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Abstract
In the last years, some very promising domain
independent heuristic state-space planners for STRIPS
worlds, like ASP/HSP, HSPr and GRT, have been
presented. These planners achieve remarkable
performance in some domains, like the blocks world, the
logistics and the gripper, but they are not effective in
other domains, like the grid and the mystery. In this
paper we propose the use of state constraints in heuristic
state space planning. We claim that one of the causes for
the pre-mentioned failures is the absence of domain
specific knowledge about properties that characterize
every valid and complete state. We propose the
inclusion of state constraints in the domain definition
and we present how they can be exploited by heuristic
planners in order to decompose a problem into sub-
problems that are easily solvable. We give performance
results that exhibit significant speedup in the problem
solving process. Finally, we give a notion of how
problem decomposition can accelerate other planners,
like GRAPHPLAN and BLACKBOX.

Introduction
In the last years, part of the planning community turned
towards heuristic state-space planning, developing new
domain independent algorithms, which achieve significant
performance. The first planner was ASP (Bonet, Loerincs,
and Geffner 1997), followed by HSP, HSPr (Boner and
Geffner 1998, 1999) and GRT (Refanidis and Vlahavas
1999a). These domain independent heuristic planners,
which adopted the STRIPS notation (Fikes and Nilsson
1971), search for solutions in the space of the states. For
their guidance they use variations of a relatively simple
idea, estimating the number of steps needed to achieve a
fact from a given state, in order to estimate distances
between states. The above planners exploit these estimates
in a best-first or in a hill-climbing way.

HSP took part in the AIPS-98 planning competition,
solving more problems than the other contestants did, but
it needed more time on average. HSPr and GRT improved
the way, in which the distances are computed,
accelerating drastically the problem solving process. GRT
took the original idea one step further, taking into account
the interactions that occur while trying to achieve
different facts simultaneously; thus, it produced better
estimates and solved even more problems.

Although HSPr and GRT performed quite satisfactory
in domains like the blocks world (Kautz and Selman

1996), the logistics (Veloso 1992) and the gripper (AIPS-
98), they failed to handle effectively other domains like
the grid and the mystery. A detailed presentation of the
domains used in the AIPS-98 planning competition can be
found at ftp.cs.yale.edu/pub/mcdermott/
software/pddl.tar.gz.

In this paper we propose the use of domain dependent
knowledge about axioms that apply to any valid and
complete state of a domain. For example, in the logistics
domain such axioms demand that each plane lies at
exactly one airport or a package is either at a location, or
within a truck or plane. Similar axioms can be formed for
any other domain.

We name this kind of axioms XOR constraints,
because they can be formalized as XOR relations between
sets of ground facts, where exactly one of them can hold
in each state. We believe that this kind of constraints
should constitute an integral part of each domain's
definition and specification languages (e.g. PDDL) should
support them. However, XOR constraints can also be
computed automatically, taking into account the
definitions of the operators and the initial state (Gerevini
and Schubert 1998, Refanidis and Vlahavas 1999b).

We enhanced GRT with the ability to handle state
constraints. However any other heuristic planner could
have been used instead. The enhanced GRT uses state
constraints at the pre-processing phase, in order to analyze
a planning problem in a sequence of sub-problems.
Generally, these sub-problems are easily solved by
heuristic planners; thus the total time needed to solve
them is substantially shorter than the time needed to solve
the original problem. The same algorithm could also be
applied to the sub-problems, decomposing them in sub-
sub problems and so on. Another possibility is to use a
separate planner, e.g. GRAPHPLAN (Blum and Furst
1995) or SATPLAN (Kautz and Selman 1996), to solve
the sub-problems.

In the rest of the paper, we briefly present the recent
heuristic state-space planners and illustrate why they fail
to handle certain domains, like the grid and the mystery.
Then, we introduce state constraints and present how
heuristic state-space planners can exploit them so as to
decompose the initial problem into easily solvable sub-
problems. Next, we present performance results obtained
by the GRT planner, which has been enhanced with the
ability to handle state constraints. Furthermore, we
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present the effect of state constraints on other planners,
like GRAPHPLAN and BLACKBOX (Kautz and Selman
1998). Finally, we conclude the paper and we pose future
directions.

Heuristic State-Space Planners
In the last years, remarkable progress has been made in
the area of heuristic domain independent planning for
STRIPS worlds. The first such planner was ASP, followed
by HSP and recently by HSPr and GRT.

The main idea underlying these planners is the
computation of estimates for the number of actions
needed to achieve certain facts from a given state.
Suppose S is a state defined as a collection of ground
facts, S={p1, p2, ..., pn}, a a ground action with P(a), D(a)
and A(a) being its preconditions, delete and add lists
respectively, and q another domain ground fact. Then, the
distance between q and S is estimated recursively as:

0, if q ∈ S
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Function g(q,S) does not define a unique value, since
for each ground fact q there may be more than one ground
actions a that achieve it, while the same may also hold for
the preconditions of these actions. Thus, the computed
values depend strongly on the action-selection strategy.
Moreover, it is possible that g(q,S) assigns a finite
distance to a fact that cannot be achieved.
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ASP and HSP used the above function to compute
estimates between the intermediate states and the goal.
The main problem was that the above computations,
which are time consuming, were performed for each
intermediate state, taking up to 85% of the processing
time (Bonet and Geffner 1999). This problem was tackled
both by HSPr and GRT.

HSPr computes the distances between all the facts of
the domain and the initial state, once at a pre-processing
phase, and then it searches backwards from the goals.
Similarly, GRT computes the distances between all the
facts of the domain and the goals once at a pre-processing
phase and then it searches forward from the initial state.
As a result, both HSPr and GRT are significantly faster
than their ancestors.

Another inefficiency of the above heuristic is that it
considers all the facts of the domain as strictly

independent; thus, the cost of achieving them together is
equal to the sum of the costs of achieving each one of
them individually. This problem was tackled by GRT,
which does not use the formulas presented above. GRT
annotates each achieved ground fact not only with its
distance from the goals, but also with a set of other
ground facts that may be co-achieved. These facts are
called related facts and are taken into account when
computing distances. With this modification GRT
achieves better estimates and generally solves more
problems that the other heuristic planners (Refanidis and
Vlahavas 1999a).

The Problem
In (Bonet and Geffner 1999) and (Refanidis and Vlahavas
1999), performance results for HSPr and GRT
respectively are presented, from which it is evident that
these planners are quite competitive in comparison with
other planners, like BLACKBOX, STAN (Long and Fox
1998) and IPP (Koehler et al. 1997), at least in the blocks
world, the logistics, the rocket (Blum and Furst 1995) and
the gripper domains. However, both papers state that these
planners cannot handle other domains, like the grid and
the mystery. In this section we illustrate why the above
planners cannot handle such domains. We will use the
GRT planner as a reference, but the comments also apply
to ASP/HSP(r).

The main disadvantage of GRT planner is that in every
state it always selects to apply the action leading to the
adjacent state with the least distance from the goals. If the
various facts of a domain were independent, this strategy
would be optimal. However, this is not the case and quite
often the result is a local optimal state (the problem
appears in GRT, although it does not consider the facts as
being totally independent). Therefore, the planner should
temporarily select actions that lead to states with greater
distances from the goals, before selecting actions that lead
to the goals. This is better illustrated in Figure 1.

Initial state Goal state
2 K 2 K
1 1
0 R 0 R

0 1 2 0 1 2

Figure 1. A 3x3 Grid problem.

The problem is from the grid domain, where K is a key
and R is a robot. The valid actions are get, leave and
move, with their obvious meanings. The initial and the
goal states are the following (we will use a Prolog-style
representation):

Initial state = [ at('R',n0_0), at('K',n0_2) ]
Goal state =  [ at('R',n2_0), at('K',n2_2)]
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At the pre-processing phase, GRT estimates the
distances between all the ground facts and the goal state.
This information is stored in a table, named "Greedy
Regression Table", since its data are obtained by greedy
applying (inverted) actions to the goals. Table 1 shows
this table for the 3x3 Grid problem. The related facts are
also shown.

According to Table 1, the distance between the initial
state and the goals is 10. There are two applicable actions
to the initial state, moving R to n1_0 and moving R to
n0_1. The resulting state after moving R to n1_0 has a
distance from the goals equal to 9, while the resulting
state after moving R to n0_1 has a distance from the goals
equal to 11. So the planner decides to move R to n1_0 and
subsequently to n2_0. However, it is obvious that the
optimal sequence of actions would initially move the
robot to n0_1, next to n0_2, get the key etc.

The planner does not initially select the optimal action,
because it leads to a state with a greater distance from the
goals. In order to decide to move the robot towards the
key, the planner should exhaust all the other valid plans
and then try to move the robot to worse states (this
requires that the planner remembers past states and does
not visit them again). In difficult problems the number of
states that the planner has to visit before following the
right direction is extremely large. That is the reason why
HSPr and GRT fail to handle problems from the grid and
mystery domains.

This problem also occurs in the logistics domain.
However, the ability of the trucks and the planes to move
instantaneously to any valid location or airport
respectively, decreases the difficulty of the problem
significantly.

An ideal planner should detect that, in order to move
the key from n0_2 to n2_2, it is necessary that the robot
gets the key, so it is needed to achieve initially the fact
at('R',n0_2), shifting the achievement of at('R',n2_0) in a
later time. But the planner does not know that the facts
at('R',n0_0), at('R',n2_0) and at('R',n0_2) are related in

some way, because the domain definition does not contain
this information. Therefore, it is necessary to provide the
planner with information about relations that exist
between the facts of the domain.

State Constraints

Defining State Constraints

The state constraints we selected to use are relations
between ground facts, where exactly one of them can hold
in each valid and complete state. We call these constraints
XOR constraints, because they can be considered as XOR
relations between facts, which are true in a given state if
and only if exactly one of the facts participating in the
relation holds (in (Gerevini and Schubert 1998) these
constraints are called single valuedness constraints or sv
constraints, but sv constraints concern instantiations of
the same predicate, while our XOR constraints can be
relations between ground facts of different predicates).
Such relations can be defined at almost every domain. For
example, in the logistics domain we can define the
following XOR constraints:

xor( [ at(Truck, _ ) ] ) :- truck(Truck).
xor( [ at(Plane, _) ] ) :- plane(Plane).
xor( [at(Package, _ ), in(Package, _) ]):-

package(Package).

By writing "_" we mean that this variable could be
instantiated to every valid value, according to the
predicate definition and the instantiations of the other
variables. The above definitions mean that for each set of
values of the named variables that appear in a XOR
relation, for all the possible values of the no-name
variables (those noted by "_"), according to the domain
definition, exactly one ground fact can hold in each valid
and complete state. Note that the above state constraints
are general definitions that can be grounded in several
ways, according to the different ways in which the named
variables can be instantiated.

For example, the first XOR constraint means that for
each Truck and for all the possible locations in the
domain, exactly one ground fact of the form
at(Fact,Location) can hold in a valid and complete state.
This state constraint can be instantiated for each different
truck of the domain. The meaning of the second XOR
constraint is similar. Finally, the third XOR constraint can
be interpreted as follows: for each Package, for all the
locations and for all the Trucks and Planes, exactly one
fact of the form at(Package,Location) or
in(Package,Truck/Plane) can hold in each valid and
compete state.

In some cases, it is possible to have XOR constraints
that incorporate AND relations. For example, if in the
logistics domain the predicate out(Package) is defined,
which means that a package is loaded neither in a Truck

Fact Distance
from Goals

Related Facts

at('R',n2_0) 0  [ ]
at('K',n2_2) 0  [ ]
at('R',n1_0) 1  [ ]
at('R',n0_0) 2  [ ]
at('R',n0_1) 3  [ ]
at('R',n2_1) 1  [ ]
at('R',n2_2) 2  [ ]
in('R','K') 3  [ at('R',n2_2) ]

at('R',n1_2) 3  [ ]
at('K',n1_2) 7  [ at('R',n1_2) ]
at('R',n0_2) 4  [ ]
at('P',n0_2) 8  [ at('R',n0_2) ]

Table 1. The Greedy Regression Table for the 3x3 Grid problem.
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nor in a Plane, then the relevant constraint would be
written as:

xor( [ and([at(Package, _), out(Package)]),
in(Package,_) ] ):-package(Package).

However, AND relations can be avoided by
combining different predicates in one. In the above
example, one could omit predicate out, considering that
the presence of the fact at(Package,Location) in a state
implies that the Package is not loaded.

Exploiting State Constraints

We will illustrate the use of the state constraints with the
example of Figure 2. The domain is the same with that of
Figure 1, but the problem is a little more complicated,
having two keys (P1 and P2) and two robots (R1 and R2).

The initial and the goal states of this example are
defined as follows:

Initial state =  { at('R1',n1_0), at('R2',n2_2), at('K1',n3_0),
at('K2',n3_3) }

Goal state =  { at('R1',n0_0), at('R2',n0_3), at('K1',n1_1),
at('K2',n1_3) }

The XOR constraints we will use are the following:

xor( [ at(Robot, _) ] ) :- robot(Robot)
xor( [at(Key, _), hold(_, Key) ] ):-key(Key)

The above definitions have four ground instantiations,
one for each Robot and one for each Key. Hereafter we
will use the notation XOROBJ to refer to the instantiated
XOR constraint concerning object OBJ.

The first information the planner can extract concerns
pairs of facts, one from the initial state and one from the
goals that belong to the same ground XOR relation (we
suppose that the goals constitute a complete state - we
treat the case in which this hypothesis does not hold later).
The pairs identified for the current problem are the
following:

XORR1: at('R1',n1_0)  -  at('R1',n0_0)
XORR2: at('R2',n2_2)  -  at('R2',n0_3)
XORK1: at('K1',n3_0)  -  at('K1',n1_1)
XORK2: at('K2',n3_3)  -  at('K2',n1_3)

At the pre-processing phase, GRT planner computes
estimates for the distances of all the domain’s facts from
the goals, together with the lists of related facts, but it

does not keep information about the actions that achieved
the various facts.

However, in order to exploit the state constraints, this
information should be retained. By keeping the ground
actions that achieve the various facts, the table structure
used by GRT planner is transformed into a directed
acyclic graph structure. We call this structure GRG, the
acronym of the words "Greedy Regression Graph".

The nodes of this graph represent the facts of the
domain. Each node is labeled with a non-negative integer
value, which is an estimate for the number of backward
steps needed to achieve its fact starting from the goals.
Moreover, it is labeled with the corresponding list of
related facts. Finally, it is labeled with the name of the
ground action, which first achieved the node's fact. This
action characterizes all the arcs that point to the node.
Figure 3 shows a part of the GRG structure for the 4x4
Grid problem (the Figure does not show the related facts).

Having constructed the GRG structure, for every
ground XOR relation we can derive sequences of actions
that transform the initial state fact to the corresponding
goal state fact. For each such sequence we are interested
only in the actions that change facts of the corresponding
XOR relation; we are not interested in actions that provide
auxiliary preconditions.

For the four ground XOR constraints, the sequences of
actions that transform the initial facts to the goal facts are
the following (note that, while Figure 3 refers to the
'inverted' actions, here the original ones are used instead):

XORR1: at('R1',n1_0)  -   at('R1',n0_0)
move('R1', n1_0, n0_0)

XORR2: at('R2',n2_2)  -  at('R2',n0_3)
move('R2', n2_2, n2_3), move('R2', n2_3,n1_3),
move('R2', n1_3, n0_3)

XORK1: at('K1',n3_0)  -  at('K1',n1_1)
get('R1', 'K1', n3_0), leave('R1', 'K1', n1_1)

XORK1: at('K2',n3_3)  -  at('K2',n1_3)
get('R2', 'K2', n3_3), leave('R2', 'K2', n1_3)

Having identified the above sequences of actions, we
check their preconditions, searching for facts that are
included in a XOR relation, other than the sequence where
they are appearing. In our example, the actions of
sequences XORR1 and XORR2 do not have any
precondition that is part of another XOR relation.
However the actions of sequences XORK1 and XORK2 do
have such preconditions. To be more specific, in the
XORK1 sequence, actions get('R1','K1',n3_0) and
leave('R1','K1',n1_1) have at('R1',n3_0) and at('R1',n1_1)
as preconditions respectively, which are members of the
XORR1 relation. Similarly, in the XORK2 sequence,
actions get('R2','K2',n3_3) and leave('R2','K2',n1_3) have
at('R2',n3_3) and at('R2',n1_3) as preconditions
respectively, which are members of the XORR2 relation.

Initial State Goal State
3 K2 3 R2 K2
2 R2 2
1 1 K1
0 R1 K1 0 R1

0 1 2 3 0 1 2 3

Figure 2. A 4x4 Grid problem
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In case where there is no XOR constrained fact
appearing in a sequence of actions of another XOR
relation, the original problem can be easily solved by any
heuristic planner. But if there are XOR constrained facts
appearing as preconditions in actions of other XOR
sequences, the original problem has to be analyzed into
sub-problems. To do this, for each ground XOR relation
we identify all the facts that are members of this relation
and that are:

(I) members either of the initial state, or of the goals, or
(II)  preconditions of a ground action that appears in

another XOR sequence, or
(III)  add effects of an action of their own XOR sequence,

which action has a fact of another XOR relation as
precondition.

Having identified the above facts, we construct a
graph, conjoining them with arcs that denote ordering
constraints, using the following rules:

(I) For each XOR relation, all the facts are ordered after
the initial fact and before the goal fact (if any).

(II)  The facts that are add effects of actions in their own
XOR sequence are ordered according to the positions
of their actions in the XOR sequence.

(III)  The facts that are preconditions in any action are
placed in the same order with the facts being add
effects in the same action (these facts belong to
different XOR relations).

(IV)  The facts of a XOR relation that are preconditions in
different actions of another XOR sequence are
ordered according to the ordering of their actions.

(V) For each XOR relation, the facts that are
preconditions in actions of another XOR sequence
are ordered before the facts that are add effects in
their own XOR sequence.

We call the resulted graph as the ordering graph of the
problem, since it denotes the order in which its facts have
to be achieved. Figure 4 shows the ordering graph for the
4x4 Grid problem. Lines with arcs denote ordering
constraints, while lines without arcs denote that the two
facts are ordered together.

It is not obligatory that for each XOR relation there
exist a fact within the goals. If for some relation there is
not such one, then the first two of the above five steps are
unnecessary for it. The case in which a XOR relation has
no fact in the initial state is more difficult, because this
indicates lack of knowledge about the initial state,
demanding contingent planning to solve the problem for
all possible different initial states.

From the ordering graph it is possible to construct
intermediate states (possibly incomplete) that have to be
achieved. This task is a graph-solving problem, which, in
some domains, may be difficult. However, we follow a
simple approach that usually works well.

Starting from the initial state, in each intermediate
state we try to include a fact from each XOR relation,
with the following properties:

(I) it has not been included in a previous intermediate
state,

(II)  it is not ordered after another fact of the same XOR
relation that has not already been included in a
previous intermediate state, and finally

(III)  it is not ordered together with a fact of another XOR
relation that cannot be included in the current
intermediate state.

In case where for a XOR relation there are more than
one facts with the above properties, we select one of them
randomly. Finally, in case where for a XOR relation there
is no fact with the above properties, we do not select any
fact, leaving the intermediate state incomplete.

at('R1',n0_0)
distance=0

-

at('R1',n1_0)
distance=1

move(R1,n0_0,n1_0)

at('R1',n1_1)
distance=2

move(R1,n1_0,n1_1)

at('R1',n2_0)
distance=2

move(R1,n1_0,n2_0)

at('R1',n3_0)
distance=3

move(R1,n2_0,n3_0)

at('K1',n3_0)
distance=7

leave(R1,K1,n3_0)

hold('R1','K1')
distance=3

get(R1,K1,n1_1)

at('K1',n1_1)
distance=0

-

at('R2',n0_3)
distance=0

-

at('R2',n1_3)
distance=1

move(R2,n0_3,n1_3)

at('R2',n2_3)
distance=2

move(R1,n1_3,n2_3)

at('R2',n2_2)
distance=3

move(R2,n2_3,n2_2)

at('R2',n3_3)
distance=3

move(R2,n2_3,n3_3)

at('K2',n3_3)
distance=6

leave(R2,K2,n3_3)

hold('R2','K2')
distance=2

get(R2,K2,n1_3)

at('K2',n1_3)
distance=0

-

Figure 3. Part of the Greedy Regression Graph for the 4x4 Grid problem.
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For the problem of Figure 4, the following three
intermediate states have been extracted:

Intermediate state 1:  { at('R1',n3_0), at('R2',n3_3),
in('K1','R1'), in('K2','R2') }

Intermediate state 2:  { at('R1',n1_1), at('R2',n1_3),
at('K1',n1_1), at('K2',n1_3) }

Intermediate state 3:  { at('R1',n0_0), at('R2',n0_3),
at('K1',n1_1), at('K2',n1_3) }

where the last state is the goal state.
After constructing the three intermediate states, the

planner has to solve three sub-problems, which are
substantially easier than the original one; thus, the total
time to solve them is shorter than the time needed to solve
the original problem. It is also possible to apply XOR
constraints also to the sub-problems, decomposing them
in sub-sub-problems, which could result in better
performance. A last possibility is to use a different
planning algorithm to solve the sub-problems, like
GRAPHPLAN or SATPLAN, instead of a heuristic state-
space algorithm.

Performance Results
In order to have a notion for the effectiveness of the
problem decomposition approach, we have enhanced the
GRT planner with the ability to handle state constraints
and to decompose problems into sub-problems. The
implementation language was C++1 and the test platform
we used was a Pentium Celeron 300MHz, with 64-MB
main memory. This platform is identical (except for the
memory) with the one used at the AIPS-98 planning
competition, so we obtained comparative results.

We forced the planner to solve problems from the
logistics, the grid and the mystery domains. The XOR
state constraints we have used for these domains are the
following:
                                                          
1 The source code of the planner is available through contacting
the authors. Also a Prolog version of the code is also available.

Logistics domain:
xor( [ at(Truck, _) ] ) :- truck(Truck).
xor( [ at(Plane,_) ] ) :- plane(Plane).
xor( [at(Package,_), in(Package,_)]):- package(Package).

Grid domain:
xor([arm_empty, not_empty]).
xor([locked(Pos), open(Pos)]):- place(Pos).
xor([at_robot( _ )]).
xor([at(Key,_), holding(Key]):-key(Key).

Mystery domain:
xor( [at(Truck, _)]) :- truck(Truck).
xor( [at(Package,_), in(Package,_)]) :-package(Package).

For the convenience of the reader we have "translated"
the original predicates' names of the mystery domain in
more meaningful ones.

Table 2 presents comparative performance results of
GRT in the logistics domain. The problems are those used
at the AIPS-98 planning competition. The table presents
measurements both for the original GRT planner and for
the improved one. Short dashes for GRT mean that no
solution has been found after 15 minutes.

As it is clear from this table, the use of state
constraints and the problem decomposition process speeds
up the problem solving process up to 30%. It should be
noted here that the logistics domain is not the most
suitable domain to demonstrate the utility of the state
constraints. The unreal assumption underlying this
domain, that each truck and plane can be moved in one
step to any possible location, renders these problems
easily solvable by any heuristic state-space planner.
Therefore, although the sub-problems are trivially solved
by GRT, the preprocessing phase that should be repeated
for every sub-problem produces a significant overhead,
which is comparable to the time needed to solve the
original problems.

at('R1',n1_0) at('R1',n0_0)at('R1',n3_0) at('R1',n1_1)

at('R2',n2_2) at('R2',n0_3)at('R2',n3_3) at('R2',n1_3)

at('K1',n3_0) at('K1',n1_1)

at('K2',n3_3) at('K2',n1_3)

Figure 4. The ordering graph for the 4x4 Grid problem.

Initial state         Intermediate goals       Goal state

XORR1

XORR2

XORK1

XORK2

hold('R1','K1')

hold('R2','K2')
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Best AIPS-98 GRT without state
constraints

GRT with state
constraints

Best AIPS-98 GRT without
state constraints

GRT with state
constraintsProblem

actions time actions time actions time
Problem

actions time actions time actions time
prob01 26 767 30 280 30 240 prob01 14 2505 - - 16 1040
prob02 32 4319 34 1320 34 980 prob02 - - - - 28 6630
prob03 - - 60 5550 61 4200 prob03 - - - - 65 21350
prob04 - - 69 19280 70 15100 prob04 - - - - 32 19920
prob05 24 2400 26 390 26 270 prob05 - - - - 153 118650
prob06 - - 80 14390 81 10120
prob07 112 788914 37 1760 37 1310
prob08 - - 48 16370 49 11420
prob09 - - 98 50480 99 37530

Table 3. Performance results for the grid domain
(time in msecs)

prob10 - - 117 23130 119 16120
prob11 30 6544 36 1540 36 1140
prob12 - - 48 43060 50 33200
prob13 - - 79 85580 80 69520
prob14 - - 104 60200 105 39100

GRT without state
constraints

GRT with state
constraints

prob15 - - 106 6750 108 5120
Problem

actions time actions time
prob16 - - 62 31580 61 24200 prob01 5 30 5 75
prob17 - - 53 12190 53 8960 prob02 11 12400 11 470
prob18 - - 193 335050 193 271280 prob03 4 125 6 210
prob19 - - 174 238980 172 165860 prob04 7 140 7 110
prob20 - - 169 324120 170 240190 prob05 10 18100 10 360
prob21 - - 120 294230 121 223930 prob06 - - 18 2150
prob22 - - - - - - prob07 4 200 4 160
prob23 - - 118 16860 117 11500 prob08 - - 6 490
prob24 - - 49 98540 49 68200 prob09 - - 11 320
prob25 - - - - - - prob10 - - 12 11370
prob26 - - - - - - prob11 7 180 7 150
prob27 - - - - - - prob12 - - 7 130
prob28 - - - - - - prob13 - - 17 22920
prob29 - - - - - - prob14 - - 25 25400
prob30 - - - - - - prob15 - - 11 2320

Table 2. Performance results for the logistics domain
(time in msecs)

Table 4. Performance results for a simplified mystery domain
(time in msecs)

The two columns entitled "Best AIPS-98" present the
best plan found in this competition and the best solution
time (which may be achieved by different planners).

Table 3 presents performance results in the grid
domain. The five problems have also been taken from the
AIPS-98 competition. In this domain the original GRT
planner failed to solve any problem, while with the use of
state constraints it solved all of them.

It should be noted that in the grid domain we had two
levels of decomposition, i.e. after the decomposition of
each original problem in sub-problems, the sub-problems
were further decomposed in sub-sub-problems, which
were finally solved. The planner always tries to
decompose any problem into sub-problems. If this attempt
fails, then it tries to solve the problem; otherwise it
decomposes the problem into sub-problems and proceeds
recursively with them.

Table 4 presents performance results in a simplified
mystery domain. We removed from this domain the
resources, i.e. the fuels of the cities and the capacities of
the trucks, because neither the original heuristic planners
nor the enhanced with state constraints new ones can
handle effectively such resources. The issue of resources
should be handled separately and is a future work
challenge. The problems in Table 4 are the 15 first
problems of the AIPS-98 competition, with the pre-
mentioned simplification.

By removing resources from the mystery domain, this
domain resembles the logistic domain, except that in this
domain the trucks cannot be moved instantaneously to any
location. As it is shown on Table 4, the original GRT did
not solve many problems, while with the use of state
constraints it solved all of them easily.

Finally, Table 5 presents how the problem
decomposition process can affect positively other
planners, i.e. GRAPHPLAN and BLACKBOX (we thank
Blum, Furst, Kautz and Selman for making their code
available1). We have used five 'traditional' problems,
taken by the bibliography (Veloso 1992, Blum and Furst
1995). The measurements have been taken on a SUN
Enterprise 3000 Unix server, running at 166 MHz and
having 64-MB memory. In this case, we decomposed the
problems separately and we forced the planners to solve
both the original problems and the sub-problems. Table 5
shows how the problem decomposition can affect
drastically the performance of the planners.

                                                          
1 GRAPHPLAN is available at
http://www.cs.cmu.edu/afs/cs.cmu.edu/usr/avrim/www/
graphplan.html
BLACKBOX is available at
http://www.research.att.com/~kautz/blackbox/index.html
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Conclusions and Future work
In this paper we have presented how the use of state
constraints can accelerate the problem solving process for
state-space heuristic planners. By the term state
constraints we refer to logical formulas that have to be
true in every valid and complete state. In this work we
have considered only XOR constraints, i.e. relations
between sets of ground facts, where exactly one of them
can hold in any valid and complete state.

We have shown that one reason why heuristic state-
space planners fail to handle some domains is the absence
of knowledge about axioms that hold in each valid and
complete state. Then we have presented how these
planners can exploit such knowledge, by decomposing the
original problem into sub-problems that are easily
solvable. The performance results exhibit significant
speedup in the problem solving process. Furthermore, we
have shown that the problem decomposition can
accelerate other types of planners, like GRAPHPLAN and
SATPLAN.

The main disadvantage of the problem decomposition
approach is that the pre-processing phase, i.e. the
computation of the distances between the domain's facts
and the goals, has to be repeated for each sub-problem,
which, in some cases, generates a considerable overhead
in the total solution time. Thus, a future challenge is the
acceleration of the pre-processing phase, using for
example non fully-instantiated facts and actions, in
combination with constraint satisfaction techniques.

Strictly concerning the problem decomposition
process, future research includes the investigation of more
efficient problem decomposition algorithms. Another
point could be the computation of multiple distances for
each ground fact at the pre-processing phase, i.e. the
achievement of each ground fact in several ways, which
would lead to multiple possible decompositions of each
original problem in sub-problems.

Concerning the original heuristic state-space
algorithms, one challenge is handling resources, i.e.
capacities, fuels etc., in a universal manner. Another
challenge is handing time. However, resources and time
require number manipulation, which means that the
algorithms have to be extended beyond the classical
STRIPS planning paradigm.

Finally, we would like to investigate the exploitation
of richer domain representations (apart from the state
constraints) and how they can be combined with the
existing planning algorithms.
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GRAPHPLAN BLACKBOX
without
problem

decomposition
with problem

decomposition

without
problem

decomposition
with problem

decomposition
Problem

actions time actions time actions time actions time
logistics.a - - 62 600 69 67000 65 550
logistics.b - - 52 650 64 80000 59 580
logistics.c - - 60 700 77 101000 67 600
rocket.a - - 28 210 31 105000 29 180
rocket.b - - 29 240 28 104000 28 220

Table 5. Performance results for GRAPHPLAN and BLACKBOX
planners, without and with problem decomposition (time in msecs)
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