
Elevator Control as a Planning Problem

Jana Koehler Kilian Schuster
Schindler Lifts Ltd.

CH-6031 Ebikon
Switzerland

j ana_koelller [kilian~schuster (@ch. schindler, com

Abstract

The synthesis of elevator control commands is a diffi-
cult problem when new service requirements such as
VIP service, acccsu restrictions, nonstop travel etc.
have to bc individually tailored to each passenger. AI
plamling technology offers a very elegant and flexible
solution because the possible actions of a control sys-
tem can be made explicit and their preconditions and
effects can bc specified using expressive representation
formalisms. Based on the specification, a planner can
flexibly synthesize the required control and dmnges in
the specification do not require any reimplementation
of the control software. In this pap~, we describe
the application and investigate how currently avail-
able domain-independent plamting formalksms can cope
with it.

Introduction

The design of modern elevator systems requires new
flexibility in meeting the demands of customers. An
elevator is not only a mechanic device to implement
the vertical transport within a building, but becomes an
integrative part of the logistics infrastructure a building
offers to its inhabitants. This means to provide a variety
of transport modes to passengers and to integrate the
elevator into the security concept of the building.

In order to meet the needs of passengers, their desires
and requirements have to be identified by the elevator
system. For this purpose, Schindler Lifts Ltd. has devel-
oped Miconic-10TM -a~l elevator system based on so-
called Destination Control where passengers input their
destination before they enter the elevator, cf. Figure 1.
Mieonic-10TM has been introduced into the market in
1996. More titan 100 installations have been sold world-
wide, in particular for upper range buildings with thou-
sands of inhabitants and large elevator groups, e.g., the
Rockefeller Center, New York, or Coeur Defense, Paris,
where its transportation quality arid passenger interface
are unrivaled.

A 1O-digit keypaxl is installed in front of the eleva-
tor group where passengers enter the floor they want. to
travel to, e.g., 22. After input of the destination, the
elevator control system selects an elevator for the trans-
port of the passenger, which meets all requirements of

Figure 1: A Miconic-10TM keypad allows passengers to
enter their destination before they enter the elevator. A
display informs the passenger about the elevator that
will offer the most suitable transport.

this passenger and offers the fastest and most comfort-
able ride. The identification of the elevator, usually a
capital letter such as A,B,C, ... is displayed on the in-
put terminal indicating to the passenger which elevator
to take. An indicator in the door frame of the car con-
firms the destination this elevator will serve. This way,
crowding of passengers in front of and within elevator
cars is avoided. The performance of the elevator system
is improved, because passengers with identical destina-
tions can be grouped together and can thus reach their
destination faster azld more comfortable.

Mieonic-10TM can identify each passenger as an indi-
vidual being and obtain the following information about
her personal needs or service requirements, before she
has even entered the elevator:

Copyright © 2000, American Association |br
Artificial Intdligence. All rights merved. Koehler 331

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

l. The oriyin floor of the passenger is known from the
positio,~ of the .Micouic-10TM input ternfiual.

2. Tile destination rio(Jr is known from tile number the
passenger has iuput over the keypad.

3. If the wheelchair button is pressed on the terminal,
the system knows that special support for" the disabled
is requested. For example, it activates spoken indi(’a-
(ion of floors within the elevator in order to facilitate
the orientatiou of blind lmssengers. It informs the
cleva.tor that hinge," door ot)ening and closing times
should be observed and assigns more free space in the
elevalor cabin iu order Io accommoda.te a wheeh"hair.

Additionally, when identification devices are used,
utore individual requiremeuts can be associated to eaclt
passe,tger:

* The capacity requirement is takt’u into account when
selecting the elevator the im.ssenger will be assigned
to. For examl)lt’, a passenger requires large space
because she arrives with a shopping trolley.

¯ Conflicting Passenger Groups: Some g,’oups of pa.s-
scngers shoukl not meet withiu the elevator. For ex-
a,nph., the room service delivering the breakfiist and
a room maid emptyiug trash bins should not meet
in the elevator of a hotel for hygienic reasons. This
,ne}ms, if a passenger who belongs to a paxticular
prespecified group requests transportation, the co,t-
trol nmst choose an elevator such that no encoumers
between couflicting passengers carl ()(’cur inside a (’a,’.

¯ Attended Travel: Some pa.ssengers are uot allowed
t.o travel alone in the elevator, e.g., children. This
,nemm, at azw mome,~t of their travel, an acconq)a-
hying person nmst be, present in the car.

¯ Nonstop Travek For some passengers one might offer
a nonstop trip to their destinatkm: i.e., the elevalo,’
does not execute intermediate stops to serve other
passengers, but inmmdiately reaches the destination
of the passenger. For exmnlfle, blind p~mseltgers know
this way that the next stop is perfor,ned at. their des-
tiuation.

¯ VIP se’rvice: Another imss(:nger might be identified
as a VIP who is served by the eh,vator system with
highest priority. For example., firefighters or medical
cmergeucy personal should be sut)ject to VIP service.
Other passengers may be delayed, i.e., they have t.o
wait hmger for transportatiou or might be required
to travel a detour wheu boarding together with the
VIP. VIP service ’always comprises nonstol) travel.

¯ Dbect travel: An azmoying situation for a passenger
in an elevator (except from the tot’a] brake-down of
the system) occurs when she is transported opposite
to the desired directiou. For exmnple, iustead of go-
ing up from the h)bby to the sky deck aft.er the pas-
senger has boarded in the lobby, the eh,vator travels
down in order to pick up other passengers who imvc
requested a trip from the parking garage to the sky

332 AIPS-2000

deck. To avoid such confusing situations, we some-
times want to specify the requirement of dileet (revel.
which iufornm the elevator that, detours are not al-
lowed (while intermediate stops are still possible) a.s
long as a certain passenger is on hoard.

¯ Access re.strictions: A visitor in a building with ;~
certain security st,u,dard ,night be subje(:t to access
,’cstrictious that the (,hwator system should observe,
e.g.. some fioors ~rt’ never served when certMn Ims-
senge,’s are present in the olex’ator.

Given this infi)rmation, the elevator control software
is required to assign the passenger to an e]eva, l.or such
that all requirements are satisfied. The presence of new
fimc’tionalities such a,s space requirements, ;~ccess re-
st rictions, or V IP service makes this a tricky computa-
tional problem. Today, elevator systems can offer these
services only in a very limited way by pe,’manently or
teml)orarily restricting the use of elevators. For ex-
ample, to&w’s VIP service is implemented by takiug
;m ele~va.tor out of" Stmldard servic(,, then sending this
elevator to the VIP imssengvr, and--after the tmssen-
gt.r has a,’,’ived at. tter destiuation--turning the eh..vator
back to stancla,’d opt,rating ntode. It. is iml)ossibh: to
iutt,g,’ate and embed these flmctionalities directly into
tile usual normal operation of a group of elevators.

At Schindler. we are currently (tcveloping uew coutrol
software, which is able to guarantee these new functiou-
alities and at. tim same time further improves on I he por-
forln;tnce of elevator s3"st.e,ns. (.)ue part of this project
has beeu de.voted to the evaluation of new technologies
that cml handle the above mentiotmd requirernents and
that are open to future changes of elt, vator s3"stetns.
AI planitiug te(’huo]ogy is one of the promising ca.udi-
dates who has been in our focus. We au’e particularly
interested in domain-independent plamfing approaches,
because only these seem to oiler tire flexibility to lute-
grate fiiture changes without requiring a major calange
of algorith,ns and software. The basis of our iuvesti-
gation is the PDDL pbmning fornmlism (McDermott
$¢ others 1998), which emerged as the common p[at-
fornl for domain independent planners during the last
years. In the following, we will describe our application
iu more detail mt(l use PDDL to present one possible
way of formalizing it.

On a first, glance, the eh;vator control problem ap-
pears like. a typical scheduling problenl where the trans-
portation jobs of the individual eh;vator cars have to be
scheduled and optimized. But we obtain a very dif-
ficult inst.alice of a scheduling problem where several
jobs (the trmlsportation requests) have to be scheduled
in parallel ou the stone luachine (the elevator). Iu this
cumulative scheduliug problem we arc also faced with
variable duration tiums of the individual jobs, because
how long a passenger will need to reach her destination
is influenced by the l)arallel scheduling. Consequently,
none "off-the-shelf" algorithms are available to solve
our problem.

When anMyziug the problem front a planning per-

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

spective, it also seems to bear much of a typical plan-
ning task:

The initial state specifies where the elevator and the
passenger are located. The goal is to serve all passen-
gers. Possible actions in this domain model the opcra-
tions of the elevator system. Interestingly, elevator con-
trol appears to be a typical representative of a Immbcr
of discrete control t)roblems, which can be successfully
addressed using a planning approach, cf. the control
of space crafts described in (Weld 1999). In this ideal
technical environment, almost complete and reliable in-
formation is available. Besides this, state changes are
discrete and the number of possible states and actions is
rather limited. The problem of embedding planning (or
until today, the computation of situation-specific con-
trol) and execution has been solved long ago, cf. (Closs
1970).

Modeling of a Passenger
A passenger can be in three different states:

1. The passenger is waiting in front of the elevator door.
The elevator has to stop first at. the pa.ssenger’s origin
floor and subsequently at the passenger’s destination
floor.

2. The passenger has boarded the elevator. She is inside
the ele~-ator car and traveling to her destination floor
that, remains to be served.

3. The passenger has left, the elevator at her destina-
tion floor. She has been successfully served by the
elevator.

We introduce four predicates that characterize a pas-
senger:

¯ boarded(?p) is true if passenger ?p has boarded the
elevator, false otherwise.

¯ served(?p) is true if passenger ?p has left the elevator
at the desired destination floor, false otherwise.

¯ origin(?p,?£) and destin(?p,?£) are static predicates
that specify the origin and destination floor of a pas-
senger. They are obtained from the input, terminal
and cannot be changed by the planning system.

Note that a passenger is waiting if she is neither
boarded nor served. The three possible states of a
passenger--waiting, boarded, served are characterized
by" the following truth value distribution of the predi-
cates boarded and served:

waiting boarded served
served(?p) FALSE FALSE TRUE

boarded(?p) FALSE TRUE FALSE

We also introduce an additional predicate that will
be used later on to model the access restrictions that
apply to a passenger within a building:

¯ no-access(?p,?f) is a static predicate and says that
passenger ?p has no access to floor ?f.

In orde.r to model the individual service requirements
that we introduced in the previous section, we exploit
the type hierarchy that is available in PDDL.

Every passenger is first of all of type passenger If
she is subject to further services, she belongs to one or
several of the following subtypes of passenger.

¯ going_up: This and thc subsequent type charactcriza-
tion are used to make the travel direction of a passen-
ger explicit. A passengcr of the type going_up travels
upwards.
going_down: A passenger of the type going_down
travels downwards.
Both subtypes will be used to guarantee that the rc-
quirernent of direct travel can be fulfilled.

¯ going_nonstop: As the name suggests, a passenger of
this subtype is subject to nonstop travel.

¯ v/p: A passenger of this subtype is subjcct to VIP
service and travels with highest priority and nonstop
to her destination, i.e., she is served before any other
passengers are served.

¯ never "_a/one: A passenger of this subtype is subject
to the requirement of attended travel.

¯ attendmit: A passenger of this subtype is a pos-
sible candidate to accompany a passenger of type
never_alone.

¯ conflict_4, conflict_B: We introduce two conflicting
groups of passengers, which should never meet in the
car. More groups can be added easily, but this will
render the planning tasks more and more difficult.

Modeling of a Planning Task

A specific planning task can now be specified as follows:
The declaration of objects together with their types

informs the system about the passengers who have re-
quested the elevator service and specifies the floors that
exist within the building.

The initial stat.e description contains an origin and a
destin fact. for each passenger. It also contains boarded
facts for all passengers who have boarded the elevator.
If access restrictions apply, the corresponding no-access
facts also get specified. Furthermore, we have to make
explicit the topological structure of the building by in-
troducing an above(?fl, ?f2) prcdicate, which specifies
for each pair of floors that above floor ?fl lies floor ?f.~.
This representation is not very elegant, but here we
are limited by the pure logical representation language.
We cannot specify a transitive above relation, but need
to explicitly enumerate its transitive closure. Finally,
the position of the elevator is specified by introducing
a lift-aft?J) fact.

The goal for the planning system is to achieve
served(?p) for all passengers ?p. Figure 2 shows an
example in PDDL syntax.

In this example, we are given a building with 7 floors.
We only consider the planning problem of a single ele-
vator. This elevator is currently located at floor 1 and

Koehler 333

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

(define (problem example)
(:domain miconic)
(:objec’tsp4 - passenger

pa- v~p
p6 - going_up
p2 - going-nonsto1)
p l - conflict_A
p5 - conflict._B
fI t"2 t3 f4 f5 f6/7 - floor)

’:init
’above t’1 ~)
’above fl fS)
eabov(’/’2 [3)
’above £2 f6)
~above/3 f5)
above f4 fS)
above f5 t’6)

(origin pl t’2)
(origin p4 t7)
(destin pl f4)
(destin p4 t2.)
(no-access p4
(lift-at t"1))
(:goal
(feral1 (?p-

(abow.~ fl t3) (abow’ t"1
(above fl f6) (above 71/7)
(above/2. f.l) (above t"2 f5)
(above t2 ?7) (above/3
(above/3 f6) (above/’3/7)
(above f4 f6) (above f-I/7)
(above f5 [7) (above t’6
(origin 02 12) (origin p3 t"1)
(origin p5 fS) (origin p6
((test, in p2 f6) (destin p3
Otestin p5 f3) (destin p6 17)
/3) (no-access p4 f J) (no-access f6)

passenger) (,scr~vd ?1’))

Figure 2: Specification of an elevator planning problem
in PDDL.

6 passengers are waiting for transportation, l The type
declaration informs the planner about the specific scr-
vice modes that apply to each passenger. Passengers 1
and 5 should not meet each ()tiler because they belong
to diffcrent conflict sets. Passenger 3 is a VIP who must
be served first, while pa.ssonger 2 must travel without
intermediate stops. Passenger 6 travels upwards and is
thus subject to direct t~uvel, while other passengers can
possibly travel detours. Passenger 4 is not allowed to
reach floors 3.4, and 6 as specified in the initial facts.

The Actions in the Elevator Domain

An elevator can perform three basic tasks: it. can travel
upwards, it can travel downwards, and it can stop at a
specific floor.2

Two main features need Io be model(d: First, we
need to say wlmn an elevator is allowed to stop at a
given floor and second, we need to specify what effects
this stop will have. The domain model is grounded
on basic ;ussumptions about the rational behavior of
passengers:

~Note that no boarded facts are contained in the initial
state of the example, i.e., the elevator is initially empty.

2At a more fine grained level, an elevator can also open
and (:lose doors, but we do not need to go into such a detailed
description because a stop can be seen as comprising the
opening mid closing of the doors a~d it would also make the
lflanning problem for a planning system much hardcr.

334 AIPS-2000

¯ If an elevator stops at a floor, then all passengers
who are waiting at this floor for transportation, will
usually enter the cat" unless no space is available.

¯ All passengers who are inside the car will leave it
when the car stops at their destination floor.

We observe that. tile behavior of passengers cannot bc
planne.d -m~ elevator cannot force a passenger to travel
beyond the desireti destination once it has stopped at
this floor. Furthermore, only a stop of the elevator (in-
cluding the opelfing and closing of the doors) can im-
pose a change of state of a passenger.

We introduce now a first basic variant of the stop
operator, which reflects our observatiorLs. In this vari-
ant, no specific precondition is required to stop and the
conditional effects of the operator model the typical be-
havior of passengers:

stop(? f :[loor)
:precondition
:effect

V? p:passcngc’r

V?p:passenger

origin(?p,?f) A -1 served(?p)
boarded(?p)

destin(?p, ?f) A boarded(?p)
--1 boarded(?p) A served(?p).

We want to emphasize that tim state transitions
of passengers from -,served(?p) to boarded(?p) and
from boarded(?p) to -~boarded(?p)A served(?p) are side-
effects of the stop operator and are--to the best of
our knowledge-.most adequately modeled usirtg quan-
tilled conditiorml effects. We also remark that two stops
are necessary its order to achieve the two state transi-
tions e,ac.ti passenger nmst pass through and that pas-
sengers with coiuciding origin or destination floors can
be served with the same stop. A planning system is
now able to plan a sequence of stop actions such that
’all passengers reach their destination. It remains to
model the individual service requircments that belong
to each passengcr. This can be achieved by adding ad-
ditional preconditions to the stop operator that limit
its applicability to only legal situations.

Modeling of Service Requirements
In order to model the individual services, the planner
needs to supervise additional conditions when passen-
gers ch~mgc their state:

1. A i)assengcr is waiting at her origin. If the elevator
stops, the passenger will board the elevator and can
cause a possible conflict with other passengers who
are also t)oarding or who are traveling in the elevator
and will not leave the car at this stop.

2. A passenger is traveling in the elevator car and has
not yet reactmd her destination. If the elevator per-
forms an intermediate stop in order to serve other
passengers, the entry of these passengers can cause a
conflict with the traveling passenger.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Consequently, the precondition of the stop operator
needs to be augmented such that when a stop is planned
at a floor ?/, the planner checks if any passengers are
stiU waiting or if traveling passengers will remain in
the elevator. The following disjunction formalizes both
conditions:

waiting for the elevator

3"..’p : passenger [~ser.ved(?p) A origin(7p, 7f)]

[boarded(?p) A -,destin(?p,?I}

traveling in the elevator

It is important to observe that the predicates ori-
gin(?p,?[) and destination(?p,??) are static and can be
evahmted already during instantiation.

The implementation of the service requirements re-
quires to supervise passengers at the different stops
(origin, intermediate, destination) they have to transit
through, of. Figure 3.

service I °rigin I interm, stop I destin. [
conflicting passengers ¯ ¯

attended travel ¯ ¯ ¯
access restriction ¯ ¯

vii) ¯
nonstop travel ¯

capacity requirement ¯
direct travel ¯

Figure 3: Supervision of services at the origin, interme-
diate, or destination stop of a passenger who is subject
to the service.

Conflicting Passenger Groups
At each stop, the ele~’ator has to make sure that a
.joint travel of two passengers, who belong to conflicting
groups is impossible. This means, if a passenger ?p of
the conflict set A is waiting at floor ?f or if ?p is trav-
eling in the car and the floor ?f is not her destination,
then ,all passengers ?q of the conflict set B must satisfy
the following conditions:

1. ?q is not on board of the elevator

2. ?q has "already reached her destination, i.e., she is in
the served state, or her origin is another floor than
?y.
If ?q is not on board of the elevator, then no conflict

cazl be caused if ?p enters the sazne car. If ?q has al-
ready reached her destination, then no conflict can be
caused by a simultaneous boarding of both passengers
and also the situation that ?p is in the elevator (and
will remain there!) and ?q is boarding cannot occur.
On the other hand, a passenger leaving an elevator can
resolve a potential conflict when a conflicting passenger
wants to board at thc s~ne floor. Conflicting passen-
gers at floors different to the currently planned stop
cannot cause a conflict. We add therefore the following
precondition to the stop operator:

3 ?p: conflict__A [~served(?p) A origin(?p, ?f)]
[boarded(?p) A ~destin(fp, ?f
=¢, V ?q : conftict_B ~boarded(?q)

[served(7q) V -origin(?q, ?f)]

The same condition must be formulated for all pas-
sengers of the conflict set B in order to model the sym-
metry of this requirement:

3 ?p: conflict_B [~se.rved(7p) A origin(?p, ?f)]
[boarded(ep) A -,destin(?p, q
=~ V ?q : cont]ict_A -,boarded(?q)

[served(?q) V -,origin(?q, ?f)]

Attended Travel

This service requires that a passenger is never alone in-
side the elevator car. A simple solution is to choose
an attendant who has to travel together with this pas-
senger. A more elegant solution is to make sure that
other passengers board and travel a part of the route
together with the passenger. This means, the attendant.
can even change during the travel of the passenger who
is subject to this service.

Thus, when stopping at a floor ?f the following
conditions must be satisfied: If ?f is the origin of a
"never_a/one" passenger .7/9 and ?p is still waiting at ?f
or if ?p is in the car and ?f is not her destination, then
therc must be another passenger ?q who is of type atten-
dant and who satisfies one of the following conditions:

1. ?q is in the elevator and ?f is not her destination or

2. ?q is still waiting and her origin is ?f.

Iu the first situation, the attendant will remain in the
car, while in the second case, the attendant will board
the car according to our model of behavior. We obtain
the following precondition for the stop operator:

[3 ?p : [s ved(Tp) ori in(Tp, 71)]
V [boarded(Tp) ̂ -,destin(?p, ?/)]]

[3 7q: attendant [se ved(?q) o igin(7q, 7/)]
V [boarded(Tq) -, destin(?q,

Access Restrictions
The nmlti-functional use of modern buildings requires
to integrate security elements into the elevator control
software, e.g., we want to make sure that. passengers
cannot access floors they are not allowed to reach by
using the elevator. This means, an elevator can only
stop at a floor if uo access restriction is known for all
passengers who are on board. When assuming that pas-
sengers can never wait in restricted areas, then only
boarded passengers have to be supervised:

V?p: passenger [boarded(?p) ~ -,no-access(?p, ?

Koehler 335

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

An ~dternative representation of access restrictions is
possible when using types, e.g., we i11troduce a subtype
visitor and then modify the above precondition to

V?p : visitor boa~xled(?p) ~?f # el A... ^?f # ck

where c~ to e~ are those floors, which visitors are not
allowed to reach.

Nonstop Travel

If a passenger ha,s boarded the e.levator, who has to be
mmsported directly to her destination floor, i.e., with-
out internlediate stops, then the next possible stop of
the elewttor nmst be the destination of this passenger.
This is achieved by adding the following precomlit.ion
to the stop operator:

v ?p: ,joi,,g_,,o,.top [bo,,,’ded(?p)
Two passengers requesting ntmstop travel at the same

time are treated equally, i.e., one of t.hem has to accept
an intermediate stop if they travel in the santo elevator.

VIP Service
A VIP service can be offcred in different ways. In the
following variant, we require that a VIP request, over-
rides ’all other requests and that the elevator must im-
mediately serve the VIP origin and destination floors.
This means that other passengers are delayed and may
even traw.,1 a detour if their type classification does not
exclude detours. After all VIPs have reached their des-
tiuation, the remaining transportation requests can be
served. This implies that either only empty elevators
can serve VIP requests or an elevator is currently sorv-
ing only passengers, for which no direct travel is re-
quired. The additional precondition that we add to t.ho
stop operator expresses that a stop is possible at a floor
?f if either ’all VlPs have ’already reached their destina-
tion or if ?f is the origin or destination of a VlP wit,)
is known to the phmner.

V ?p : rip ser.ved(?p)
V
3 9.19 : rip o~gin(’?p, ?f) V destin{?p.. ?f)

So far, we have modeled the following services: access
restriction, nonstop travel, rip service, attended t~vel,
and conflicting passengers. These features can be h~m-
died by extending the stop operator with additional
preconditions, which we introduced above. The K)rmal-
ization is based on the commonly agreed features of
PDDL, which are ’also supported by various planners,
e.g., IPP, PRODIGY, SGP, or UCPOP. Figure 4 sum-
marizes the extended operator arid displays it in PDDL
syntax.

Beyond the Expressivity of PDDL

Three main aspects remain to be modcled, which will
yield us beyond what current domain-independent plan-
ning systems cart handle:

336 AIPS-2000

(:action stop
:parameters (?f - floor)
:precondRion
(and (lift-at ?f)
(imply (exists (?p - c, mflict_4)

(or (ram (not (served ?p)) (origin ?p
(mid (boarded ?p) (not (destin ?p ?f)))))

(fi~rall (?q - conflict_B)
(mid OJot (boarded "’ q)
(or (served ?q) hu~t (origin ?q ?f))))))

(impb" (exists (?p - conflict_B)
(or {and (not (served ?p)) (origin ?p

(and (boarded ?p) (not (destin ?p ?f)))))
(forall (?q - conflict_A)

(and (nor (boarded ?q)
(or (served ?q) (not (origin ?0)))))

(imply
(exists (?p - nover_ahme)
(or (and (origin ?p ?[) (riot (served

(and (boarded ?p) Not (destin ?p Ff)))))
(exists (?q - attendant)
(or Nnd (boarded ?q)

(not (desr.in ?q ?0))
(and (not (served ?q)) (origin ?q ?f)))))

(forall (?p - goingmtmstop)
(imply (ho~mJed ?p) (destin ?p ?f)))

(or (forall (?p- rip) (served
(,’xists (?p - rip)

(,n" (origin ?p ?r) (destin ?f)l))
(fi)rMl (?p - passenger)

(imply (no-access ?p ?f) (not (boarded ?p)))))
:,’Ili’ct (and
(forall (?p passenger)

(when (and (boa.rded ?p) (destin ?p
Omd (not (boarded ?p)) (served ?p))))

(fondl (’~p passenger)
(when (and (origin ?p ?f) (not (served ?p)

(boarded ?p))))

Figure 4: STOP Operator in PDDL Syntax.

First, we introduced the service that passengers
should travel directly without dctours, whk:h has not
been respected so far. This requirement implements
a kind of fairness strategy, which guarantees that
passengers-., once they have boarded the elevator- -.will
approach their destination and never visit floors that
~re not located between their origin and their destina-
tion. In certain situations where direct travel renders a
planning problem unsolvable, we would also like to relax
this restriction and allow a passe.nger to travel small de-
tours, with "smalr’ being situation- and/or passenger-
dependent.

Secondly, the capew.ity of the clevat.or cars needs to
be respected. So far, our domain model aasumes that
all passcngcrs who are waiting in front of thc elevator
will board when the car stops ,rod doors open. But this
is only true, if the car has enough space available in

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

order to accommodate all passengers. Otherwise, some
of them will be left behind and even worse, the planner
has no information about which of the passengers are
inside the car and which of the passengers are still wait-
ing. It has to assume that all designated passengers arc
on board and thus must stop at all their destinations.
But this is in fact the wrong behavior as the elevator
should only serve destinations of passengers who are
incteed on board, while destinations of passengers who
are left behind can be canceled, but their origin has to
be served again by this or another car. It is thcrefore
necessary to make sure that there is enough space to
accommodate all waiting passengers.

Third, we would like to gencrate plans that satisfy ad-
clitional criteria, i.e., they must not only be correct, but
.also be optimal solutions given an optimization function
that is externally defined.

Direct Travel without Detours

The requirement of direct travel can be modeled in sev-
eral ways. When restricting ourselves to PDDL, we
need to introduce two additional operators that model
the upward and downward movements of the elevator
and for each directly traveling passenger we need to add
the information whether she is traveling downwards or
upwards by typing her as going_up or going_down.

The location of the elevator is represented using the
lift-at(?/) predicate and tile stop operator requires as
a~ explicit precondition that the elevator must be at the
designated floor. The above(?fl, ?f2) predicate, which
we introduced in the beginning, specifies that floor ?f2
lies above floor ?fl.

The additional up and down operators guarantee
that the elevator never travels opposite to the direction
of a passenger whose traveling direction has been made
known to the system.

up (?. fl, ?.f2 :floor)
:precondition lib-ate?f1) A above(? fl, ? f2)

V ?p:going_down --1 boarded(?p)
:effect lift-at(? f2) A -~ lift-at(?.fl

down(?, ft, ?f2 :floor)
:precondition lift-at(?, fl) A above(? f.~, ? fl) A

V ?p:&’oing_up ~ boarded(?p)
:effect lift-at(? f2) A -i lift-a~f? fs).

Alternatively, one can define a total ordering over the
floor names by mapping names to ordinal numbcrs

ord : ?f > N

and then augment the precondition of the stop op-
erator by a test, which verifies that a passenger with
direct travel never visits floors that are not located
(ordered) between her origin and destination, i.e., the
number of each floor has to lie in the interval having
as bounds the numbers associated with the origin and
the destination of this passenger. Such a representation
would avoid the introduction of additional operators

and keeps plans shorter and only composed out of stop
actions. But unfortunately, we found no representation
formalisms neither planning algorithms which support
this kind of reasoning.

Space Requirements and Elevator Capacity
So far, the boarding and exiting of passengers occurs as
a side effect of a stop of the elevator. This means, the
capacity of the elevator is a resource, which is affected
by a universally quantified conditional effect. There are
no reasonabh: ways of modeling tile capacity in a purely
logical formalism. As a work around one could identify
space areas in the elevator and model them with a log-
ical constant. Each passenger would then be allocated
to a particular space in the elevator. But many plan-
ning systems would then start to permute passengers
over spaces during search. Although, symmetry analy-
sis such as it is available in STAN (Fox & Long 1999)
can prevent this, such a ttomain representation appears
rather questionable.

There are a few investigations in the recent plan-
ning literature (Wolfman & Weld 1999; Kautz & Walser
1999; Rintanen & Jungholt 1999; Walser, Iyer, &
Venkatasubramanyan 1999; Vossen et al. 1999; Koehler
1998) which investigate resource-optimal or resource-
constrained planning, but none of them cazl handle con-
ditional resource effects. The elevator domain is an in-
teresting example of a real-world resource-constrained
planning problem, where the planner needs to respect
the available space in the elevator, but no optimization
of the space usage is required. To model the space con-
straint one could introduce a resource variable $C which
records the availability of free space in the elevator. It
obtains an initial value, which equals the elevator capac-
ity if the car is empty. For each passenger, we know her
individual capacity requirements $C(?p) or assume a
standard value. Boarding passengers decrease the value
of $C, while exiting passcngcrs increase it relatively to
thc capacity that is available before the elevator stops.
To make sure that the value of $C never excecds the
predefined limit, one could either use a representation
language that declares predefined intervals for resources
and an algorithm that checks that no world state vio-
lates these declarations. Alternatively, tile planner has
to veri~" the available capacity in the antecedent of the
conditional effect.

Generation of Optimal Plans
The lack of optimization capabilities is an important
missing feature in today’s planning systems. For ex-
ample in this domain, one would like to minimize the
traveling or waiting times for all passengers. Given a
plan as an ordered sequence of stops, one can easily de-
termine its traveling costs because we know how long
a ride between two given floors will take (the planner
could look up the corresponding values in an externally
maintained database), how long each stop needs to last
such that all passengers can enter and exit, and which
of the passengers will enter and exit according to their

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

modeh;d behavior. It is not very difficult to develop
a domain-specifir search algorithm which is combined
with a branch-and-bound approach to achieve any de-
sired optimization. But domain-independent pl,~umrs
totally lack this feature and are-.-if at. M1.--able to gen-
erate shortest plans, e.g., if they are based on Graph-
plan.

Conclusions
The advantage of using a. general purpose planner lies
in the av~filability of ml autonmted reasoner, which is
able to solve the desired plamming tasks within sorer
reasonable time. No implemcntational work is neces-
sary and ~dl effort cml be concentrated on the domain
representation. The fornm] semantics of plan represen-
tation languages alh)wed in our case to study different
interpretations of the various service requirements and
to dcv(’lop a formal specification for them. One (’ml now
fi)rm~flly prove that the dom~fin representation possesses
certain properties. For example, it ineets the requirr-
mrnt that all passengers will reach their destination
if their behavior corresponds to the underlying model,
which is normally the case. A formal proof is possi-
ble by formulating and proving invariants of domain
properties that are valid over all states. Unfi)rtunately,
this has t.o be done by hand because no domain mod-
eling tools arc available. There are a few attempts dr~-
scribed in the literature, e.g., (Biundo & Stephan 1996;
1997) but this aspect of planning has not been in the
main focus of planning research. Besides this, we do
not know if the above representation is the best possible
one. Even fltrther, it. is also not clear which properties
define the quality of a domain model and how they can
be evahmted.

The strengths and weaknesses of today’s domain-
independent planning systems are the folk)wing:

+ experimental tool to explore domain specifications,
+ general-purpose problem solver,
+ representation languages allow to model quite com-

plex hehaviors,
+ fi)rmal semantics of representation languages sup-

ports specification of behaviors and proof of dom~dn
properties,

- no support of metric/resource constraints,
- no consideration of cost flmctions during planning,
- lack of optinfization capabilities, requirements.

We hope the dornain provides an interesting testbed
for other researchers. The operators have complex pre-
conditions mid effects, and we have identified open
issues PDDL cazmot handle. The PDDL domain
is available at http:/]www’inf°rmatik’uni-freiburg’de]-
koehler/elev.tar.gz. The domain c~m be scaled across
several dimensions a~ld modifications and extensions
should be easy to incorporate:

¯ Increasing rmmbers of passengers and floors ca~l be
specified.

338 AIPS-2000

¯ The topological structure of the building can be
changed. Instead of simple vertical hoist ways one
can also describe a branching structure in whi(~ a po-
tentially unlimited number of elevator cars can nmve.

¯ Different subsets of service requirements can be used
(together with the corresponding typing of passen-
gers) and also new services c,’m be added.

The current devek)immnt at Schindler is not based on
a. donmin-independent plarming algorithm, but uses a
problem-specific optimization algorithm. It is based on
the domain model we introduced here, but traz~slates
the declarative specification of the service requirements
into a piece of code. We consider the loss of declara-
tivity and the dependency on a specific implementation
to be the main dismtvmltage of domain-specific solu-
tions. Each slight ch~mge in the specification requires
nmdifications of the software, which also renders the ex-
perimentation with inhousc sinmlation tools nmch nmre
labor-intensive.

References
Biuudo.. S... and Stephan, W. 1996. Modeling planning
domains systematically. In ECAI-96, 599-603.
Biundo, S., and Stephan.. W. 1997. System assistance
in structured domain model development. In LICAI-
97.. 1240-1245.
Closs, G. 1970. The Computer Control of Passen-
ger Tra2Cfie in Large Lift Systems. Ph.D. Dissertation,
University of Manchester.
Fox, M., and Long, D. 1999. The detection and
exploitation of symmetry in planning problems. In
IJCAI-99, 956 961.
Kautz, H., ,’rod Walser, J. 1999. State-space planning
by integer optimization. In AAAI-99.
Kochler, J. 1998. Planning under resource constraints.
In ECAI-98, 489-493.
McDermott, D., et al. 1998. The PDDL Planning
Domain Definition Language. The AIPS-98 Planning
Competition Comitee.

Rintanen, J., aald Jungholt, H. 1999. Nunmric state
variables in constraint-based planning. In ECP-99.

Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On
the use of integer progr~mlming models in ai planning.
In IJCAI-99, 304--309.
Walser, J.; Iyer, R.; and Venl~xtasubramanyan, N.
1999. An integer local search method with applica-
tion to capacitated production planning. In AAAI-99.
Weld, D. 1999. Recent trends in planning. AI Maga-
zine 20(2):93-123.
Wolfman: S., and Weld, D. 1999. Thc LPSAT engine
and its application to resource planning. In LICAI-99,
310-316.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

