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Abstract

Learning belief networks from data is NP-hard in gen-
eral. A common search method used in heuristic learning
is the single-link lookahead. It cannot learn the underly-
ing probabilistic model when the problem domain is pseudo-
independent. In learning these models, to explicitly trade
model goodness of fit to data and model complexity, param-
eterization of PI models is required. In this work, we present
an improved result for computing the maximum number of
parameters needed to specify a full PI model. We also present
results on parameterization of a subclass of partial PI models.
Keywords: probabilistic reasoning, knowledge discovery,
data mining, machine learning, belief networks, model com-
plexity.

Introduction
Learning belief networks from data, as an alternative or en-
hancement to elicitation from experts, has been an active
research area in uncertain reasoning, e.g., (Lam & Bac-
chus 1994; Cooper & Herskovits 1992; Heckerman, Geiger,
& Chickering 1995; Friedman, Murphy, & Russell 1998).
As the task is NP-hard (Chickering, Geiger, & Heckerman
1995), a common search method used in heuristic learning is
the single-link lookahead, where successive graphical struc-
tures adopted differ by a single link. It has been shown that
a class of probabilistic models called pseudo-independent
(PI) models cannot be learned by single-link search (Xi-
ang, Wong, & Cercone 1996). A more sophisticated method
(multi-link lookahead) is proposed in (Xiang, Wong, & Cer-
cone 1997) and is improved in (Hu & Xiang 1997).

The method can be further improved by incorporating the
model complexity (the number of parameters) explicitly in
the scoring metrics of the learning algorithm (Lam & Bac-
chus 1994; Xiang et al. 2000), so that the accuracy of the
model can be better traded with the complexity. This leads
to the issue of how many parameters are needed to specify a
PI model.

In a previous work (Xiang Oct 1997), a formula for com-
puting the number of parameters in a full PI model was pre-
sented. However, the result was very complex and the de-
pendency between the parameters of the PI model and the
parameters of individual variables in the model is thus ob-
scured. In this paper, we employ the concept of a hypercube
to derive a much simpler and direct formula for computing
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the number of parameters of a full PI model. The new for-
mula also provide good insight on the structural relation be-
tween the complexity of a full PI model and the spaces of its
domain variables. We also present results on computing the
number of parameters of a subclass of partial PI model.

Background
Let V be a set of n discrete variables X1, . . . , Xn (in what
follows we will focus on finite and discrete variables). Each
Xi has a finite space Si = {xi,1, xi,2, ..., xi,Di} of cardinal-
ity Di. The space of a set V of variables is defined by the
Cartesian product of the spaces of all variables in V , that is,
SV = S1 × ... × Sn (or

∏
i Si). Thus, SV contains the tu-

ples of all possible combinations of values of the variables
in V . Each tuple is called a configuration of V , denoted by
(x1, . . . , xn).

Let P (Xi) denote the probability function over Xi and
P (xi) denote the probability value P (Xi = xi). A proba-
bilistic domain model (PDM) M over V defines the prob-
ability values of every configuration for every subset A ⊆
V . Let P (V ) or P (X1, . . . , Xn) denote the joint prob-
ability distribution (JPD) function over X1, . . . , Xn and
P (x1, ..., xn) denote the probability value of a configuration
(x1, ..., xn). We refer to the function P (A) over A ⊂ V as
the marginal distribution over A and P (Xi) as the marginal
distribution of Xi. We refer to P (x1, ..., xn) as a joint pa-
rameter and P (xi) as a marginal parameter.

For any three disjoint subsets of variables W , U and Z
in V , W and U are called conditionally independent given
Z, denoted by I(W,Z,U), if P (W |U, Z) = P (W |U) for
all possible values in W , U and Z such that P (U, Z) >
0. W and U are said to be marginally independent if
P (W |U) = P (W ) for all possible values W and U . Vari-
ables in a subset A are marginally independent if they are
pairwise marginally independent. In that case, we have
P (A) =

∏|A|
i=1 P (Xi).

Variables in a subset A are called generally dependent if
P (B|A \B) 	= P (B) for every proper subset B ⊂ A. Vari-
ables in A are collectively dependent if, for each proper sub-
set B ⊂ A, there exists no proper subset C ⊂ A\B that sat-
isfies P (B|A \ B) = P (B|C). A pseudo-independent (PI)
model is a PDM where proper subsets of a set of collectively
dependent variables display marginal independence (Xiang,
Wong, & Cercone 1997).

Definition 1 (Full PI model) A PDM over a set V (|V | ≥
3) of variables is a full PI model if the following prop-
erties (called axioms of full PI models) hold:
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(SI ) Variables in any proper subset of V are marginally in-
dependent.
(SII ) Variables in V are collectively dependent.

The condition of marginal independence is relaxed in par-
tial PI models, which can be defined using the concept of
marginally independent partition (Xiang et al. 2000).

Definition 2 (Marginally independent partition) Let V
(|V | ≥ 3) be a set of variables, and B = {B1, . . . , Bm}
(m ≥ 2) be a partition of V . B is a marginally in-
dependent partition if X ∈ Bi and Y ∈ Bj (i 	= j)
imply that X and Y are marginally independent. Each
block Bi in B is called a marginally independent
block.

In a partial PI model, it is not necessary that every proper
subset is marginally independent.

Definition 3 (Partial PI model) A PDM over a set V
(|V | ≥ 3) of variables is a partial PI model if the
following properties (called axioms of partial PI models)
hold:
(S′

I ) V can be partitioned into two or more marginally inde-
pendent blocks.
(SII ) Variables in V are collectively dependent.

To facilitate the parameterization of partial PI models, we
define the maximum marginally independent partition as fol-
lows:

Definition 4 (Maximum partition) Let B = {B1, ..., Bm}
be a marginally independent partition of a partial PI model
over V . B is a maximum marginally independent partition
if there exists no marginally independent partition B′ over
V such that |B| < |B′|.

Why parameterizing PI models?
In learning graphical models of PDMs, one needs to balance
the goodness of fit of the learned model to the data and ef-
ficiency of future inference computation using the learned
model. A common technique is to score each alternative
model by a combination of a score of its goodness of fit
to data and a score of its model complexity. The model
complexity is usually measured by the number of parame-
ters needed to fully specify it.

Variables in a full or partial PI model are collectively de-
pendent. They are special cases of PI models. The most gen-
eral type of PI models are embedded PI models, where the
domain includes several clusters of variables each of which
forms a full PI submodel or a partial PI submodel. The re-
maining domain variables are ‘normal’ variables. The nor-
mal variables are dependent on each other and on variables
in the PI submodels as in a Bayesian network or a decom-
posable Markov network. In order to parameterize such a
model, one needs to parameterize the embedded PI submod-
els and combine the result with the parameterization of the
normal variables.

In the previous work (Xiang, Wong, & Cercone 1997;
Hu & Xiang 1997), the collective dependence of a PI sub-
model has led to an over-parameterization. For instance, if a
PI submodel contains m variables each of k possible values,

its complexity is measured as km−1. As we will show in this
paper, the actual maximum number of parameters needed to
specify the PI submodel can be significantly smaller than
km − 1. This over-parameterization of PI submodels will
lead the learning algorithm to penalize a potential PI model
as both a data-fitting and a concise learned model. The con-
tribution of this work is to present new results leading to
a theoretical foundation for correct parameterization of PI
submodels.

In a previous work (Xiang Oct 1997), the following the-
orem for computing the number of parameters in a full PI
model was presented.

Theorem 5 (Xiang Oct 1997) The total number of parameters of
a full PI model is W = W1 + W2. The number W1 is the count
of marginal parameters (marginals), W1 =

∑n
i=1(Di −1), where

n is the total number of variables and Di ≥ 2 is the number of
values that the ith variable can take. The number W2 is the count
of joint probability parameters (joints),

W2 = 1 +
n∑

i=1

C(n,i)∑

j=1

i∏

k=1,Xjk
∈Yj

(Djk − 2),

where j ranges from 1 to the total number of combinations taking
i variables out of n each time, Yj = {Xj1 , ..., Xji} denotes one
combination of i variables, and Djk is the size of space for Xjk .

This result is very complex (in particular, W2). The de-
pendency between the parameters of the PI model and the
parameters of individual variables in the model is thus ob-
scured. In the following, we derive a much simpler and di-
rect formula through a perspective different from the pre-
vious work. The new formula also provides good insight
on the structural relation between the complexity of a full
PI model and the marginal parameters of its variables. In
addition, we also present results on parameterization of a
subclass of partial PI models.

Parameterization of full PI models

Consider a general PDM M over a set of n variables
X1, . . . , Xn. The JPD of M consists of a total of

∏n
i=1 Di

parameters. We use a graphical model to represent these pa-
rameters, called a JPD hypercube or simply a hypercube.

Given M, its hypercube is constructed in a n-dimensional
space with the axes X1, . . . , Xn. The length of the hyper-
cube along Xi is Di. The segment of axis Xi from j − 1 to
j, where j = 1, 2, . . . , Di, is labeled by xi,j , the j’th value
of Xi. We refer to this segment as Xi = xi,j . The hyper-
cube has exactly

∏n
i=1 Di cells, one for each joint parame-

ter. The cell located at X1 = x1,j , X2 = x2,k, . . . , Xn =
xn,m is labeled by the parameter P (X1 = x1,j , X2 =
x2,k, . . . , Xn = xn,m), or for simplicity, p(j,k,...,m). Fig-
ure 1 shows the hypercube for a PDM with three vari-
ables, where X1 and X2 are ternary and X3 is binary. The
cell labeled by p(1,3,2) represents the probability P (X1 =
x1,1, X2 = x2,3, X3 = x3,2).

By the rule of negation of probability, the marginal distri-
bution of Xi can be specified by Di − 1 parameters. Hence
specification of marginal distributions for all n variables in
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Figure 1: A 3-dimensional (3 × 3 × 2) JPD hypercube

M requires ωm parameters:

ωm =
n∑

i=1

(Di − 1). (1)

By the rule of negation, the JPD of M can be specified by
ωg parameters:

ωg =
n∏

i=1

Di − 1. (2)

Hence, in the JPD hypercube of a general PDM, ωg cells
correspond to independent parameters (which can be freely
specified) and the remaining one cell can be derived from
others by the rule of negation.

By definition, a full PI model imposes constraints on the
parameters of the PDM. Hence, a full PI model can be spec-
ified with fewer than ωg parameters. In other words, more
than one cell in the hypercube of a full PI model can be de-
rived from others. From axiom SI for full PI model, we
derive the following relation between the joint parameters
and marginal parameters. It says that any marginalization of
the JPD is equal to the product of variable marginals.

Lemma 6 (Full PI marginal) Let a PDM M be a full PI
model over V = {X1, . . . , Xn}. Then, the following holds:

Di∑

k=1

P (X1, . . . , xi,k, . . . , Xn) = P (X1) . . . P (Xi−1)P (Xi+1) . . . P (Xn).

Proof: By marginalization, we have in general

Di∑

k=1

P (X1, . . . , xi,k, . . . , Xn) = P (X1, . . . , Xi−1, Xi+1, . . . , Xn).

By Axiom SI , X1, . . . , Xi−1, Xi+1, . . . , Xn are marginally
independent. Therefore,

P (X1, . . . , Xi−1, Xi+1, . . . , Xn) = P (X1) . . . P (Xi−1)P (Xi+1) . . . P (Xn).

�
From Lemma 6, the following corollary follows directly.

It says that every joint parameter can be derived from
marginals of n − 1 variables plus Di − 1 joint parameters.

Corollary 7 (Full PI joint) Let a PDM M be a full PI
model over V = {X1, . . . , Xn}. Then,

P (X1, . . . , xi,r, . . . , Xn) =

P (X1) · · · P (Xi−1)P (Xi+1) · · · P (Xn)−
Di∑

k=1,k �=r

P (X1, . . . , xi,k, . . . , Xn).

In order to determine the maximum number of indepen-
dent parameters of a full PI model, we investigate in the
following way: First, we specify the ωm parameters as the
marginal probability values of the n variables. Surely, these
parameters are independent of each other in a general full
PI model. We then investigate how many cells in the hy-
percube of the PDM can be derived given the ωm marginal
parameters and other cells. As soon as a cell is determined
to be derivable, it is eliminated from further consideration.
That is, it cannot be used to derive other cells. Once we
have eliminated all derivable cells, the remaining cells and
the ωm marginal parameters constitute a maximum set of in-
dependent parameters of the full PI model. We illustrate this
idea with an example before applying the idea to derive the
general result.

Consider the hypercube in Figure 1. For this PDM, ωm =
2 + 2 + 1 = 5. We assume that the 5 marginal parameters
have been specified. Hence, the other 3 marginal probability
values can be derived.

We refer to the set of cells with the identical value Xi =
xi,j as the hyperplane at Xi = xi,j . For example, the 6 cells

p(3,1,1), p(3,2,1), p(3,3,1), p(3,1,2), p(3,2,2), p(3,3,2)

form a hyperplane at X1 = x1,3. By Corollary 7, we have

p(3,1,1) = P (x2,1)P (x3,1) − (p(1,1,1) + p(2,1,1)).

That is, the cell at the front-lower-left corner can be derived
by the two cells behind it and the marginal parameters. All
other cells on the hyperplane at X1 = x1,3 can be similarly
derived. Hence, we eliminate these 6 cells from further con-
sideration. The 12 cells behind this hyperplane are left to
be considered. Using the same idea, we can show that the
remaining 4 cells at the hyperplane at X2 = x2,3 can be
derived. We therefore eliminate these 4 cells from further
consideration. Now only the 8 cells in the left-hand-side of
this hyperplane are to be considered. The remaining 4 cells
at the hyperplane at X3 = x3,2 can be derived. After elimi-
nating them, only 4 cells are left:

p(1,1,1), p(2,1,1), p(1,2,1), p(2,2,1)

Since no more cells can be eliminated, the maximum num-
ber of parameters needed to specify such a full PI model is
9, with 5 marginal parameters and 4 joint parameters.

Next, we present the general result on the number of pa-
rameters needed to specify a full PI model:

Theorem 8 (Full PI parameters) Let a PDM M be a full
PI model over V = {X1, . . . , Xn}. Then the maximum
number of parameters needed to specify M is

ωf =
n∏

i=1

(Di − 1) +
n∑

i=1

(Di − 1).
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Proof: The second term
∑n

i=1(Di − 1) corresponds to the
total number of marginal parameters required to specify the
marginal distributions of the n variables. We only need to
show that all joint probability values can be derived given
these marginal parameters plus

∏n
i=1(Di − 1) joint proba-

bility values.
To do so, we construct a JPD hypercube for M. Applying

Corollary 7 and using the similar argument for the example
in Figure 1, we can eliminate hyperplanes at X1 = x1,D1 ,
X2 = x2,D2 , ..., Xn = xn,Dn in that order such that for
each variable Xi, all cells on the hyperplane at Xi = xi,Di

can be derived from cells outside these hyperplanes and the
marginal parameters. The remaining cells form a hypercube
whose length along the Xi axis is Di − 1 (i = 1, 2, ..., n).
The total number of cells in this hypercube is

∏n
i=1(Di−1).

�
As an example, we apply Theorem 8 to a full PI model of

10 binary variables. The number of marginal parameters is
given by

∑10
i=1(2−1) = 10. The number of joint parameters

is obtained from
∏10

i=1(2 − 1) = 1. Thus, the maximum
number of parameters is 10+1 = 11. This can be compared
a general PDM over 10 binary variables. The number of
parameters required is

∏10
i=1 2 − 1 = 1023.

As another example, consider a full PI model over 10 vari-
ables. Three of them are binary, four of them are ternary,
and the remaining three each has 4 possible values. The
number of marginal parameters is 3 · (2 − 1) + 4 · (3 −
1) + 3 · (4 − 1) = 20. The number of joint parameters is
(2− 1)3 · (3− 1)4 · (4− 1)3 = 432. Thus, the total number
of parameters is 20 + 432 = 452.

Parameterization of partial PI models
A full PI model is a partial PI model, but the reverse is not
necessarily true. Lemma 6 does not hold for a partial PI
model that is not a full PI model. From axiom (S′

I ) of partial
PI models, we derive the following relation between the joint
and marginal parameters:

Lemma 9 (Partial PI marginal) Let a PDM M be a par-
tial PI model over V = {X1, ..., Xn} with a marginally
independent partition B = {B1, . . . , Bm}. Let W =
{Xik

|Xik
∈ Bk} be a subset of V with one variable from

each block of B and U = V \W . Then, the following holds:
∑

Xj∈U

P (X1, ..., Xn) = P (Xi1)...P (Xim
).

Proof: In the lemma, each variable in U is marginalized
out from the JPD. This gives

∑
Xj∈U P (X1, ..., Xn) =

P (Xi1 , ..., Xim
). Since each pair of Xik

and Xil
are

from different marginally independent blocks, Xik
and Xil

are marginally independent. Hence, P (Xi1 , ..., Xim
) =

P (Xi1)...P (Xim
). The lemma follows. �

We now consider a partial PI model over five variables
X1, X2, X3, X4 and X5, where X1, X4 and X5 are binary
and X2 and X3 are ternary. The marginally independent
partition is B = {{X1, X2, X3}, {X4}, {X5}}. Since a 5-
dimensional space cannot be illustrated with a 3-D drawing,

Figure 2: The joint parameters of a partial PI model.

we illustrate the corresponding hypercube using four hyper-
cubes as shown in Figure 2 (a). All cells in each hypercube
have the identical values for X4 and X5 as labeled beside
the cube but their values on X1, X2 and X3 are different.
For instance, the hyperplan at the back of the first (left-most)
hypercube consists of 9 cells. The cell at the bottom-left cor-
ner is the joint P (X1 = x1,1, X2 = x2,1, X3 = x3,1, X4 =
x4,1, X5 = x5,1} and that at the top-left corner is P (X1 =
x1,1, X2 = x2,1, X3 = x3,3, X4 = x4,1, X5 = x5,1}

Apply Lemma 9 with U = {X2, X3}, we obtain the fol-
lowing equations, where each joint parameter is represented
by a numerical string. For example,

P (X1 = x1,1, X2 = x2,3, X3 = x3,2, X4 = x4,1, X5 = x5,2}
is written as (13212). The location of a digit in the string
signifies the corresponding variable and the value of the digit
signifies the value of the variable.

(11111) + (11211) + (11311) + (12111) + (12211) + (12311)+
(13111) + (13211) + (13311) = P (x1,1)P (x4,1)P (x5,1)
(11112) + (11212) + (11312) + (12112) + (12212) + (12312)+
(13112) + (13212) + (13312) = P (x1,1)P (x4,1)P (x5,2)
(11121) + (11221) + (11321) + (12121) + (12221) + (12321)+
(13121) + (13221) + (13321) = P (x1,1)P (x4,2)P (x5,1)
(11122) + (11222) + (11322) + (12122) + (12222) + (12322)+
(13122) + (13222) + (13322) = P (x1,1)P (x4,2)P (x5,2)
(21111) + (21211) + (21311) + (22111) + (22211) + (22311)+
(23111) + (23211) + (23311) = P (x1,2)P (x4,1)P (x5,1)
(21112) + (21212) + (21312) + (22112) + (22212) + (22312)+
(23112) + (23212) + (23312) = P (x1,2)P (x4,1)P (x5,2)
(21121) + (21221) + (21321) + (22121) + (22221) + (22321)+
(23121) + (23221) + (23321) = P (x1,2)P (x4,2)P (x5,1)
(21122) + (21222) + (21322) + (22122) + (22222) + (22322)+
(23122) + (23222) + (23322) = P (x1,2)P (x4,2)P (x5,2)

Assuming that we have specified all the marginal parame-
ters, the following joint parameters (the last joint in the right-
hand-side of each equation) can be derived from other joints
and do not need to be specified:

(13311), (13312), (13321), (13322), (23311), (23312), (23321), (23322).

The corresponding cells are shaded in Figure 2 (a). For in-
stance, from the first equation, we conclude that the shaded
cell (13311) in the top-right corner of the hyperplan at the
back of the first hypercube can be derived once we know
the other cells in the same hyperplane (and the relevant
marginals).

Next we apply Lemma 9 with U = {X1, X3}, we obtain
the following equations.

(11111) + (11211) + (11311) + (21111) + (21211) + (21311)
= P (x2,1)P (x4,1)P (x5,1)
(11112) + (11212) + (11312) + (21112) + (21212) + (21312)
= P (x2,1)P (x4,1)P (x5,2)
(11121) + (11221) + (11321) + (21121) + (21221) + (21321)
= P (x2,1)P (x4,2)P (x5,1)
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(11122) + (11222) + (11322) + (21122) + (21222) + (21322)
= P (x2,1)P (x4,2)P (x5,2)
(12111) + (12211) + (12311) + (22111) + (22211) + (22311)
= P (x2,2)P (x4,1)P (x5,1)
(12112) + (12212) + (12312) + (22112) + (22212) + (22312)
= P (x2,2)P (x4,1)P (x5,2)
(12121) + (12221) + (12321) + (22121) + (22221) + (22321)
= P (x2,2)P (x4,2)P (x5,1)
(12122) + (12222) + (12322) + (22122) + (22222) + (22322)
= P (x2,2)P (x4,2)P (x5,2)
(13111) + (13211) + (13311) + (23111) + (23211) + (23311)
= P (x2,3)P (x4,1)P (x5,1)
(13112) + (13212) + (13312) + (23112) + (23212) + (23312)
= P (x2,3)P (x4,1)P (x5,2)
(13121) + (13221) + (13321) + (23121) + (23221) + (23321)
= P (x2,3)P (x4,2)P (x5,1)
(13122) + (13222) + (13322) + (23122) + (23222) + (23322)
= P (x2,3)P (x4,2)P (x5,2)

From the first 8 equations, the following joint parameters
can be derived from other joints:

(21311), (21312), (21321), (21322), (22311), (22312), (22321), (22322).

They correspond to the additional shaded cells in Figure 2
(b). Since the last 4 equations contain the joint parameters

(23311), (23312), (23321), (23322)

in the previously to-be-derived group, each of them needs
to be derived from others. These cells have already been
shadded. Hence, no additional parameters can be derived
using these equations.

Finally, we apply Lemma 9 with U = {X1, X2} and ob-
tain the following equations.

(11111) + (12111) + (13111) + (21111) + (22111) + (23111)
= P (x3,1)P (x4,1)P (x5,1)
(11112) + (12112) + (13112) + (21112) + (22112) + (23112)
= P (x3,1)P (x4,1)P (x5,2)
(11121) + (12121) + (13121) + (21121) + (22121) + (23121)
= P (x3,1)P (x4,2)P (x5,1)
(11122) + (12122) + (13122) + (21122) + (22122) + (23122)
= P (x3,1)P (x4,2)P (x5,2)
(11211) + (12211) + (13211) + (21211) + (22211) + (23211)
= P (x3,2)P (x4,1)P (x5,1)
(11212) + (12212) + (13212) + (21212) + (22212) + (23212)
= P (x3,2)P (x4,1)P (x5,2)
(11221) + (12221) + (13221) + (21221) + (22221) + (23221)
= P (x3,2)P (x4,2)P (x5,1)
(11222) + (12222) + (13222) + (21222) + (22222) + (23222)
= P (x3,2)P (x4,2)P (x5,2)
(11311) + (12311) + (13311) + (21311) + (22311) + (23311)
= P (x3,3)P (x4,1)P (x5,1)
(11312) + (12312) + (13312) + (21312) + (22312) + (23312)
= P (x3,3)P (x4,1)P (x5,2)
(11321) + (12321) + (13321) + (21321) + (22321) + (23321)
= P (x3,3)P (x4,2)P (x5,1)
(11322) + (12322) + (13322) + (21322) + (22322) + (23322)
= P (x3,3)P (x4,2)P (x5,2)

From the first 8 equations, the following joint parameters
can be derived from other joints:

(23111), (23112), (23121), (23122), (23211), (23212), (23221), (23222).

They correspond to the additional shaded cells in Figure 2
(c). The last 4 equations contain the joint parameters

(23311), (23312), (23321), (23322).

that have already been shadded. No additional parameters
can be derived using these equations.

From the figure, there are 48 joint parameters unshaded.
With the 7 marginals counted, the maximum number of pa-
rameters needed to specify this partial PI model is 55. The
number of joints needed can be calculated as

(D1∗D2∗D3−(D1−1)−(D2−1)−(D3−1)−1)∗D4∗D5

= (2 ∗ 3 ∗ 3 − 1 − 2 − 2 − 1) ∗ 2 ∗ 2 = 48.

Below we prove the general case for such partial PI models.

Theorem 10 (Partial PI parameter) Let a PDM M be a
partial PI model with a maximum marginally independent
partition B = {B1, . . . , Bh}, where B1 contains m vari-
ables X1, X2, ..., Xm and each other block is a singleton.
Then the maximum number of parameters needed to specify
M is

ωp = [(

m∏

i=1

Di) − (

m∑

i=1

(Di − 1)) − 1][

h+m−1∏

i=m+1

Di] + [

h+m−1∑

i=1

(Di − 1)].

Conclusion
In this work, we present an improved parameterization of
full PI models, that is simple and more insightful than the
previous result. We present a parameterization of partial
PI models whose maximum marginal independent partition
contains all singleton blocks except one. We employ the hy-
percube representation for analyzing the parameterization of
PI models, which provide a visually appealing tool that fa-
cilitates the task.

The hypercube representation and the parameterization of
the subclass of partial PI models provide a new base for re-
search into the parameterization of general partial PI models
and ultimately general PI models (the embedded PI mod-
els). The parameterization of general PI models will provide
a foundation to a new generation of algorithms for learning
probabilistic graphical models with embedded PI submod-
els.
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