, weak, and dynamic consistency, as we have
defined them, are related to the identically named no-
tions in Vidal and Ghallab’s work (Vidal & Ghallab
1996). However, Vidai and Ghallab model a different
sort of uncertainty than we do. They define a special
type of STNs in which the time of occurrence of some
events is outside the control of the agent. In contrast, in
our approach, all events are assumed controllable, but
there is uncertainty about which events will actually
be executed. Neither approach subsumes the other: in
future work it would be useful to combine the two.
Checking CSTN Consistency In step 6 of our
main algorithm (Figure 4), we could check for whichever
type of CSTN consistency is most appropriate for the
current situation. To check for strong consistency, we
simply ignore the context labels altogether, and treat
the CSTN as if it were an STN. After all, what we are
looking for in this case is a single assignment of times to
points that "works" regardless of what context, the plan
ends up being executed in. We therefore direct[y run
the Bellman-Ford algorithm, and check that there arc
no negative cycles. The complexity of this algorithm is
well known to be O(ve), or equivalently O(v:¢) for dense
graphs, where v is the number of nodes in the CSTN
and e the number of edges or constraints.

The process of checking for weak consistency is more
interesting. In this case, rather than checking whether
there exists an assignment that observes all the tem-
poral constraints simultaneously, we need to consider
each possible execution, and determine whether there
is a satisfactory time assignment for it. The brute force

Tsamardinos 269

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

apl)roach to this involves running the Belhnan-Ford al-
gorithm once for each possible execution. Each time we
take into account only those nodes whose context labels
are consistent with the particular execution context,
and we similarly only consider the constraints amongst
those nodes. For each possible execution, we then make
sure that tile resulting distance graph has no negative
cycles. The complexity of checking for weak consistency
is clearly O(v3) * (2c)), where again, e is the size of
set. of propositional labels for describing conditions.

(’hecking for dynamic consistency is more complex,
and we defer discussion of that to another paper.

An Alternative Approach

Our algorithm makes use of two constraint satisfaction
networks. In one- the conflict-resolution C.SP--the
nodes represent conflicts and their domains represent
possible resolutions of those conflicts. Tile constraints
between nodes are consistency constraints, which en-
code the conditions under which conflict resolution
methods are incompatible with one another. In the
other a (:.q’l’N--the nodes represent events (tile start
time and end time of steps in the plan) and their do-
mains represent times for those events. The constraints
represent the durations of events and the intervals of
time between them.

It is reasonable to ask whether we could simplify the
process to make use of a single CSP. [:or the nmment,
assume that plans do not have branches, and that, as
in the current paper, separation is not. available as a
conflict resolution method. Even then we would need
to make use of general temporal constraint networks
(Meiri 1992) to capture both quantitative temporal con-
straints between time points, and the disjunctive qual-
itative constraints that are necessary to encode the al-
ternatives of promotion and detnotion. Also, once we
allow for separation, we will require a larger set of nodes
in the CSP: they cannot represent only time points,
because separation involves a binding constraint, not
a temporal constraint. Suppose that we had a het-
erogeneous CSP, in which some nodes represent time
points and other nodes represent domain parameters.
Although this is possible, it would involve further sev-
eral complications: we could not restrict the constraints
to be binary (they would have to involve several nodes);
we could not directly rely on shortest-path algorithms,
since the CSP would not have only temporal nodes; and
we would still need to introduce techniques to model
branching. Given these complexities, we believe it is
more reasonable to use two different types of CSPs at
different stages in the processing. However, this does
imply that the only possibility is to completely solve
the conflict-CSP prior to checking its validity with the
CSTN. We are currently investigating related designs,
in which partial solutions to the confllct-CSPs are ver-
ified incrementally.

2~

140+Sfi:.=ii:.~...:.",:o-..; :...! .(........’.:’.’i::’::"...~ ’":’~’.,

.... m.’.. "." "< ~ /,a,-- 100 ..: .~ ".’.:..:.".":’~:. ::" ".~, I-m-,T.ks_-30]m-, ~ ::.-..-~:-:.:..~ ~ .:,,~!~;,.~,..,: :z.~-, : ...: i

~u 60 . " "":’!’"’~::i. ":":~U[’,c’. "’.: l--dir-Tasks=101
4o :" :? : :: .’::~:’~:::~:~.i.~.’ ’ .!i:::;. ,..~...:. :,... ,.;:::

, ’ " " " ": "’.- ~’. ":. ’~. .. i..i

o 1 2 3
Number of Brenclta

Figure 8: Average Total Time to Merge Plans

Preliminary Experimental Results

We iml)lemented the plan merging algorithm described
above in Allegro (’ommon Lisp on a Pentitun machin,.
running Windows-NT. We then generated a large nuln-
ber of plans over a set of artificial step types. (Note that
these plans are meant to represent tile piccewise union
of two plans that are to be merged, i.e., we bypass step l
of our main algorithm.) We initially generated random
skeletal plans (i.e., sets of steps), and then randomly
added preconditions, effects, causal links, and temporal
constraints with condition labels coming from a [ixed
set of propositional symbols. Conflicts were not directly
introduced by us, but rather arose as a side-effect of the
random generation process. During generation, we var-
ied a number of factors, including the number of t a.sks
(i.e. steps), tile number of branches and the maxin,um
time span allowed for the plan. In total, we ran the
algorithm on nearly 2000 distinct problems. Our goal
in conducting these experiments was to gain an under-
standing of the domain influences that affect perfor-
mance. Here we present some preliminary results from
this effort. These results should be viewed as suggestive
of the algorithm’s performance and of likely places for
investigating efficiency gains. We will present a more
Ihorough and systematic azmlysis of the resuhs in an-
other paper.

Figure 8 shows the overall time taken by our algo-
rithm to either find a solution to a plan merging prob-
lem or determine that no such solution exists. In all
our experiments, wc checked for the more challenging
notion of weak consistency. We plot separate lines for
the average time taken to merge plans with a total of
10, 30, and 50 steps, in each case varying the number
of branches from 0 to 3.

The key factor in the overall time taken appears to
be the number of times that the CSTN nmst be called
to check potential solutions proposed by the conflict-
resolution CSP. This in turn depends heavily on how
"tight" the temporal constraints are. When the maxi-
mum time span allowed for the merged plan is smaller,
the constraints are tighter, and it is more likely that
a potential solution will violate a temporal constraint.
Figure 9 shows the mean and maximum lmmber of calls

270 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Maximum Mean ://: Maximum 4/:
Time Span of Candidate of Candidate

Solutions Solutions
210 0.523364486 I
180 0.648148148 1
150 0.691588785 7
120 1.696202532 39
90 76.97163121 1872

Figure 9: Influence of Tightness of Constraints on
Amount of Backtracking

to the CSTN (Step 6 in the algorithm) for plan merging
problems with a total of 30 steps, each of which had av-
erage duration of 10 time units, for various time spans.
The mean carl be less than one because in some cases
the process of constructing the original CSTN (Step 2)
is sufficient to determine thai. the plans cannot be suc-
cessfully merged. Recall that non-conflicting steps can
be performed in parallel or can overlap, which is why
30 steps can be scheduled in as little as 90 time units.

Solving the conflict-resolution CSP and the CSTN
are both exponentially hard problems. Interestingly
though, in practice solving the conflict-resolution CSP
took very little time on average, usually requiring no
more than 20% of the overall processing time. Thus,
we are currently focusing our attention on optimizing
the procedl, re for solving the CSTN.

Related Research

This paper aims at developing a theory of plan merg-
ing for agents in dynamic environments. We argued in
the introduction that as new goals arise for such agents.
it is better to merge a plan for the new goal into the
agent’s existing set of plans, rather than to replan for
tile conjunction of the existing goals and the new one.
In this regard, we must mention the work of Nebel and
Koehler (Nebel & Koehler 1995), which showed analyt-
ically that plan reuse cannot lead to a provable worst-
case efficiency gain over plan generation; indeed, plan
reuse can be strictly worse than plan generation,s

Giver, these results, one might question our deci-
sion to pursue plan merging. However, the Nebel and
Koehler analysis does not directly apply to the situation
we are modeling. Their analysis assumes that the plan-
ning agent has a library of plans A = P(GI) P(Gn)
for some individual goals, Gt , G,~. When tile agent
then has to form a plan for a new goal, G, the plan
reuse approach is to find a plan P(GI) in A for a goal
Gi that is appropriately similar to the new goal G, and
then to modify P(Gi) so that it can serve as a plan for
G. Nebel and Koehler show that the bottleneck in this
approach is the retrieval of the appropriate plan P(Gi)

°Nebel and Koehler also provide empirical evidence from
the blocks world showing that actual performance times
tend to observe this same pattern.

to modify.
The differences in the situation which we are con-

cerned are significant. In our setting the agent does
not simply have a library of plans A = P(G1),..., (G~);
rather the agent is committed to P(GI) A... P(G,,), as
a result of decisions it has made in the past. When it
encounters a new goal G, its job is to add to its set of
commitments a new plan to achieve G. It is unlikely
that the agent will even have stored away a plan for
a goal that is "similar to" the complete conjunction of
goals G1 A ... A Gn A G. After all, this would require
the agent to have plans for all combinations of goals
it might encounter. The agent in our dynamic setting
does not search a plan library to find a plan for a goal
that is similar to its new, conjunctive goal. Rather it
makes use of a single plan, the one to which it is al-
ready committed, and then merges into that a plan for
the new goal.

Of course, this does not conclusively prove that plan
merging will be computationally more effective titan re-
planning from scratch in such settings, although we
suspect that it will be, given the fact that the large
conjunctive plan that addresses tt~e existing goals will
tend to contain very large segments that will in no way
interfere with the new plan. However, even if our hy-
pothesis about computation time is not borne out, the
added stability that results from plan merging in our
setting is quite important. Nebel and Koehler also rec-
ognize the importance of stability, noting that "in a
replannit~g contezt, [in which] a plan has to be mod-
ified because of user-initiated specification changes or
execution failures, one may want to respect as many
previous commitments as possible" (Nebei & Koehler
1995, p.432).

A number of other researchers have studied the prob-
lems involved in plan genvration under temporal con-
straints, for example including (Bacchus & Kabanza
1996; Ghal]ab & Laruelle 1994; Currie & "late 1991:
Deml & McDermott 1987; Vere 1983). Amongst this
literature, the work that is most similar to our own
is that on the IxTeT system by Ghallab and his col-
leagues, lxTeT has a rich language for expressing tem-
poral constraints in plans, and, along with several other
planning systems, separates reasoning about temporal
constraints from reasoning about binding, resource and
other types of constraints. The IxTeT system uses a
slightly different approach to temporal reasoning, re-
lying on the restricted interval algebra. However, this
algebra precisely precludes disjunctive constraints, as
do STNs, and the reasoning algorithms used in IxTe’lT,
along with their definition of conflicts and consistency.
are similar to our own. Our work differs from that of Ix-
"leT in two key ways. First, we introduce the notior, of
context to handle conditional plans. Conditional plans
are common, and, as we noted above, they raise a host.
of interesting questions that we are continuing to pur-
sue. Second, IxTeT is performing plan generation, us-
ing a fairly standard partial-order planning algorithm;
thus, it analyzes threats one at a time. In contrast, we

Tsamardinos 271

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

are making use of Yang’s innovative idea of reasoning
about all the threats in a plan at a single time. We are
able to do this because we are performing plan merging,
and thus have complete plans to begin with. Prior work
by Joslin and Pollack (Joslin & Pollack 1996) explored
an intermediate approach that allows one to generate
plans in the classical way, while still reasouing about
all tim conflicts that exist at any given point in the
planning process.

Conclusion

We are concerned with developing agents for dynamic
environments, who must adopt plans for new goals in
the context of their existing plans. In this paper, we
have presented an algorithm for merging plans with
conditional branches and rich temporal constraints. As
part of this work. we developed Conditional Simple
Temporal Networks, a new representation for express-
ing quantitative temporal constraints on events that
may occur only in specificied contexts.

We are currently extending the work along several
dimensions. First, we are extending our analysis of the
performance data to more accurately pinpoint the do-
main influem:es on efftcicncy. Second, we are develop-
ing a range of heuristics for improving the efficiency of
checking the consistency of a CSTN. In particular, we
~we exploring the reuse of partial solutions in different
execution contexts. Third, we are studying dynamic
consistency, mentioned in the section "Solution Vali-
dation", and are developing techniques for determining
when observations about execution context need to be
made. Finally, we are using this algorithm in a project
to develop an intelligent calendar manager, and will be
investigating the potential for using it for a variety of
workflow tasks.

Acknowledgments

This research was partially supported by the Air Force
Office of Scientific Research (F49620-98-1-0436), by the
National Science Foundation (IPd-9619579), and by
University of Pittsburgh Andrew Mellon Predoctoral
Fellowship.

References

Bacchus, F., and Kabanza, F. 1996. Planning for
tetnporally extended goals. In Proceedings of the 131h
National Conference on Artificial Intelligence.

C.ormen, rr. 11.; Leiserson, C. E.; and Rivest, R. L.
1990. Introduction to Algorithms. C.ambridge, MA:
MIT Press.
C, urrie, K., and ’rate, A. 1991. O-plan: The open
planning architecture. Artificial Intelligence 52:49-86.

Dean, T. L., and McDermott, D. 1987. Temporal data
base management. Artificial Intelligence 32:1-55.

Ghallab, M., and Laruelle, H. 1994. Representation
and control in IxTeT, a temporal planner. In Proceed-

272 AIPS-2000

ings of the Second b~ternational Conference on Artifi-
cial Intelligence Planning Systems (AIPS-94), 61--67.

Hammond, K. J. 1989. Case-Based Planning: Vieu’ing
Planning as a Memory Task. New York: Academic
Press.
lIanks, S., and Weld, D. S. 1992. Systemalic adapla-
tion for case-based plmlning. In P1~ec~dim/.~ of tb,’
First International Confcrnc’~. on AI Plam,im.l .5’!Is-
terns. 96-105. Morgan Kaufmann.

Joslin, 1)., and Pollack, M. E. 1996. Is "early cont-
mitment’ in plan generation ever a good idea? In
Proceedings of the Thirteenth National Co~,f, rtm’, o,
Artificial bttelligence (AAAI). 1188 1193.
Kambhampati, S., arid Hendler, J. 1992. A valklaiion
structure based theory of plan nmdilication and rcu.se.
Artificial bztelligence 55{2):193-158.

Meiri, I. 1992. Temporal Reasoning: A ConMmint-
Based Approach. Ph.D. Dissertation, UCLA.

Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Zweben, M., and Pox, M. S., eds.. In-
telligent Scheduling. San Francisco: Morgan Kauflnan.
169-212.

Nebel, B., and Koehler. J. 1995. Plan reuse vorsus
plan generation: A theoretical and empirical analysis.
Artificial b2telligence 76:427 454.

Onder, N., and Pollack, M. E. 1997. (’onl.ingency
selection in plan generation. In Proceedings of tht 4th
European Confelvncc on Planning, 364-376.

Peot, M., and Smith, D. E. 1992. Conditkmal nonlin-.
ear planning. In Proceedings of the First lntermttional
Conference on A I Planning Systems (AHJS-g2.). 18!)
197.
Pollack, M. E.; Tsamardinos, I.; and Ilorty, J. F. 1999.
Adjustable autonomy for a plan management agenl.
In I999 AAAI Spring 5’ymposium on Agents u’ith Ad-
justable Autonomy.
Pryor, L., and Collins, G. 1996. Planning fbr contin-
gencies: A decision-based approach. Journal of .4 rti-
ficial Intelligence Research 4:287.339.

Veloso, M. M., and Carbonell, J. G. 1994. C.ase-based
reasoning in prodigy. In Michalski, R. S., and Tec-
cuci, G., eds., Machine Learning: A Multislratcgy AI,-
proach, Volume II: Morgan Kaufmann. 52:1 548.

Vere, S. 1983. Planning in time: Windows and dura
tions for activities and goals. IEEE "l’ransaction.~ on
Pattern Analysis attd Machine Inlelligene~ 5(3):246
267.
Vidal, ’I’., and Ghallab, M. 1996. Dealing with ,ncer-
tain durations in temporal constraint networks dedi-
cated to planning. In The 12th European Confcrt nt.’c
on Artificial Intelligence, 48--52.

Yang, Q. 1997. Intelligent Planning: A Decomposition
and Abstraction Based Approach. New York: Springer.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

