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Abstract

The paradigm ofadvisable planning, in which a user
provides guidance to influence the content of solu-
tions produced by an underlying planning system, holds
much promise for improved usability of planning tech-
nology. The success of this approach, however, re-
quires that a planner respond appropriately when pre-
sented with conflicting advice. This paper introduces
two contrasting methods for planning with conflicting
advice, suited to different user requirements.Soft en-
forcementembodies a heuristic approach that prefers
planning choices that are consistent with specified ad-
vice but will disregard advice that introduces conflicts.
Soft enforcement enables rapid generation of solutions
but with suboptimal results.Local maxima searchnavi-
gates through the space of advice subsets, using strict
enforcement techniques to identify satisfiable subsets
of advice. As more time is allocated, the search will
yield increasingly better results. The paper presents
specific algorithms for soft enforcement and local max-
ima search, along with experimental results that illus-
trate their relative strengths and weaknesses in trading
computation time for advice satisfaction.

Introduction

Research in AI planning has focused primarily on fully au-
tomated techniques for generating plans that satisfy user
goals. In recent years, however, there has been a grow-
ing recognition that many users are reluctant to relinquish
full control to an automated system. As a result, there has
been increased interest in paradigms that explicitly draw
the user into the planning process (Ferguson & Allen 1998;
Smith, Lassila, & Becker 1996; Burstein & McDermott
1994; Tate, Dalton, & Levine 1998).

In previous work, we introduced an approach in which
users canadvisean automated planning system in order to
influence the content of the solutions that it produces (My-
ers 1996). Advice consists of task-specific constraints on
both the desired solution and the refinement decisions that
underlie the planning process. Advice is specified in a high-
level language designed to be natural and intuitive for users,
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and then operationalized into constraints that direct the un-
derlying planning technology during plan construction. As
such, advice enables users to guide the planning process,
with the planning system performing the time-consuming
work of filling in low-level details and detecting potential
problems.

(Myers 1996) presented a formal language forstrategic
advice, which supports recommendations on how goals and
actions are to be accomplished, along with a model ofstrict
satisfactionthat interprets advice as hard constraints. That
paper included an algorithm for plan generation with advice
enforcement that is both sound and complete (under well-
specified conditions) for the strict satisfaction model. While
developed originally for hierarchical task network (HTN)
planning (Erol, Hendler, & Nau 1994), the models apply
more broadly to any hierarchical planning framework.

With strict enforcement, no solution is returned in the
event that the full set of specified advice cannot be satis-
fied. In general, however, users may specify advice that
is not satisfiable within the limits of the problem domain.
For this reason, an advice enforcement mechanism is needed
that will behave sensibly in the face of conflicting advice.

Two characteristics make planning with conflicting advice
difficult. First, the recognition of conflicts is an intractable
problem: in the worst case, the unsatisfiability of one or
more pieces of advice will require exhaustive search through
the space of possible solutions. Second, current plan genera-
tion frameworks treat constraints as hard, making it difficult
to support relaxation of constraints derived from advice.

This paper introduces two complementary approaches for
planning with conflicting advice, grounded in a model of
partial satisfactionfor a set of advice. Given the intractable
nature of the problem in the general case, we focus on meth-
ods at opposite ends of the time/quality tradeoff. The first,
minimize introduced local advice violations (MILAV), be-
longs to the class ofsoft enforcementmethods which are
guaranteed to produce a plan but may ignore advice that
could be satisfiable. MILAV performs a limited amount of
analysis at each tasknode to rank planning choices by the
number of advice violations that each would introduce. The
second,local maxima search, is rooted in strict enforcement
methods. It employs directed search through the space of
subsets of the user-specified advice to identify increasingly
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larger sets of satisfiable advice, along with a variant of simu-
lated annealing to enable discovery of solutions from differ-
ent portions of the search space. The local maxima search
method embodies ananytimeflavor, yielding increasingly
better results when allocated additional time.

The paper begins with a review of strategic advice, cov-
ering both its definition and the corresponding model for
strict satisfaction. Models for partial satisfaction of advice
are then discussed, along with issues related to requirements
for advice relaxation methods. Next, the soft enforcement
and local maxima search methods are defined and exper-
imental results presented that validate their effectiveness.
These methods have been implemented and evaluated within
an Advisable Planner prototype (Myers 1999) built on the
SIPE–2 planner (Wilkins 1988).

Strategic Advice
Strategic advice expresses recommendations on how tasks
are to be accomplished, in terms of specific approaches to
pursue and entities to employ. Strategic advice comes in
two forms:role andmethod. Role advice constrains the use
of domain entities in solving tasks, while method advice fur-
ther constrains the type of approach used. Strategic advice
designates not only properties of the resultant partially or-
dered set of actions generally viewed as “the plan”, but also
the underlying justifications for that solution.

Strategic advice is defined in terms of adomain metathe-
ory. A standard planning domain is modeled in terms of
three basic types of element:individualscorresponding to
real or abstract objects in the domain,relationsthat describe
characteristics of the world and individual world states, and
operators that describe ways to achieve tasks. The do-
main metatheory provides an abstracted characterization of
the planning domain that specifies key semantic differences
among operators, planning variables, and instances. This ab-
straction provides users with the means to describe desired
solution characteristics in natural, semantically meaningful
terms. The metatheory is built around two main constructs:
featuresandroles.

A featuredesignates an attribute of interest for an oper-
ator that distinguishes it from other operators that could be
applied to the same task. For example, operators that can be
used to refine tasks of moving from location X to location Y
may involve travel by air, land, or water; each of these media
could be modeled as a feature. Because there can be multi-
ple operators that apply to a particular task, features provide
a way of abstracting from the details of an operator to dis-
tinguishing attributes that might be of interest to users. Note
that features differ from operator preconditions in that they
do not directly restrict use of operators by the planner.

A role corresponds to a capacity in which a domain ob-
ject is to be used within an operator. Roles map to indi-
vidual variables within a planning operator. For instance,
an air transportation operator within a travel domain could
have variableslocation.1 and location.2 that fill
the roles ofOrigin andDestination, as well as a variable
airline.1 that fills the role ofCarrier. A comparable sea

transportation operator may have these same roles, although
with the planning variablecruise-ship.1 for the role
Carrier.

Strategic advice is formulated in terms ofrole-fills and
activities. Activitiesconstitute abstract tasks relative to the
underlying planning domain, and are defined in terms offea-
turesandroles. A given activity can have multiple features;
for example, an activity corresponding to a bike tour could
have the featuresVacation, Bike, andInexpensive. Role-
fills are specifications of objects to be used in certain roles;
they may name explicit individuals, or declare a set of re-
quired and prohibited attributes.

Role Advice

Role advice either prescribes or restricts the use
of domain entities for filling certain capacities in
the plan. Role advice is characterized by the tem-
plate:<Use/Don’t Use> <object> in <role>
for <context-activity> . In general, role advice
consists of one or morerole-fill specifications, acontext
activity, and apolarity indicating whether the advice is
prescribing or prohibiting the role-fill. The following
directives provide examples of role advice:

Stay in 3-star ensuite hotels while vacationing in
Scotland.
Layovers longer than 90 minutes are unaccept-
able for domestic flights.

The first directive imposes requirements on accommoda-
tions during vacations in a given area. The second prohibits
flights with long layovers. Here, we use natural language
renderings of advice to aid understandability, but it is easy to
map to our structured model. For the first example, the con-
text activity is defined as tasks with featureVacation, and
with role Location filled by Scotland. The advice dictates
that the filler for the roleAccommodation be an object that
belongs to the class3-star-hotel and haveensuite facilities
as an attribute.

Method Advice

Method advice imposes restrictions on the ap-
proaches that can be used in solving a class
of goals. It is characterized by the template:
<Use/Don’t use> <advised-activity> for
<context-activity> . Thus, method advice consists
of context and advised activities, along with a polarity
expressing prescription or proscription. For example:

Find a package bike tour starting in Athens for the
vacation in Greece.
Don’t fly between cities less than 200 miles apart.

The first piece of method advice declares that the approach
used for a particular portion of the trip should have cer-
tain features (i.e., Bike, Package) and role constraints (i.e.,
Start-Location is Athens). The second specifies restric-
tions on the approach to be taken for solving a class of trans-
port goals.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



Strict Satisfaction Model

The model of strict satisfactionof strategic advice is
grounded in the overall problem-solving context in which
planning decisions are made, rather than being restricted to
the final set of actions that results. To see why, consider the
adviceStay in 3-star ensuite hotels while vacationing in
Scotland in the context of a trip that includes both business
and holiday travel. A final plan would consist of a set of
actions at the level of movements to destinations, stays in
accommodations, and tours of various sights. Examination
of a particular accommodation action in the final plan will
not reveal its purpose (business or pleasure); hence, it is not
possible to verify that the supplied advice has been followed.

The formal definition of satisfaction for strategic advice
can be found in (Myers 1996); we provide an informal sum-
mary here. Strict advice satisfaction builds on the concepts
of satisfactionfor role-fills andmatchesfor activities by a
plan wedge(i.e., a node and all of its descendants). A given
plan wedge satisfies a role-fill iff for eachnode in the plan
wedge where the role isresolved, the associated role con-
straint is satisfied. A role is resolved iff the operator applied
to that node contains a variable that has been declared in the
domain metatheory to fill that role. A plan wedge matches
the specification of anactivity iff the operator applied to the
node at the root of the wedge has the features specified by
the activity, and the role-fills for the activity are satisfied.

For a piece of positive role advice, satisfaction requires
that for any plan node that matches thecontext-activityfor
that advice, every descendant node satisfies the role-fill con-
straints in the advice. For negative role advice, the nega-
tion of the role-fill constraints must be satisfied. A node that
matches the context-activity for a piece of advice is called a
trigger nodefor the advice.

The semantics for method advice differ from those for
role advice. In the negative polarity case, for any planning
node that matches the context activity, there should be no
descendant node that matches the advised activity. Positive
method advice requires that for any plan node that matches
the advicecontext-activity, the conditions ofexistenceand
prescriptionhold. Existence requires that there be some de-
scendant node that matches theadvised activityof the advice
(i.e., do it at least once). Prescription requires that there be
no descendant node that both does not match theadvised
activity and could be replaced by one that does (i.e.,do it
whenever possible).

Advice Relaxation Models

Partial satisfaction of an advice set can be defined at dif-
ferent levels of granularity. Anadvice-levelmodel would
be grounded in the satisfaction of an individual piece of ad-
vice, encompassing the full set of constraints that it intro-
duces. As such, an advice-level model treats advice as a non-
decomposable unit. In contrast, aconstraint-levelmodel
would be grounded in the satisfaction of the constituent con-
straints that comprise individual pieces of advice. With such
models, satisfaction of a subset of the constraints for a piece

of advice is meaningful. As such, the constraint-level mod-
els support partial satisfaction for individual pieces of ad-
vice.

The strict satisfaction model for strategic advice com-
bines both domain-level constraints and restrictions on op-
erator selection, resulting in a heterogeneous space of deci-
sion points. This heterogeneity makes it difficult to define a
constraint-level model of partial satisfaction for advice that
is both conceptually appealing and readily implementable.
For this reason, we adopt an advice-level model. In particu-
lar, we seek to maximize advice satisfaction in accord with
the following definition.

Definition 1 (Maximal Advice Satisfaction) Let A be a
set of advice for a planning problemP . A subsetA′ ⊆ A
is maximally satisfiablefor A andP iff there is some solu-
tion to P that satisfiesA′ but no solution that satisfies some
A′′ such thatA′ ⊂ A′′ ⊆ A. A solution toP that satisfies a
maximally satisfiable advice set is called anadvice maximal
plan.

Ideally, a framework for advice relaxation would produce
a set of advice maximal plans that covers the space of max-
imal advice subsets. However, the time required to identify
such solutions can be prohibitive. An advice set of sizen
defines 2n advice subsets, each of which is potentially ad-
vice maximal. In the worst case, exhaustive search would be
O(2n∗m), wherem is an upper bound on the cost of generat-
ing a solution for a given set of advice. Although one would
expect to improve upon the worst-case behavior in practice,
exhaustive approaches will be impractical for many applica-
tions.

When dropping the requirement for a complete set of ad-
vice maximal plans, the strategy to adopt will vary with the
needs of the user and the complexity of the problem domain.
Certain users may be content with a quick-and-dirty solu-
tion, which they could subsequently improve by modifying
advice or making plan changes directly. Others may prefer
to invest more time to produce a single, high-quality solu-
tion. Still others may seek a range of solutions that satisfy
different subsets of the specified advice. Thesoft enforce-
mentmethod described below addresses the quick-and-dirty
case, whilelocal maxima searchprovides a framework for
the remainder.

Soft Enforcement

Soft enforcement methods are heuristic in nature, treating
advice as preferences that can be disregarded when they con-
flict with the plan under development. Soft enforcement
methods can produce plans quickly but will yield subopti-
mal results.

Different strategies can be adopted for soft enforcement
that trade time forquality (measured in terms of amount of
satisfied advice). At one extreme, advice could simply be
ignored during solution generation: although thisnaive ap-
proach will guarantee a solution (if one exists) and incurs
no overhead, the quality of the solution will be low. At the
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other extreme, detailed analyses of the domain could be per-
formed to detect and prevent conflicts. This type of approach
would produce better results, although with a corresponding
increase in solution generation time.

The MILAV Method

We have developed a soft enforcement approach that per-
forms one-step lookahead foreach tasknode as a way to
reduce the amount of advice that is violated by a generated
plan. This approach,minimize introduced local advice vi-
olations (MILAV), considers the impact of all choices (i.e.,
operator selection, variable instantiations) for a given task
node and ranks themaccording to the number of new advice
violations that each will introduce. Search control exploits
this information to select options that minimize the introduc-
tion of new advice violations at that node. This approach is
heuristic in nature, in that these locally optimal decisions
may not be globally optimal. In particular, the selection of
an operator and set of variable instantiations that minimizes
violations at a node may engender more violations at lower
levels than would a nonminimal selection.

MILAV can be implemented as a variant of the strict
enforcement method described in (Myers 1996). Strict
enforcement dynamically adds constraints to task nodes
that are derived from a combination of the advice and the
problem-solving context. These constraints are built from
the advised role-fill constraintφA and the context role-fill
constraintφC. Advice with positive polarity produces con-
straints of the form

φC∨φA (1)

while advice with negative polarity produces constraints of
the form

φC∨φA (2)

The schemas (1) and (2) may be instantiated multiple
times for a given piece of advice. For role advice, schemas
of this type are instantiated for each triggernode for the ad-
vice, with the corresponding constraints being applied to all
descendants for which the specified role-fills are resolved.
For positive method advice, the schema is similarly instan-
tiated for every trigger node, with the corresponding con-
straints being applied to all descendants for which both the
specified role-fills are resolved and the feature recommenda-
tions of the method advice are violated. The case for nega-
tive method advice is similar, although the constraints apply
to nodes for which the feature recommendations are satis-
fied.

To implement MILAV, we introduce atautology predicate
TRUE(Ai) that the planner recognizes as satisfiable. Every
instance of the advice constraint schemas (1) and (2) intro-
duced by a piece of adviceAi is extended to include a dis-
junct of the formTRUE(Ai). Similarly, for each operator
choice on a given node that would violate a piece of advice
Ai , a corresponding constraintTRUE(Ai) is dynamically in-
serted. As constraints are combined, these tautology pred-
icates become embedded arbitrarily; by decomposing for-
mulas into disjuncts, we then employ areasoning by cases

strategy to disjunct satisfaction. A search control strategy
is employed that prefers operator/disjunct combinations that
minimize the number of newTRUE(Ai) constraints that have
to be satisfied, thus minimizing the advice that is violated by
a given planning decision.

MILAV provides a simple mechanism for ensuring solu-
tions in the face of conflicting advice (modulo the complete-
ness restrictions of the underlying planner). In particular,
every constraint that is added is guaranteed satisfiable by the
inclusion of theTRUE(Ai) disjuncts. However, it introduces
two types of cost. First, the disjunctive constraints derived
from the schemas (1) and (2) increase the overall search
space for planning. Second, there is the cost of preprocess-
ing all possible cases for a node (i.e., operator/disjunct com-
binations) to identify those that minimize introduced advice
violations. In contrast, standard plan generation needs only
to identify one applicable operator for a given task. Note,
however, that the introduced advice constraints could either
increase or decrease the “hardness” of the planning prob-
lem, depending on the underlying structure of the problem
(Hogg, Huberman, & Williams 1996).

The MILAV strategy is biased towards solutions satisfy-
ing advice that applies to higher-level decisions in the plan-
ning process, given that those decisions precede low-level
decisions in standard hierarchical planning. Since decisions
at higher levels tend to be more significant, this attribute is
generally desirable.

Evaluation of MILAV

To evaluate the effectiveness of MILAV, we conducted
experiments in a travel domain that involved selecting
itineraries, schedules,accommodations, modes of travel,
and carriers for business and pleasure trips. Problems in this
domain are weakly constrained, with the result that there is
generally a broad range of possible solutions. This solution-
rich characteristic makes the domain a good candidate for
the use and evaluation of advice.

The experiments compared the naive approach and
MILAV for varying-size advice sets selected randomly from
a predefined library. The library contains 63 pieces of ad-
vice, focused primarily on selecting locations to visit, modes
of transportation, and accommodations. This advice was de-
veloped by an individual not associated with the research
reported in this paper (Mayer 1997).

Figure 1 compares the degree of advice satisfaction for the
naive approach and MILAV over a range of advice set sizes.
For each size, 30 sets of advice were selected randomly and
a plan generated for each. As can be seen, the MILAV strat-
egy significantly increases the amount of satisfied advice.1

The improvements from the MILAV method come at a
cost. Figure 2 displays the solution generation times using

1It may seem surprising that the naive approach manages to sat-
isfy so much advice. Numerous pieces of advice within the test li-
brary are highly contextualized, making it possible for the advice to
be satisfied when the context doesn’t arise during plan generation.
For example, a piece of adviceWhen renting a car, use Hertz
will be satisfied trivially by a plan that does not engage a rental car.
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Figure 1: Advice Satisfaction: MILAV vs. Naive Soft En-
forcement
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Figure 2: Solution Time: MILAV vs. Naive Soft Enforce-
ment

MILAV and the naive approach for the 30 advice sets se-
lected for each size. Because the naive approach disregards
the advice, its solution times are independent of the size of
the advice sets (approximately .75 second). MILAV requires
a significant, but tolerable, increase in generation time, that
increases roughly linearly with the size of the advice sets.

The absolute difference between the naive and MILAV
solution times should be kept in perspective: because the
underlying planning problems are highly unconstrained,
the naive solution times are correspondingly low. More
constrained problems should yield similar absolute differ-
ences in solution times between the two methods, but much
smaller relative differences.

Local Maxima Search

The local maxima search (LMS) framework is built on nav-
igation through the space of subsets of the user-specified
advice, with strict enforcement applied in turn to generate
plans for selected subsets.

The framework produces some initial (not necessarily
good)seed solutionthat satisfies a selected subset of the user

advice. It then iteratively improves on the current best solu-
tion by adding a single piece of advice and testing whether
a plan can be generated for the expanded set under strict
enforcement of advice. This depth-first expansion continues
until every addition of a single piece of advice results in fail-
ure to generate a plan, indicating that the current node is a
local maximum. At that point, the search “jumps” to a new
seed node and begins again. Through this design, the LMS
framework embodies ananytimeflavor, yielding plans that
satisfy increasing amounts of advice as more time is allot-
ted. The cautious nature of this incremental search strategy,
in which additional advice is considered one piece at a time,
is important given the high cost of verifying the unsatisfia-
bility of a set of advice for a given problem.

When trying to satisfy some designated advice subset, ad-
ditional advice may be satisfied serendipitously. Anadvice
checkercapability enables determination of whether a given
plan satisfies some arbitrary piece of advice. Such serendip-
itous satisfaction of advice can occur frequently given the
cautious strategy of expanding the search by only one piece
of advice at a time (rather than adopting a more aggressive
approach of considering larger extensions of known satisfi-
able subsets).

Figure 3 presents the details of the LMS algorithm. The
algorithm incrementally constructs a latticeL of nodes,each
corresponding to a subset of the given adviceAall . The
empty set lies at the top of the lattice, andAall at the bot-
tom. Each lattice node stores information about any plans
that have been generated that satisfy the advice set for the
node, any failed attempts to generate plans for the advice,
and a correspondingscorederived from the node’s advice
in the case where plans have been successfully generated.
Links among parents and children in the lattice are also
maintained.

The outer loop selects seed nodes through application of
the functionGetNewSeed(Aall , L). This seed selection func-
tion returns anopennode in the lattice, meaning a node that
has both an associated solution and at least onecandidate
advice extensionfor the node (defined below in the discus-
sion of the inner loop). Exploration of new seeds terminates
when there are no open nodes remaining in the advice lat-
tice. Different seed selection strategies are possible, such as
a best-first approach that would select among the open nodes
with highest score. The next section presents an alternative
approach based onheuristic reseeding.

The inner loop performs a hill-climbing search through
the sublattice beneath a seed node. Given a nodeN for which
a plan has been generated that satisfies the adviceA, the
function SelectAddAdvice(N, Aall ,L) selects a single piece
of advice to extendA. That selected advice must satisfy
the requirements that there not yet be a node in the lattice
for {a}∪A, or a successful node whose advice subsumes
{a}∪A. We say that such a piece of advice is acandidate
advice extensionfor N. The inner loop continues until a node
is reached that has no candidate advice extensions.

For the selected advice, an attempt is made to generate a
plan using strict advice enforcement. If the attempt fails,
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then a node for that advice is inserted into the lattice to
record the failure. If the attempt succeeds, then a check
is performed to determine whether additional advice is sat-
isfied by the plan beyond that which was being explicitly
enforced. If there is no node in the lattice for the set of ad-
vice Asat satisfied by the plan, then a new current node is
created in the lattice and annotated with the plan. If there
already is a node forAsat, then it simply becomes the cur-
rent node. The serendipity checks can significantly improve
the efficiency of the overall search process, since the cost of
testing whether a given plan satisfies a piece of advice is sig-
nificantly lower than the cost of generating a new plan that
incorporates the advice.

For a complete planner, failure to find a solution for a
given set of advice indicates the presence of a conflict. How-
ever, planners whose development has been motivated by
real-world applications often employ heuristics that sacrifice
completeness for efficiency gains (Wilkins 1988). The local
maxima search framework embodies adefeasible negation
as failurephilosophy: while an unsuccessful attempt to gen-
erate a solution for a given set of advice is recorded as a
failure and such a case will never be directly tried again, a
solution produced for another problem may serendipitously
result in satisfaction of advice previously labeled as failed.
The framework compensates for such occurrences by chang-
ing the status of the corresponding previously tested lattice
node (as well as any failed ancestors in the lattice) and con-
sidering it as a future candidate for expansions.

Heuristic Seeding

The use of soft enforcement for generating seed solutions
can expedite the identification of a local maximum, since it
enables search to begin further down in the lattice.

Figure 4 presents a seed selection algorithm based on soft
enforcement. TheIF branch handles selection of the ini-
tial seed while theELSEbranch selects subsequent seeds (a
process referred to asreseeding). For initial seed selection,
soft enforcement is employed for the entire set of available
advice. A corresponding lattice node is created for the ad-
vice that is satisfied by the resultant solution. For reseed-
ing, the functionReseedAdvice(Aall ,L) generates potential
reseed cases that are required to be different from the ad-
vice on lattice nodes that have been explored previously.
However, there is no guarantee that the advice satisfied by
a plan generated for a reseed case using soft enforcement
will be distinct from all previously explored nodes. For this
reason, soft enforcement of individual reseed cases must be
successively tried until a plan is generated for which no pre-
viously explored lattice node satisfies the same advice. As
with the exploration loop in the main LMS algorithm (Fig-
ure 3), nodes that were previously identified as failures are
updated to correspond to successes in the event that a plan is
generated that satisfies the same advice.

The objective in reseeding is to move to a portion of the
advice lattice that will yield plans that satisfy different ad-
vice than do known solutions, with the intent of discovering
a new local maximum as quickly as possible. One intuitively

L← {} ;; Initialize the Advice Lattice
LOOP ;; Outer Loop: select seeds

N←GetNewSeed(Aall , L)
WHENN

LOOP ;; Inner Loop: expand below seed
a← SelectAddAdvice(N, Aall ,L)

IF a =⊥
ClosedNode← TRUE

ELSE
A← A∪{a}
P← Solve(A)
IF P

Asat← CheckAdvice(Aall , P)
N≈ ← NodeForAdvice(Asat,L)

;; Test for an equivalent node
IF N≈

N← N≈
UNLESSSuccess(N≈)

ConvertToSuccess(N≈)
ELSE

N← AddNode(A, P, L)
ELSE

AddNode(A,⊥, L)
UNTIL ClosedNode

UNTIL N =⊥

Figure 3: Local Maxima Search Framework

appealing strategy is to select as reseeds those advice sets
that would map tomaximal unexplored nodesin the current
lattice. Here,unexploredmeans that there is not yet a node
for that advice setA in the lattice;maximalmeans that solu-
tion generation has failed for every node in the lattice whose
advice subsumesA, and there is no unexplored advice set
A′ ⊃ A for which this same property holds.

The maximal open nodes can be computed using a strat-
egy based onminimal hitting sets(Garey & Johnson 1979).
A hitting set for a given collection of setsθ = {S1 . . .Sn} is a
set that contains at least one element from eachSi; a minimal
hitting set forθ, denoted byMHS(θ), is a set for which no
subset is a hitting set. To generate reseed cases, we take the
complement of the minimal hitting sets of advice satisfied
by known local maxima, with respect to the original advice
set.

Definition 2 (Minimal Hitting Set Reseeding) Let M =
{Amax

1 . . . Amax
k } be the set of local advice maxima for a

given set of adviceAall. Theset of minimal hitting set re-
seeds, denoted byR (M ), is defined to be

R (M ) = {Aall−Hi | Hi ∈MHS(M )}

Reseeding Example Consider the advice set
A ={a1 a2 a3 a4} and suppose that search has so
far produced maximal solutions with the advice sets
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HeuristicSeed(Aall , L)
IF L = {}

P← HeuristicSolve(Aall)
Asat← CheckAdvice(Aall , P)
N← AddNode(Asat, P, L)

ELSE
N←⊥
LOOP FORA∈ ReseedAdvice(Aall ,L)

P← HeuristicSolve(A)
Asat← CheckAdvice(Aall , P)
N≈ ← NodeForAdvice(Asat,L)
IF N≈

UNLESSSuccess(N≈)
ConvertToSuccess(N≈)
N← N≈

ELSE
N← AddNode(A, P, L)

UNTIL N
RETURNN

Figure 4: Heuristic Reseeding Seed Selection

{a1 a2} and{a2 a3} . In this case, the minimal hitting
sets are{{a1 a3} {a2}} , resulting in the possible
reseed cases{{a2 a4} {a1 a3 a4}} .

It is straightforward to prove the following propositiones-
tablishing that minimal hittingset reseed cases correspond to
themaximal open nodesin a partially explored advice lattice
(see the Appendix).

Proposition 1 (Maximal Unexplored Candidates) For an
advice lattice with an open node, the set of minimal hitting
set reseeds is precisely the set of maximal candidate nodes.

Related Work
The constraint reasoning community has a rich tradition of
work on relaxation in the face of conflicting constraints (see
(Freuder & Wallace 1992) for an overview). Similarly, the
scheduling community has long focused on overconstrained
problems that require relaxation methods (Fox 1987; Smith
1995). In contrast, there has been relatively little work on
relaxation techniques for planning.

(Haddawy & Hanks 1998) presents a model forpartial
goal satisfactionwithin decision-theoretic planners that de-
scribes a framework for relaxing logical, quantitative, and
temporal aspects of goals. The model ofapproximately cor-
rect plansrelaxes the standard correctness requirements of
causal link models (Ginsberg 1995); this weaker model of
correctness has been used as the basis for a planning frame-
work that can incrementally extend a plan to increase the
scope of situations in which it is correct. Our requirement
for accommodating conflicting advice constraints requires a
different form of constraint relaxation than is addressed by
those two models.

The GARI system for generating machining plans most
closely matches the work described in this paper. GARI re-
fines a skeletal plan through the application of rules that add

temporal, equality, and instantiation constraints (Descotte
& Latombe 1985). Rules consist ofcondition/advicepairs,
where the conditions characterize world state and plan in-
formation and the advice is a weighted set of domain con-
straints to be used to refine the current plan. (In contrast
to our model of advice as a task-specific adjunct to a given
planning knowledge base, the advice within GARI consti-
tutes core planning knowledge with embedded control infor-
mation.) In a given state, a rule of highest priority is applied.
Rule application will change the plan state and hence possi-
bly the rules whose conditions are satisfied. Conflicts arise
when rules recommend incompatible plan changes, and are
resolved by backtracking to the most recently applied rule
of lowest weight. This approach guarantees that the maxi-
mum weight of active advice contradicted by a solution is
minimum over the set of possible plans.

Conclusions

This paper has presented a framework for partial satisfaction
of conflicting advice, along with two algorithms that sup-
port different approaches to conflict resolution. For users
interested in quick solutions, the MILAV method provides
reasonable solutions at relatively low costs. For users inter-
ested in maximal solutions, the lattice-based framework for
incremental construction of maximal solutions, along with a
reseeding strategy, provides an anytime approach to solution
generation.

The ideas presented here constitute a first step toward a
complete framework for planning with conflicting advice.
Here, we mention three areas for future work.

We envision anadvisable planneras a core component of
a mixed-initiative decision aid in which the planner and user
work together to develop a final plan. Explanations as to
what made certain pieces of advice unsatisfiable would pro-
vide users with insights that could help direct them in their
search for better plans. Suggestions for satisfiable variants
on stated advice would also be beneficial.

Given the computational cost of determining the unsatis-
fiability of a given set of advice, analytic techniques should
be developed that can efficiently detect conflicts (or poten-
tial conflicts) among advice. Such techniques could be used
to restrict the advice subsets for which solution generation
is considered in local maxima search, resulting in increased
efficiency.

The minimal hitting set reseed strategy identifies maximal
open nodes within the advice lattice. However, it lacks any
consideration of semantic differences among plans. Ideas
from the work on generatingqualitatively different plans
(Myers & Lee 1999) could be incorporated to select reseed
cases that would focus search toward plans with semantic
differences from known local maxima.
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Appendix

Proof of Proposition 1

First, we show that each reseedRi ∈R (M ) is neither a sub-
set nor a superset of anyAmax

j . By the definition of hitting
sets, eachAmax

j contains someh∈ Hi, which cannot be in
Aall −Hi . ThusAmax

j 6⊆ Ri . Now supposeRi ⊂ Amax
j ; then

Aall −Hi ⊂ Amax
j

and so
Aall −Hi ⊆ Amax

j −Hi

which would implyAall = Amax
j . But the conditions of the

proposition state that the advice lattice contains open nodes,
making this equality impossible. ThusRi 6⊂ Amax

j .

Now we show that eachRi is maximal. For anya 6∈ Ri,
there is someHi such thata∈Hi . Necessarily, there is some
Amax

k such thata is the only element inHi for which a ∈
Amax

k ; if this were not true, thenHi would not be a minimal
hitting set. But thenAmax

k ⊆ Ri ∪{a}, and sinceAmax
k is

maximal, necessarilyRi ∪{a} is a known failure node. It
follows thatRi must be a maximal untested node.

To complete the proof, we show that every maximal un-
explored nodeF is someRk ∈ R (M ). For everyAmax

i ,
F 6⊆ Amax

i . Thus, there exists somea ∈ Amax
i such that

a 6∈ F, that is,a ∈ Aall − F. Thus,Aall − F is a hitting
set forM . If Aall − F is not a minimal hitting set, there is
someHj such thatAall − F ⊂ Hj , and soF⊃ Aall −Hj .
That is,F⊃ Rj . As shown above, however, each reseed set
is a maximal set in the lattice, thus contradicting the fact that
F is a maximal unexplored set. It follows thatAall − F must
be a minimal hitting set forM , and so is identical to some
Ri .
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