Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data

T. Rajkumar
Computer Scientist, SAIC, NASA
and
Jorge Bardina
Computer Scientist, NASA
Mail Stop 269-2 Moffett Field, California, USA 94035
rajkumar, jbardina@mail.arc.nasa.gov

Abstract

A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation is presented using neural networks. The training data for the neural network is derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation.

Introduction

Wind tunnels use scaled models to characterize aerodynamic coefficients. Wind tunnel data, in original form, are unsuitable for use in piloted simulations because data obtained in different wind tunnels with different scale models of the same vehicle are not always consistent. Fitting a smooth function through the wind tunnel data results in smooth derivatives of the data. The smooth derivatives are important in performing stability analyses. Traditionally, the approach considered to describe the aerodynamics of the vehicle included developing, wherever possible, a polynomial description of each aerodynamic function (Bruce J. and Christopher C. 1992). This ensured a smooth continuous function and removed some of the scatter in the wind tunnel data. Also, measurements of the same coefficient from two different wind tunnels are usually taken at dissimilar values of angle of attack and sideslip, and some means of reconciling the two dissimilar sets of raw data were needed. This curve fitting procedure is unnecessary for few coefficients. The curve fitting method used to generate the parameters for each polynomial description is an unweighted least squares algorithm. For the most part, the polynomial equations are generated using sparse data from wind tunnel experiments. Due to sparcity of data, mostly it will be defined as a linear type of function. When more data are available, flight control system designs will need to be revisited to allow for minor nonlinearities in control effects.

Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network (Norgaard M, Jorgensen C and Ross J 1997.,Rai M. M and Madavan N. K 2000 and Ching F.Lo, Zhao J.L. and DeLoach R. 2000) to define complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are present usually at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods (Birckelbaw, L.G., McNeill, W.E., and Wardwell, D.A., 1995); however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations (Park, M. A. and Green, L. L., 2000). This paper is organized as follows: A short introduction to neural network followed by a section that will introduce the aerodynamic data set. Then results are discussed finding an optimal solution to the various aerodynamic coefficients. The final section concludes optimization of the neural network and research directions.

Neural Network

A neural network is conceptually comprised of a collection of nodes and connections (Rumelhart D.E., G.E. Hinton and R.J. Williams 1986; Master T. 1993; Jondarr C. 1996). Among the many neural network models, the backpropagation algorithm is one of the better known and frequently used. Back propagation (Rumelhart D.E., G.E. Hinton and R.J. Williams 1986) was created by generalizing the Widrow-Hoff learning rule (Widrow B. et al 1987) to multiple-layer networks and nonlinear
differentiable transfer functions. Input - output pairs are used to train a network until it can approximate a function. Back propagation was the first practical method for training a multiple layer feed forward network. A neural network’s initial weights are simply random numbers, which change during training. Training consists of presenting actual experimental data to the neural network and using a mathematical algorithm—the back propagation algorithm—to adjust the weights. Each pair of patterns goes through two stages of activation: a forward pass and a backward pass.

1. **Feedforward** - apply an input; evaluate the activations \(a_j \) and store the error \(\text{delta}_j \) at each node \(j \)
 \[
 a_j = \text{Sum} \left(W_j(t) \cdot I^p \right)
 \]
 \[
 A^p_j = g(a_j)
 \]
 \[
 \text{delta}_j = A^p_j \cdot W^p_j
 \]
 After each training pattern \(P^p \) is presented, the correction to apply to the weights is proportional to the error. The correction is calculated before the thresholding step, using \(\text{error}_j (p)=P^p-W^p_j \cdot P^p \)

2. **Backpropagation** - compute the adjustments and update the weights.
 \[
 W_j(t+1) = W_j (t) \cdot \eta \cdot \text{delta}_j \cdot I^p \]
 where \(0 \leq \eta < 1 \) is a parameter that controls the learning rate

 - \(W_j \) = weight from input \(i \) to unit \(j \) in output layer; \(W_j \) is the vector of all the weights of the \(j \)-th neuron in the output layer.
 - \(P^p \) = input vector (pattern \(p \)) = \(I^p_1, I^p_2, ..., I^p_b \).
 - \(T^p \) = target output vector (pattern \(p \)) = \(T^p_1, T^p_2, ..., T^p_b \).
 - \(A^p \) = Actual output vector (pattern \(p \)) = \(A^p_1, A^p_2, ..., A^p_b \).
 - \(g() \) = sigmoid activation function: \(g(a) = [1 + \exp(-a)]^{-1} \)

The forward pass involves presenting a sample input to the network and letting the activations flow until they reach the output layer. During the backward pass, the network’s actual output (from the forward pass) is compared with the target output and errors are computed for the output units. Adjustments of weights are based on the difference between the correct and computed outputs. Once each observation’s computed and actual outputs are within the specified error tolerance, training stops and the neural network is ready for use: given a new input observation, it will estimate what the corresponding output values should be. After extensive training, the network establishes the input-output relationships through the adjusted weights on the network.

Data Set for Aerodynamic Models

Aerodynamic control systems can be divided into two categories viz., control surfaces and aerodynamics controls. In this paper, aerodynamic controls and models are the focus. The variables involved in aerodynamic controls are angle of attack \((\alpha) \), sideslip angle \((\beta) \), elevator deflections \((\delta_e) \), aileron deflections \((\delta_a) \), rudder deflection \((\delta_r) \), speed brake deflection \((\delta SB) \), landing gear effects and ground effects. The general equations of forces (lb) and moments (ft-lb) for key parameters are listed in the following tables 1 and 2 (Bruce J. and Christopher C. 1992).

<table>
<thead>
<tr>
<th>Forces (lb)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift</td>
<td>L=CL,q,S</td>
</tr>
<tr>
<td>Drag</td>
<td>D=CD,q,S</td>
</tr>
<tr>
<td>Side-force</td>
<td>FY=CY,q,S</td>
</tr>
</tbody>
</table>

Table 1. Aerodynamic forces

<table>
<thead>
<tr>
<th>Moments (ft-lb)</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitching</td>
<td>PM=Cm,q,S \cdot (L.cos(\alpha)+D.sin(\alpha)) \cdot XMRC+ (L.sin(\alpha)-D.cos(\alpha)) \cdot XMRC</td>
</tr>
<tr>
<td>Rolling</td>
<td>RM=CL,q,S \cdot b+FY \cdot XMRC</td>
</tr>
<tr>
<td>Yawing</td>
<td>Cy,q,S \cdot b+FY \cdot XMRC</td>
</tr>
</tbody>
</table>

Table 2 Aerodynamic Moments

The aerodynamic coefficients involved in the above equations are presented.

Longitudinal aerodynamic coefficients

Lift Coefficient \(CL \):
\[
CL = CL_{BAS}(\alpha, M)+\Delta CL_{SFLAPS}(\delta F). \delta F+\Delta CL_{SPEEDBRAKE}(\alpha, \delta SB)+\Delta CL_{LG}(\delta LG)+\Delta CL_{ge(h/b)}(\delta LG)+\Delta CL_{q}(\alpha, M,q,c/2U)+\Delta CL_{\alpha}(\alpha, M, c/2U)
\]

Drag Coefficient \(CD \):
\[
CD = CD_{BAS}(\alpha, M)+\Delta CD_{SFLAPS}(\delta F). \delta F+\Delta CD_{SPEEDBRAKE}(\alpha, \delta SB)+\Delta CD_{LG}(\delta LG)+\Delta CD_{ge(h/b)}(\delta LG)+\Delta CD_{q}(\alpha, M,q,c/2U)+\Delta CD_{\alpha}(\alpha, M, c/2U)
\]

Pitching Moment Coefficient \(Cm \):
\[
Cm = Cm_{BAS}(\alpha, M)+\Delta Cm_{SFLAPS}(\delta F). \delta F+\Delta Cm_{SPEEDBRAKE}(\alpha, \delta SB)+\Delta Cm_{LG}(\delta LG)+\Delta Cm_{ge(h/b)}(\delta LG)+\Delta Cm_{q}(\alpha, M,q,c/2U)+\Delta Cm_{\alpha}(\alpha, M, c/2U)
\]

Lateral aerodynamic coefficients

Side force coefficient \(CY \):
\[
CY=CY_{SB}(\alpha, M)+\beta+\Delta CY_{BRUDDER}(\delta R). \delta R+\Delta CY_{AILERON}(\delta A)+\Delta CY_{LG}(\delta LG)+\Delta CY_{ge(h/b)}(\delta LG)+\Delta CY_{T}(\alpha,p,b/2U+\Delta CY_{\alpha}(\alpha,r,b/2U)
\]
Rolling Moment Coefficient Cl:

\(Cl = C_{LB} (\alpha, M) . \beta + \Delta C_{BRUDDER} (\delta R) . \delta R + \Delta C_{AILERON} (\delta A) \delta A + \Delta C_{LGASP} (\delta L G) \beta + \Delta C_{LGASP} (h/b) \beta + \Delta C_{n_p} (\alpha) . p . b/2U + \Delta C_{n_r} (\alpha) . r . b/2U \)

Yawing Moment Coefficient Cn:

\(Cn = C_{nB} (\alpha, M) . \beta + \Delta C_{nRUDDER} (\delta R) . \delta R + \Delta C_{nAILERON} (\delta A) \delta A + \Delta C_{nLGASP} (\delta L G) \beta + \Delta C_{nLGASP} (h/b) \beta + \Delta C_{n_p} (\alpha) . p . b/2U + \Delta C_{n_r} (\alpha) . r . b/2U \)

Above equations depend basically on angle of attack and Mach number with little increments of other factors. The above equation can be expressed as a function of angle of attack and Mach number and it resembles a simple polynomial expression. Depending on the geometry and mass properties of the vehicle, aerodynamics coefficients will vary. The general parameters are tabulated in table 3.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Ranges of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle of attack (degrees)</td>
<td>-10 < (\alpha < 50)</td>
</tr>
<tr>
<td>Side angle (degrees)</td>
<td>-20 < (\beta < 20)</td>
</tr>
<tr>
<td>Mach number</td>
<td>(M \leq 0.9)</td>
</tr>
</tbody>
</table>
| Surface deflection (degrees)| -15 < \(\delta \text{ elevons (flaps)} < 15 \)
| | -20 < \(\delta \text{rudder} < 20 \)
| | -20 < \(\delta \text{ailerons} < 20 \)
| | 0 < \(\delta \text{speedbrake} < 80 \) |

Table 3 Range of values involved in aerodynamic coefficients

Inputs considered for determining base coefficients are angle of attack and Mach number. The output of the neural network is the coefficients of aerodynamic model. As a good training data set for a particular vehicle type, geometry and mass are selected from any wind tunnel test. Some times if the data set is not available from experiments for wind tunnels, a good training data set can be derived from numerical computations from Euler or Navier stokes or Vortex lattice method. This data set consists of a comprehensive input and output tuple for an entire parameter space. Once training data set is defined, sparse data collected from experiments can be interpolated and extended for the entire range of data using a trained neural network (provided trained data range and sparse data range are similar). This will avoid repeating the entire experiments in the wind tunnel. Once training data set is selected, one must determine the type of neural network architecture and transfer functions that will be used to interpolate the sparse data. The next section will discuss the selection procedure of the neural network architecture and transfer functions used in this work.

Neural Network Architecture

In this paper, interpolating for coefficient of lift is discussed for sparse data set. The rest of the various aerodynamic coefficients will be repeated with the same architecture of neural network with respect to corresponding data set. The problem of defining neural network architectures (Hagan M.T., Demuth H.B and Beale 1996) can be divided into the following categories: (i) type of neural network (whether three layer or four layer, etc.); (ii) number of hidden neurons; (iii) type of transfer functions (Elliott D.L 1993); (iv) training algorithm; and (v) over and under fitting of the results and validation of neural network output. If the function consists of a finite number of points, a three layer neural network is capable of learning the function. Since the availability of data is limited, the type of neural network considered for this problem is a three layer neural network with input layer, hidden layer and output layer. The input layer will have two input neurons (alpha and Mach number) and output layer will represent one neuron (coefficient of lift). Domain data has specific definite bounds, rather than having no limits. The number of hidden neurons is defined based on the efficient fitting of the data.

For determining an appropriate (hopefully optimal or near-optimal) number of hidden units (Lawrence S, Lee G. and Ah Chung T. 1996), we construct a sequence of networks with increasing number of hidden neurons from 2 to 20. More than 20 hidden neurons cause an over fitting of the results (Lawrence S, Lee G. and Ah Chung T. 1997). Each neuron in the network is fully connected and uses all available input variables. First, a network with a small number of hidden units is trained using random initial weights. Iteratively, a larger network is constructed (up to the 20 hidden neurons) and the network results are compared with the expected results. Activation functions also play a key role in producing the best network results. The transfer function is a nonlinear function that when applied to the net input of a neuron, determines the output of the neuron. The majority of neural networks use a sigmoid function (S-shaped). A sigmoid function is defined as a continuous real-valued function whose domain is the reals, whose derivative is always positive, and whose range is bounded. In this aerodynamic problem, a sigmoid function can produce an efficient fit. To get a best fitting and characterize physical characteristics of the problem, it is suggested to use different kinds of transfer functions for different layers of network. However, functions such as “tanh” that produce both positive and negative values tend to yield faster training than functions that produce only positive values such as sigmoid, because of better numerical conditioning. Numerical condition affects the speed and accuracy of most numerical algorithms. Numerical condition is especially important in the study of neural networks because ill-conditioning is a common cause of slow and inaccurate results from backprop-type algorithms. Activation functions for the hidden units are needed to introduce nonlinearity into the network. Without
nonlinearity, hidden units would not make nets more powerful than just plain perceptrons (which do not have any hidden units, just input and output units). The reason is that a linear function of linear functions is again a linear function. However, it is the nonlinearity (i.e., the capability to represent nonlinear functions) that makes multilayer networks so powerful. Three types of activation functions are used in neural networks namely linear, sigmoid and hyperbolic tangent.

The training epoch is restricted to 1000 cycles [present a data set, measure error, update weights]. The learning rate and momentum are selected appropriately to get faster convergence of the network. The input and output values are scaled to range [0.1, 0.9] to ensure that the output will lie in the output region of the nonlinear sigmoid transfer function. Presentable variable values lie in between 0.1 and 0.9 (0.1 and 0.9 inclusive). The scaling is performed using the following equation:

\[A = r(V - V_{\text{min}}) + A_{\text{min}} \]

\[r = \frac{A_{\text{max}} - A_{\text{min}}}{V_{\text{max}} - V_{\text{min}}} \]

\[V \rightarrow \text{Observed Variable} \quad A \rightarrow \text{Presentable Variable} \]

Once scaled training data set is prepared, it is ready for neural network training. Levenberg-Marquardt method (Hagan M.T. and Menhaj M.B. 1994) for solving the optimization is selected for backpropagation training. It is selected due to its guaranteed convergence to a local minima, and its numerical robustness.

Experiments

The training data set is divided into two sets viz., dataset pairs which has Mach number less than 0.4, and those greater than 0.4. The data set is presented to the neural network architecture for the training. Initially a training set, which has 233 pairs, is presented to the neural network up to user-defined error of tolerance. The weights are stored and sparse data set of 9 pairs is provided for the same neural network architecture for further training. The initial training data set represents the exhaustive combination of data set in the particular parameter space. The initial training data set represents the general pattern of a particular aerodynamic coefficient. Based on the general pattern, the second training data set is interpolated. The initial data set is plotted in figure 1 and 2, and the data in figure 1 can be represented by a linear type of function whereas the data in figure 2 can be expressed as a combination of linear and hyperbolic tangent or sigmoid function. Numerous trials have been conducted with different combinations of transfer functions, and we finally concluded that the linear transfer function be adopted for the input-to-hidden neurons and hyperbolic tangent or sigmoid function be used for the hidden-to-output layer. Figure 3 represents the sparse data set presented to the neural network successively after the initial training data set was presented. The figures 4 and 5 represent the neural network predicted data from the sparse data set. A few points are over fitted or under fitted in the results produced by the network. Over or under fitting is due to the sparseness of data. Overall the results produced by the network are considered to be very good.

\[V_{\text{min}} \rightarrow \text{minmax} \]

\[V_{\text{max}} \rightarrow \text{minmax} \]

\[A_{\text{min}} \rightarrow \text{minmin} \]

\[A_{\text{max}} \rightarrow \text{maxmax} \]

\[V - V_{\text{observed}} \rightarrow V_{\text{variable}} \]

\[A = r(V - V_{\text{min}}) + A_{\text{min}} \]

\[r = \frac{A_{\text{max}} - A_{\text{min}}}{V_{\text{max}} - V_{\text{min}}} \]
Conclusion

Neural networks will become an important tool in future NASA Ames efforts to move directly from wind tunnel tests to virtual flight simulations. Many errors can be eliminated, and implementing a neural network can considerably reduce costs. Preliminary results have proved that neural network is an efficient tool to interpolate across sparse data. The prediction for the lower end and upper end of Mach number by the neural network is considerably deviated. The deviation is caused due to the non-availability of data in the sparse data. Initially neural network has been trained by the original data which enables network to understand overall pattern. Successive training by the sparse data alters the weights of the neural network which causes this deviation. This deviation is well within 10%, which is acceptable in aerodynamic modeling. Further research is focused to overcome this deviation in predicting sparse data. It is also directed to optimize number of hidden neurons and will be integrated into web-enabled application. Hybrid system using evolutionary theory and neural network is planned to build an efficient model to predict aerodynamic variables. The neural network will be an integral tool of data mining suite in an existing collaborative system in NASA.

Acknowledgements

We would like to acknowledge useful comments, suggestions and discussions from Dr. David Thompson and Ms. Joan Walton NASA Ames.

References

Bruce, J., and Christopher C., 1992, Preliminary subsonic aerodynamic model for simulation studies of the HL-20 lifting body, NASA technical memorandum 4302.
Lawrence S, Lee, G and Ah Chung, T., 1997 Lessons in neural network training: overfitting may be harder than expected In proceedings of the fourteenth national conference on artificial intelligence, AAAI-97.