From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Elevator Control as a Planning Problem

Jana Koehler

Kilian Schuster

Schindler Lifts Ltd.
CH-6031 Ebikon
Switzerland
jana_koehler|kilian_schuster@ch.schindler.com

Abstract

The synthesis of elevator control commands is a diffi-
cult problem when new service requirements such as
VIP service, access restrictions, nonstop travel etc.
have to be individually tailored to each passenger. Al
planning technology offers a very elegant and flexible
solution because the possible actions of a control sys-
tem can be made explicit and their preconditions and
effects can be specified using expressive representation
formalisms. Based on the specification, a planner can
flexibly svnthesize the required control and changes in
the specification do not require any reimplementation
of the control software. In this paper, we describe
the application and investigate how currently avail-
able domain-independent planuning formalisms can cope
with it.

Introduction

The design of modern elevator systems requires new
flexibility in meeting the demands of customers. An
elevator is not only a mechanic device to implement
the vertical transport within a building. but becomes an
integrative part of the logistics infrastructure a building
offers to its inhabitants. This means to provide a variety
of transport modes to passengers and to integrate the
elevator into the security concept of the building.

In order to meet the needs of passengers, their desires
and requirements have to be identified by the elevator
system. For this purpose, Schindler Lifts Ltd. has devel-
oped Miconic-10™ -an clevator system based on so-
called Destination Control where passengers input their
destination before they enter the elevator, cf. Figure 1.
Miconic-10™ has been introduced into the market in
1996. More than 100 installations have been sold world-
wide, in particular for upper range buildings with thou-
sands of inhabitants and large elevator groups, e.g., the
Rockefeller Center, New York, or Coeur Defensc, Paris,
where its transportation quality and passenger interface
are unrivaled.

A 10-digit keypad is installed in front of the eleva-
tor group where passengers enter the floor they want to
travel to, c.g., 22. After input of the destination, the
clevator control system selects an clevator for the trans-
port of the passenger, which meets all requirements of

Copyright © 2000, American Association for
Artificial Inrelligence. All rights reserved.

Figure 1: A Miconic-10™ keypad allows passengers to
enter their destination before they enter the elevator. A
display informs the passenger about the elevator that
will offer the most suitable transport.

this passenger and offers the fastest and most comfort-
able ride. The identification of the elevator, usually a
capital letter such as A,B,C, ...is displayed on the in-
put terminal indicating to the passenger which elevator
to take. An indicator in the door frame of the car con-
firmns the destination this elevator will serve. This way,
crowding of passengers in front of and within elevator
cars is avoided. The performance of the elevator system
is improved, because passengers with identical destina-
tions can be grouped together and can thus reach their
destination faster and more comfortable.

Miconic-10™ can identify each passenger as an indi-

vidual being and obtain the following information about
her personal needs or service requirements, before she
has even entered the elevator:

Kochler 331

Frdm: Rirs anﬁﬁnrﬁmmﬁilubﬂwgr@gmom knowgniioreitde). Al rightsteekvedo avoid such confusing situations, we some-

position of the Miconie-10"™ input terminal.

2. The destination floor is known from the number the
passenger has input over the keypad.

3. If the wheclchair button is pressed on the terminal,
the svstem knows that special support for the disabled
is requested. For example, it activates spoken indica-
tion of floors within the elevator in order to facilitate
the orientation of blind passengers. It informs the
clevator that longer door opening and closing times
should be observed and assigns more free space in the
elevator cabin in order to accommodate a wheelchair.

Additionally, when identification devices are used,
more individual requiremnents can be associated to each
passenger:

e The capacity requirement is taken into account when
selecting the elevator the passenger will be assigned
to. For cxample, a passenger requires large space
because she arrives with a shopping trolley.

o Conflicting Pussenger Groups: Some groups of pas-
sengers should not meet within the elevator. For ex-
ample. the room service delivering the hreakfast and
a room maid emptying trash bins should not meet
in the clevator of a hotel for hygienic reasons. This
wmeans, if a passenger who belongs to a particular
prespecified group requests transportation, the con-
trol must choose an elevator such that no encounters
between conflicting passengers can occur inside a car.

o Attended Travel: Some passcngers are not allowed
to travel alone in the elevaror, e.g., children. This
means, at any moment of their travel, an accompa-
nyving person must be present in the car.

e Nonstop Truvel: For some passengers one might offer
a nonstop trip to their destination, i.c., the clevator
does not execute intermediate stops to scerve other
passengers, but immediately reaches the destination
of the passenger. For example, blind passengers know
this way that the next stop is performed at their des-
tination.

o VIP service: Another passenger might be identified
as a VIP who is served by the clevator system with
highest priority. For example, firefighters or medical
emergency personal should be subject 1o VIP service.
Other passengers may be delayed, i.e., they have to
wait longer for transportation or might be required
to travel a detour when boarding together with the
VIP. VIP service always comprises nonstop travel,

o Direct travel: An annoying situation for a passenger
in an elevator (except from the total brake-down of
the system) occurs when she is transported opposite
to the desired direction. For example, instead of go-
ing up from the lobby to the sky deck after the pas-
senger has boarded in the lobby, the elevator travels
down in order to pick up other passengers who have
requested a trip from the parking garage to the sky

332 AIPS-2000

times want to specify the requirement of direct travel,
which informs the clevator that detours are not al-
lowed (while intermediate stops are still possible) as
long as a certain passenger is on hoard.

o Access reslrictions: A visitor in a building with a
certain security standard might be subject 1o access
restrictions that the elevator system should obhserve,
e.g.. some floors are never served when certain puas-
sengers are presend. in the clevator.

Given this information. the elevator control software
is required to assign the passenger to an elevator such
that all requirements are satisfied. The presence of new
functionalitics such as space requirements, access re-
strictions, or VIP service makes this a tricky computa-
tional problem. Today, clevator systems can offer these
services only in a very limited way by permanently or
temporarily restricting the use of clevators. For ex-
ample, today’s VIP service is implemented by taking
an clevator out of standard service, then sending this
elevator to the VTP passenger, and—after the passen-
goer has arrived at her destination—turning the elevator
back to standard operating mode. It is impossible to
integrate and embed these functionalities directly into
the usual normal operation of a group of elevators.

At Schindler, we are currently developing new control
software, which is able Lo guarantec these new function-
alities and at the same time further improves on the per-
formance of elevator systems. One part of this project
has been devoted to the evaluation of new technologies
that can handle the above mentioned requirements and
that are open to future changes of elevator syvstetns.
Al planning technology is one of the promising candi-
dates who has been in our focus. We are particularly
interested in domain-independent planning approaches,
because only these scem to offer the flexibility to inre-
grate furture changes without requiring a major change
of algorithms and software. The basis of our investi-
gation is the PDDL planning formalism (McDermott
& others 1998), which emerged as the commmon plat-
form for domain independent planncers during the last
years. In the following, we will describe our application
in more detail and use PDDL to present one possible
way of formalizing it.

On a first glance, the elevator control problem ap-
pears like a typical scheduling problem where the trans-
portation jobs of the individual elevator cars have to be
scheduled and optimized. But we obtain a very dif-
ficult. instance of a scheduling problem where several
jobs (the transportation requests) have to be scheduled
in parallel on the same machine (the clevator). In this
cumulative scheduling problem we are also faced with
variable duration times of the individual jobs, because
how long a passenger will need to reach her destination
is influenced by the parallel scheduling. Consequently,
none “off-the-shelf” algorithms are available to solve
our problem.

When analyzing the problem from a planning per-

From: AIPS 200Q Proceedings. Gopyright © 200Q, AAAI ()
spectlve, 1 aClSO SE(:‘.IIISQEOQ)@XI‘ gmuc ()(il a typ&ca

ning task:

The initial state specifies where the elevator and the
passenger are located. The goal is to serve all passen-
gers. Possible actions in this domain model the opera-
tions of the elevator system. Interestingly, elevator con-
trol appears to be a typical representative of a number
of discrete control problems, which can be successfully
addressed using a planning approach, cf. the control
of space crafts described in (Weld 1999). In this ideal
technical environment, almost complete and reliable in-
formation is available. Besides this, state changes are
discrete and the number of possible states and actions is
rather limited. The problem of embedding planning (or
until today, the computation of situation-specific con-
trol) and execution has been solved long ago, cf. (Closs
1970).

Modeling of a Passenger
A passenger can be in three different states:

1. The passenger is waiting in front of the elevator door.
The clevator has to stop first at the passenger’s origin
floor and subsequently at the passenger’s destination
floor.

2. The passenger has boarded the elevator. She is inside
the elevator car and traveling to her destination floor
that remains to be served.

3. The passenger has left. the elevator at her destina-
tion floor. She has been successfully served by the
elevator.

We introduce four predicates that characterize a pas-
senger:

o hoarded(?p) is true if passenger ?p has boarded the
clevator, false otherwisc.

o served(7p) is true if passenger ?p has left the clevator
at the desired destination floor, false otherwise.

e origin(?p,?f) and destin(?p,?f) are static predicates
that specify the origin and destination floor of a pas-
senger. They are obtained from the input terminal
and cannot be changed by the planning system.

Note that a passenger is waiting if she is neither
boarded nor served. The three possible states of a
passenger—uwaiting, boarded, served are characterized
by the following truth value distribution of the predi-
cates boarded and served:

waiting | boarded | served
served(?p) | FALSE | FALSE | TRUE
boarded(?p) | FALSE | TRUE | FALSE

We also introduce an additional predicate that will
be used later on to model the access restrictions that
apply to a passenger within a building:

e no-access(?p,?f) is a static predicate and says that
passenger ?p has no access to floor ?f.

.aaai.org). All rights reserve
Shgiore)- All ok

order l?(') model the individual service requirements

that we introduced in the previous section, we exploit
the type hierarchy that is available in PDDL.

Every passenger is first of all of type passenger. If

she is subject to further services, she belongs to one or
several of the following subtypes of passenger:

e going_up: This and the subsequent type characteriza-
tion are used to make the travel direction of a passen-
ger explicit. A passenger of the type going.up travels
upwards.
going_down: A passenger of the type going.down
travels downwards.

Both subtypes will be used to guarantee that the re-
quirement of direct travel can be fulfilled.

e going_nonstop: As the name suggests, a passenger of
this subtype is subject to nonstop travel.

e vip: A passenger of this subtype is subject to VIP
service and travels with highest priority and nonstop
to her destination, i.e., she is served before any other
passengers are served.

e never_alone: A passenger of this subtype is subject
to the requirement of attended travel.

e attendant: A passenger of this subtype is a pos-
sible candidate to accompany a passenger of type
never_alone.

o conflict_A, conflict_B: We introduce two conflicting
groups of passengers, which should never meet in the
car. More groups can be added easily, but this will
render the planning tasks more and more difficult.

Modeling of a Planning Task

A specific planning task can now be specified as follows:

The declaration of objects together with their types
informs the system about the passengers who have re-
quested the elevator service and specifies the floors that
exist within the building,.

The initial state description contains an origin and a
destin fact. for each passenger. It also contains boarded
facts for all passengers who have boarded the elevator.
If access restrictions apply, the corresponding no-access
facts also get specified. Furthermore, we have to make
explicit the topological structure of the building by in-
troducing an above(? f1,?f2) predicate, which specifies
for cach pair of floors that above floor ? f; lies floor ? f,.
This representation is not very elegant, but here we
are limited by the pure logical representation language.
We cannot specify a transitive above relation, but need
to explicitly enumerate its transitive closure. Finally,
the position of the elevator is specified by introducing
a lift-at(?f) fact.

The goal for the planning system is to achieve
served(?p) for all passengers ?p. Figure 2 shows an
example in PDDL syntax.

In this example, we are given a building with 7 floors.
We only consider the planning problem of a single ele-
vator. This elevator is currently located at floor 1 and

Koechler 333

From: AIP. ings. i i ;
rcme!Am(!S 6000blfiggﬁeg_c‘|flﬂ S)(It(g)oyrlght © 2000, AAAI (www.aaai.org). All ng.htifeserve

)TO
(:domain miconic)
(:objects pd - passenger

p3 - vip

p6 - going_up

p2 - going_nonstop

pl - conflict_A

p5 - conflice_B

f1 2 £3 £1 {5 16 {7 - floor)

I

(:init

{above £l f2) (above f1 £3) (above f1 £4)
(above fl £5) (above f1 f6) (above f1 fT)
(above £2 £3) (above £2 [4) (above 2 £5)
(abuve 2 f6) (above £2 fT) (above £3 1)
(above £3 £5) (above £3 [6) (above 3 f7)
(ahove 1 £5) (above 4 f6) (above 1 {7)
(above f5 16) (above £5 f7) (above 16 £7)
(origin p1 £2) (origin p2 £2) (origin p3 1)
(origin p4 f7) (origin p5 £5) (origin p6 f6)
(destin pl £4) (desiin p2 £6) (destin p3 {4)
(destin pd £2) (destin p5 £3) (destin p6 f7)
(nu-access pd £3) (no-access pd £1) (no-access pd f6)
(lift-ar 11))

(:goal

(forall (7p - passenger) (served 7p))))

Figure 2: Specification of an elevator planning problem
in PDDL.

6 passengers arc waiting for transportation.! The type
declaration informs the planner about the specific ser-
vice modes that apply to each passenger. Passengers 1
and 5 should not meet each other because they belong
to different conflict sets. Passenger 3 is a VIP who must
be served first, while passenger 2 must travel without
intermediate stops. Passenger 6 travels upwards and is
thus subject to direct travel, while other passengers can
possibly travel detours. Passenger 4 is not allowed to
reach floors 3. 4, and 6 as specified in the initial facts.

The Actions in the Elevator Domain

An elevator can perform three basic tasks: it can travel
upwards, it can travel downwards, and it can stop at a
specitic floor.?

Two main features need to be modeled: First, we
need to say when an elevator is allowed to stop at a
given Hoor and second, we need to specify what effects
this stop will have. The domain model is grounded
on basic assumptions about the rational behavior of
passengers:

"Note that no boarded facts are contained in the initial
state of the example, i.e., the elevator is initially empty.

2At a more fine grained level, an elevator can also open
and close doors, but we do not need to go into such a detailed
description because a stop can be seen as comprising the
opening and closing of the doors and it would also make the
planning problem for a planning system much harder.

334 AIPS-2000

an eld'va,mr stops at a floor, then all passengers
who arc waiting at this floor for transportation, will
usually enter the car unless no space is available.

e All passengers who are inside the car will leave it
when the car stops at their destination floor.

We obscerve that the behavior of passengers cannot be
planned -an elevator cannot force a passenger to travel
beyond the desired destination once it has stopped at
this floor. Furthermore, only a stop of the elevator (in-
cluding the opening and closing of the doors) can im-
pose a change of state of a passenger.

We introduce now a first basic variant of the stop
opurator, which reflects our observations. In this vari-
ant, no specific precondition is required to stop and the
conditional effects of the operator model the typical be-
havior of passengers:

stop(” f:floor)
:precondition
-effect
Vp:passcnger origin(?p,7f) A — served(?p)
= boarded(?p)
V?p:passenger destin(?p,?f) A boarded(7p)
= = boarded(?p) A scrved(7p).

We want to emphasize that the state transitions
of passengers from —served(?p) to boarded(?p) and
frown boarded(?p) to —~boarded(?p) Aserved(?p) are side-
effects of the stop operator and are—to the best of
our knowledge- -most adequately modeled using quan-
tified conditional cffects. We also remark that two stops
are necessary in order to achieve the two state transi-
tions cach passenger must pass through and that pas-
sengers with coinciding origin or destination floors can
be served with the same stop. A planning system is
now able to plan a sequence of stop actions such that
all passengers reach their destination. It remains to
model the individual service requirements that belong
to each passenger. This can be achieved by adding ad-
ditional preconditions to the stop operator that limit
its applicability to only legal situations.

Modeling of Service Requirements

In order to model the individual services, the planner
needs to supervise additional conditions when passen-
gers changoe their state:

1. A passenger is waiting at her origin. If the elevator
stops, the passenger will board the elevator and can
causge a possible conflict with other passengers who
are also boarding or who are traveling in the elevator
and will not leave the car at this stop.

2. A passenger is traveling in the elevator car and has
not yet reached her destination. If the elevator per-
formus an intermediate stop in order to serve other
passengers, the entry of these passengers can cause a
conflict with the traveling passenger.

Frofdomsez;nent yrothedpracandjtion @fabe: sbapoperst@prg). Al rights reserved.

needs to be augmented such that when a stop is planned
at a floor ?f, the planner checks if any passengers are
still waiting or if traveling passengers will remain in
the elevator. The following disjunction formalizes both
conditions:

waiting for the elevator

A?p : passenger [;served(?p) Aorigin(?p,? fi] v
[boarded(?p) A —~destin(?p,?f)]

traveling in the elevator

It is important to observe that the predicates ori-
gin(?p,?f) and destination(?p,?f) are static and can be
evaluated already during instantiation.

The implementation of the service requirements re-
quires to supervise passengers at the different stops
(origin, intermediate, destination) they have to transit
through, cf. Figure 3.

[service [origin | interm. stop | destin. |
conflicting passengers ° ®
attended travel . . °
access restriction ° [
vip .
nonstop travel .
capacity requirement °
direct travel .

Figure 3: Supervision of services at the origin, interme-
diate, or destination stop of a passenger who is subject
to the service.

Conflicting Passenger Groups

At cach stop, the elevator has to make sure that a
joint travel of two passengers, who belong to conflicting
groups is impossible. This meauns, if a passenger 7p of
the conflict set A is waiting at floor 7f or if ?p is trav-
eling in the car and the floor ?f is not her destination,
then all passengers ?¢ of the conflict set B must satisfy
the following conditions:

1. 7¢ is not on board of the elevator

2. ?¢ has alrcady reached her destination, i.e., she is in
the scrved state, or her origin is another floor than
?f.

If ?¢ is not on board of the elevator, then no conflict
can be caused if ?p enters the same car. If ?g has al-
ready reached her destination, then no conflict can be
caused by a simultaneous boarding of both passengers
and also the situation that ?p is in the elevator (and
will remain there!) and ?¢ is boarding cannot occur.
On the other hand, a passenger leaving an elevator can
resolve a potential conflict when a conflicting passenger
wants to board at the same floor. Conflicting passen-
gers at floors different to the currently planned stop
cannot cause a conflict. We add thercfore the following
precondition to the stop operator:

3 ?p : conflict A [ﬂserved(?p) Aorigin(?p,7f)] v
[boarded(?p) A —destin(?p, ?f)]
= V ?q : conflict_B —boarded(?q) A
[served(?q) V —origin(?q,?f)]

The same condition must be formulated for all pas-
scngers of the conflict set B in order to model the sym-
metry of this requirement.:

3 7p: conflictB [ﬂserved(?p) Aorigin(?p,?f)] v
[boarded(?p) A —destin(?p, #f)]
= V ?¢ : conflict_A —boarded(?q) A
[served(?q) V —origin(?gq,?f)]

Attended Travel

This service requires that a passenger is never alone in-
side the elevator car. A simple solution is to choose
an attendant who has to travel together with this pas-
senger. A more elegant solution is to make sure that
other passengers board and travel a part of the route
together with the passenger. This means, the attendant
can even change during the travel of the passenger who
is subject to this service.

Thus, when stopping at a floor ?f the following
conditions must be satisfied: I ?f is the origin of a
“never_alone” passenger 7p and ?p is still waiting at ?f
or if ?p is in the car and ? f is not her destination, then
there must be another passenger ?¢ who is of type atten-
dant and who satisfies one of the following conditions:

1. 7¢ is in the elevator and ?f is not her destination or
2. ?q is still waiting and her origin is ?f.

In the first situation, the attendant will remain in the
car, while in the second case, the attendant will board

the car according to our model of behavior. We obtain
the following precondition for the stop operator:

[EI ?p : never_alone [ﬂser'ued(?p) Aorigin(?p.?f)]

V [boarded(?p) A ~destin(?p, ?f)]]
=
[3 ?q : attendant [~served(?q) A origin(?q,7f))

V [boarded(?q) A —~destin(?q,%f)]]

Access Restrictions

The multi-functional use of modern buildings requires
to integrate security elements into the elevator control
software, c.g., we want to make sure that passengers
cannot access floors they are not allowed to reach by
using the elevator. This means, an elevator can only
stop at a floor if no access restriction is known for all
passengers who are on board. When assuming that pas-
sengers can never wait in restricted areas, then only
boarded passengers have to be supervised:

Y?p : passenger [boarded(?p) = —no-access(?p,? f)]

Koehler 335

From: P SO RAS S PRSIt TN DL AMLAS LA ABRLYY): All riofriaceimvstop

possible when using types, c.g., we introduce a subtype
visitor and then modify the above precondition to

V?p : visitor boarded(?p) =>7fF Loy AL A £ o

“where ¢; to ¢ are those floors, which visitors are not
allowed to reach.

Nonstop Travel

If a passenger has boarded the elevator, who has to be
transported directly to her destination floor, i.e., with-
out intermediate stops, then the next possible stop of
the clevator must be the destination of this passenger.
This is achieved by adding the following precondition
to the stop operator:

Y ?p : going_nonstop [bourded('.’p) = destin(?p,? f)]

Two passengers requesting nonstop travel at the same
time are treated equally, i.e., one of them has to accept
an intermediate stop if they travel in the same elevator.

VIP Service

A VIP service can be offered in different ways. In the
following variant, we requirc that a VIP request over-
rides all other requests and that the elevator must -
mediately serve the VIP origin and destination floors.
This means that other passengers are delayed and may
even travel a detour if their type classification does not
exclude detours. After all VIPs have reached their des-
tination, the remaining transportation requests can be
served. This implies that either only empty elevators
can serve VIP requests or an clevator is currently serv-
ing only passengers, for which no direct travel is re-
quired. The additional precondition that we add to the
stop operator expresses that a stop is possible at a floor
?f if cither all VIPs have already rcached their destina-
tion or if ?f is the origin or destination of a VIP who
is known to the planncr.

VY ?p:vip served(?p)
\"
A?p:vip origin(?p,?f) V destin(’p, 7 f)

So far, we have modeled the following services: access
restriction, nonstop travel, vip service, attended travel,
and conflicting passengers. These features can be han-
dled by extending the stop operator with additional
preconditions, which we introduced above. The formal-
ization is based on the commonly agreed features of
PDDL. which are also supported by various planners,
e.g., IPP, PRODIGY, SGP, or UCPOP. Figure 4 sum-
marizes the extended operator and displays it in PDDL
syntax.

Beyond the Expressivity of PDDL

Three main aspects remain to be modeled, which will
vield us beyond what current domain-independent plan-
ning systems can handle:

336 AIPS-2000

:parameters (’f - floor)
:precondition
(and (lift-at *f)
(imply (exists (?p - conflict_A)
(or (and (not (served ?p)) (origin ?p 7f))
(and (boarded ?p) (not (destin ’p 7f)))))
(forall (?q - couflict_B)
fand (not (hoarded ?q))
(or (served ?q) (not (origin ?q ?f))))))
(iply (exists (?p - conflict_B)
(or (and (not (served 7p)) (origin 7p 7f))
(and (boarded ?p) (not (destin ?p 7f)}}))
(forall (?q - conflict_4)
(and (not (boarded 7q))
{or (served ?q) (not (origin ?q ?f))})))
(imply
(exists (?p - never_alone)
(or (and (origin ?p ?’f) (not (scrved 7p)))
(and (boarded 7p) (not (destin 7p 7f)))))
(exists (?q - attendant)
(or (and (boarded ?q)
(not (destin ?q 7))
(and (not (served ?7q)) (origin ?q ’f)))))
(forall (?p - going_nounstop)
(imply (boarded 7p) (destin ?p 7f)))
(or (forall (?p - vip) (served ?p))
(exists (7p - vip)
(or (origin ?p ?f) (destiu ?p ?f))))
(forall (?p - passenger)
(imply (no-access *p 7f) (not (boarded 7p)))))
:eflect (and
(forall (Yp - passenger)
(when (and (boarded ?p) (destin ?p 7f))
(and (not (hoarded 7p)) (served 7p))))
(forall (?p - passenger)
(when (and (origin ?p ’f) (uot (scrved 7p)))
(boarded 7p)))))

Fignre 4: STOP Operator in PDDL Syntax.

First, we introduced the service that passengers
should travel directly without, detours, which has not
been respected so far. This requirement implements
a kind of fairness strategy, which guarantees that
passengers- once they have boarded the elevator -will
approach their destination and never visit floors that
are not located between their origin and their destina-
tion. In certain situations where direct travel renders a
planning problem unsolvable, we would also like to relax
this restriction and allow a passenger to travel small de-
tours, with “small” being situation- and/or passenger-
dependent.

Secondly, the capacity of the clevator cars needs to
be respected. So far, our domain model assumes that
all passengers who are waiting in front of the clevator
will board when the car stops and doors open. But this
is only true, if the car has enough space available in

5?&&“-8%%9%%5?88%%%ﬂl%?ggggﬂkgx%(?o&ﬁﬁ%wg?ﬁﬁ(? rg)- Al Qﬂ?f%@éﬁ%"%‘fans shorter and only composed out of stop

of them will be left behind and even worse, the planner
has no information about which of the passengers are
inside the car and which of the passengers are still wait-
ing. It has to assume that all designated passengers arc
on board and thus must stop at all their destinations.
But this is in fact the wrong behavior as the elevator
should only serve destinations of passengers who are
indeed on board, while destinations of passengers who
are left behind can be canceled, but their origin has to
be served again by this or another car. It is therefore
necessary to make sure that there is enough space to
accommodate all waiting passengers.

Third, we would like to generate plans that satisfy ad-
ditional critcria, i.e., they must not only be correct, but
also be optimal solutions given an optimization function
that is externally defined.

Direct Travel without Detours

The requircment of direct travel can be modeled in sev-
eral ways. When restricting ourselves to PDDL, we
need to introduce two additional operators that model
the upward and downward movements of the elevator
and for each directly traveling passenger we need to add
the information whether she is traveling downwards or
upwards by typing her as going_up or going_down.

The location of the elevator is represented using the
lift-at(?f) predicate and the stop operator requires as
an cxplicit precondition that the elevator must be at the
designated floor. The above(?f,,7f2) predicate, which
we introduced in the beginning, specifies that floor ? fo
lies above floor 7 f;.

The additional up and down operators guarantee
that the elevator never travels opposite to the direction
of a passenger whose traveling direction has been made
known to the system.

up(? f1,? f2:floor)

:precondition lift-at(? f1) A above(? fi,7f2) A
V ?p:going.down - boarded(?p)

-effect lift-at(? f2) A — lift-at(?fy).

down(?f,,? f,:floor)

:precondition lift-at(? f1) A above(?fs,7f1) A
V ’p:going_up - boarded(?p)

:effect lift-at(? f2) A - lift-at(? f1).

Alternatively, one can define a total ordering over the
floor names by mapping names to ordinal numbers

ord: 7f — N

and then augment the precondition of the stop op-
erator by a test, which verifies that a passenger with
direct travel never visits floors that are not located
(ordered) between her origin and destination, i.e., the
number of each floor has to lie in the interval having
as bounds the numbers associated with the origin and
the destination of this passenger. Such a representation
would avoid the introduction of additional operators

actions. But unfortunately, we found no representation
formalisms neither planning algorithms which support
this kind of reasoning.

Space Requirements and Elevator Capacity

So far, the boarding and exiting of passengers occurs as
a side effect of a stop of the clevator. This means, the
capacity of the elevator is a resource, which is affected
by a universally quantified conditional effect. There arc
no reasonable ways of modeling the capacity in a purely
logical formalism. As a work around one could identify
space areas in the elevator and model them with a log-
ical constant. Each passenger would then be allocated
to a particular space in the elevator. But many plan-
ning systems would then start to permute passengers
over spaces during search. Although, symmetry analy-
sis such as it is available in STAN (Fox & Long 1999)
can prevent this, such a domain representation appears
rather questionable.

There are a few investigations in the recent plan-
ning literature (Wolfman & Weld 1999; Kautz & Walser
1999; Rintanen & Jungholt 1999; Walscr, Iyver, &
Venkatasubramanyan 1999; Vossen et al. 1999; Koehler
1998) which investigate resource-optimal or resource-
constrained planning, but none of them can handle con-
ditional resource effects. The elevator domain is an in-
teresting example of a real-world resource-constrained
planning problem, where the planner needs to respect
the available space in the elevator, but no optimization
of the space usage is required. To model the space con-
straint one could introduce a resource variable $C which
records the availability of free space in the elevator. It
obtains an initial value, which equals the elevator capac-
ity if the car is empty. For cach passenger, we know her
individual capacity requirements $C(7p) or assume a
standard value. Boarding passengers decrease the value
of $C, while exiting passengers increase it relatively to
the capacity that is available before the elevator stops.
To make sure that the value of $C never exceeds the
predefined limit, one could either use a representation
language that declares predcefined intervals for resources
and an algorithm that checks that no world state vio-
lates these declarations. Alternatively, the planner has
to verify the available capacity in the antecedent of the
conditional effect.

Generation of Optimal Plans

The lack of optimization capabilities is an important
missing feature in today’s planning systems. For cx-
ample in this domain, one would like to minimize the
traveling or waiting times for all passengers. Given a
plan as an ordered sequence of stops, one can easily de-
termine its traveling costs because we know how long
a ride between two given floors will take (the planner
could look up the corresponding values in an externally
maintained databasc), how long each stop needs to last
such that all passengers can enter and exit, and which
of the passengers will enter and exit according to their

Koehler 337

From: AIR P ings. ight © 2 irorg). All right . : _—
Mo (313&0881“1%%8%‘?'” 5 EoRoe veryoa?ﬂlA(ﬁﬁll.(Vt\.'ng%%%lgrﬁ) "% Sﬁls(?nf%dpologlcal structure of the building can bhe

a domain-specific search algorithm which is combined
with a branch-and-bound approach to achieve any de-
sired optimizatioun. But domain-independent planners
totally lack this feature and are—if at all--able to gen-
erate shortest plans, e.g., if they are based on Graph-
plan.

Conclusions

The advantage of using a general purpose planner lies
in the availability of an automated reasoner, which is
able to solve the desired planning tasks within some
reasonable time. No implementational work is neces-
sary and all effort can be concentrated on the domain
representation. The formal semantics of plan represen-
tation languages allowed in our case to study different.
interpretations of the various service requirements and
to develop a formal specification for them. One can now
formally prove that the domain representation possesses
certain properties. For example. it meets the require-
ment that all passengers will reach their destination
if their behavior corresponds to the underlying model,
which is normally the case. A formal proof is possi-
ble by formulating and proving invariants of domain
properties that are valid over all states. Unfortunately,
this has 1o be done by hand because no domain mod-
cling tools are available. There are a few attempts de-
scribed in the literature, e.g., (Biundo & Stephan 1996;
1997) but this aspect of planning has not been in the
main focus of planning research. Besides this, we do
not know if the above representation is the best possible
one. Even further, it is also not clear which properties
detine the quality of a domain model and how they can
be evaluated.

The strengths and weaknesses of today’s domain-
independent planning systeins are the following:

+ experimental tool to explore domain specifications,

+ general-purpose problem solver,

+ represcntation languages allow to model quite com-
plex behaviors,

+ formal semantics of representation languages sup-
ports specification of behaviors and proof of domain
properties,

- no support of metric / resource constraints,
- no consideration of cost functions during planning,
- lack of optimization capabilities. requirements.

We hope the domain provides an interesting testbed
for other researchers. The operators have complex pre-
conditions and effects, and we have identified open
issues PDDL cannot handle. The PDDL domain
is available at http://www.informatik.uni-freiburg.de/”
kochler/elev.tar.gz. The domain can be scaled across
several dimensions and modifications and extensions
should be easy to incorporate:

e Increasing numbers of passengers and floors can be
specified.

338 AIPS-2000

changed. Instead of simple vertical hoist ways one
can also describe a branching structure in which a po-
tentially unlimited number of elevator cars can move.

o Different subsets of service requirements can be used
(together with the corresponding typing of passen-
gers) and also new services can be added.

The current development at Schindler is not based on
a domain-independent planning algorithm, but uses a
problem-specific optimization algorithm. It is based on
the domain model we introduced here, but translates
the declarative specification of the service requirements
into a piece of code. We consider the loss of declara-
tivity and the dependency on a specific implementation
to be the main disadvantage of domain-specific soli-
tions. Each slight change in the specification requires
modifications of the software, which also renders the ex-
perimentation with inhouse simulation tools much more
labor-intensive.

References

Biundo, S., and Stephan, W. 1996. Modeling planning
domains systematically. In ECAI-96. 599-603.
Biundo, S., and Stephan, W. 1997. System assistance
in structured domain model development. In LJCAI-
97, 1240-1245.

Closs, G. 1970. The Computer Control of Passen-
ger Traffic in Large Lift Systems. Ph.D. Dissertation,
University of Manchester.

Fox, M., and Long, D. 1999. The detection and
exploitation of symmetry in planning problems. In

1JCAI-99, 956 961.

Kautz, H., and Walser, J. 1999. State-space planning
by integer optimization. In AAAI-99.

Kochler, J. 1998. Planning under resource constraints.
In ECAI-98, 489-493.

McDermott, D., et al. 1998. The PDDL Planning
Domain Definition Language. The AIPS-98 Planning
Competition Comitce.

Rintanen, J., and Jungholt, H. 1999. Numecric state
variables in constraint-based planning. In ECP-99.
Vossen, T.; Ball, M.; Lotem, A.; and Nau, D, 1999. On
the use of integer programming models in ai planning.
In IJCAI-99, 304 -309.

Walser, J.; Iyver, R.; and Venkatasubramanyan, N.
1999. An integer local search method with applica-
tion to capacitated production planning. In AAAJ-99.
Weld, D. 1999. Recent trends in planning. A Maga-
zine 20(2):93-123.

Wolfman, S., and Weld, D. 1999. The LPSAT engine
and its application to resource planning. In IJCAI-99,
310-316.

