A Logic Programming Approach to Querying and Integrating P2P Deductive Databases

L. Caroprese, S. Greco and E. Zumpano
DEIS, Univ. della Calabria
87030 Rende, Italy
{lcaroprese, greco, zumpano}@deis.unical.it

Abstract
The paper proposes a logic framework for modeling the interaction among deductive databases and computing consistent answers to logic queries in a P2P environment. As usual, data are exchanged among peers by using logical rules, called mapping rules. The novelty of our approach is that only data not violating integrity constraints are exchanged. The (declarative) semantics of a P2P system is defined in terms of weak models. Under this semantics only facts not making the local databases inconsistent are imported, and the preferred weak models are those in which peers import maximal sets of facts not violating integrity constraints. An equivalent and alternative characterization of preferred weak model semantics, in terms of prioritized logic programs, is also introduced and the computational complexity of P2P logic queries is investigated.

Introduction
The spread of Internet and the possibility for its users for sharing knowledge from a large number of informative sources, have enabled the development of new methods for data integration easily usable for processing distributed and autonomous data. In traditional data integration systems queries are posed through a central mediated schema. Data is stored locally in each source and the two main formalisms managing the mapping between the mediated schema and the local sources are the global-as-view (GAV) and the local-as-view (LAV) approach (Lenzerini 2002). The main drawbacks of traditional integration systems are due to the lack of flexibility: i) the centralized mediated schema, that controls and manages the interaction among distributed sources, must be defined looking at the global system; ii) the insertion of a new source or the modification of an existing one may cause a violation of the mappings to the mediated schema. Recently, there have been several proposals which consider the integration of information and the computation of queries in an open ended network of distributed peers (Bernstein et al. 2002; Calvanese et al. 2004; Francońi et al. 2003) as well as the problem of schema mediation and query optimization in P2P environments (Halevy et al. 2003; Madhavan & Halevy 2003; Tatarinov & Halevy. 2004; Gribble et al. 2001). Generally, peers can both provide or consume data and the only information a peer participating in a P2P system has is about neighbors, i.e. information about the peers that are reachable and can provide data of interest. More specifically, each peer joining a P2P system exhibits a set of mapping rules, i.e. a set of semantic correspondences to a set of peers which are already part of the system (neighbors). Thus, in a P2P system the entry of a new source, peer, is extremely simple as it just requires the definition of the mapping rules. By using mapping rules as soon as it enters the system a peer can participate and access all data available in its neighborhood, and through its neighborhood it becomes accessible to all the other peers in the system.

As stated before, the problem of integrating and querying databases in P2P environments has been investigated in (Calvanese et al. 2004; Francońi et al. 2003). In both works peers are modeled as autonomous agents which can export only data belonging to their knowledge, i.e. data which are true in all possible scenarios (models).

In (Calvanese et al. 2004) a new semantics for a P2P system, based on epistemic logic, is proposed. The paper also shows that the semantics is more suitable than traditional semantics based on FOL (First Order Logic) and proposes a sound, complete and terminating procedure that returns the certain answers to a query submitted to a peer.

In (Francońi et al. 2003) a characterization of P2P database systems and a model-theoretic semantics dealing with inconsistent peers is proposed. The basic idea is that if a peer does not have models all (ground) queries submitted to the peer are true (i.e. are true with respect to all models). Thus, if some databases
are inconsistent it does not mean that the entire system is inconsistent.

An interesting approach for answering queries in a Peer to Peer data exchange system has been recently proposed in (Bertossi & Bravo 2004). Given a peer P in a P2P system a solution for P is a database instance that respects the exchange constraints and trust relationship P has with its ‘immediate neighbors’ and stays as close as possible to the available data in the system.

In (Haley et al. 2003) the problem of schema mediation in a Peer Data Management System (PDMS) is investigated. A flexible formalism, PPL, for mediating peer schemas, which uses the GAV and LAV formalism to specify mappings, is proposed. The semantics of query answering for a PDMS is defined by extending the notion of certain answer.

In (Tatarinov & Haley. 2004) several techniques for optimizing the reformulation of queries in a PDMS are presented. In particular the paper presents techniques for pruning semantic paths of mappings in the reformulation process and for minimizing the reformulated queries.

The design of optimization methods for query processing over a network of semantically related data is investigated in (Madhavan & Halevy 2003).

Motivation. The motivation of this work stems from the observation that previously proposed approaches result not to be sound with respect to query answering when some peer is inconsistent.

![Figure 1: A P2P system](image)

Example 1 Consider the P2P system depicted in Figure 1 consisting of three peers P_1, P_2 and P_3 where

- P_3 contains two atoms: $r(a)$ and $r(b)$;
- P_2 imports data from P_3 using the (mapping) rule $q(X) \leftarrow r(X)$\(^1\). Moreover imported atoms must satisfy the constraint $\leftarrow q(X), q(Y), X \neq Y$ stating that the relation q may contain at most one tuple, and
- P_1 imports data from P_2, using the (mapping) rule $p(X) \leftarrow q(X)$. P_1 also contains the rules $s \leftarrow p(X)$ stating that s is true if the relation p contains at least one tuple, and $t \leftarrow p(X), p(Y), X \neq Y$, stating that t

\(^1\)Please, note the special syntax we use for mapping rules.

is true if the relation p contains at least two distinct tuples.

The intuition is that, with $r(a)$ and $r(b)$ being true in P_3, either $q(a)$ or $q(b)$ could be imported in P_2 (but not both, otherwise the integrity constraint is violated) and, consequently, only one tuple is imported in the relation p of the peer P_1. Note that whatever is the derivation in P_2, s is derived in P_1 while t is not derived. Therefore, the atoms s and t are, respectively, true and false in P_1. It is worth noting that the approaches above mentioned do not capture such a semantics. Indeed, the epistemic semantics proposed in (Calvanese et al. 2004) states that both the atoms $q(a)$ and $q(b)$ are imported in the peer P_2 which becomes inconsistent. In this case the semantics assumes that the whole P2P system is inconsistent and every atom is true as it belongs to all minimal models. Consequently, t and s are true. The semantics proposed in (Franconi et al. 2003) assumes that only P_2 is inconsistent as it has no model. Thus, as the atoms $q(a)$ and $q(b)$ are true in P_2 (they belong to all models of P_2), then the atoms $p(a)$ and $p(b)$ can be derived in P_1 and finally t and s are true. □

The idea we propose in this paper consists in importing in each peer maximal sets of atoms not violating integrity constraints. A similar approach, using epistemic logic, has been recently proposed in (Calvanese et al. 2005).

Contributions. The paper presents a logic-based framework for modeling the interaction among peers. It is assumed that each peer consists of a database, a set of standard logic rules, a set of mapping rules and a set of integrity constraints. In such a context, a query can be posed to any peer in the system and the answer is provided by using locally stored data and all the information that can be consistently imported from its neighbors. In synthesis, the main contributions are:

1. A formal declarative semantics for P2P systems, called *Preferred Weak Model* semantics, which uses the mapping rules between peers to import only maximal sets of atoms not violating integrity constraints.

2. An alternative equivalent semantics, called *Preferred Stable Model* semantics, based on the rewriting of mapping rules into standard logic rules with priorities.

3. A generalization of the preferred weak model semantics which allows to compute consistent queries also in the presence of possible inconsistent source databases.

4. Results on the complexity of answering queries.
Background

We assume there are finite sets of predicate symbols, constants and variables. A term is either a constant or a variable. An atom is of the form \(p(t_1, \ldots, t_n) \) where \(p \) is a predicate symbol and \(t_1, \ldots, t_n \) are terms. A literal is either an atom \(A \) or its negation \(\neg A \). A rule is of the form \(H \leftarrow B \), where \(H \) is an atom (head of the rule) and \(B \) is a conjunction of literals (body of the rule). A program \(\mathcal{P} \) is a finite set of rules. \(\mathcal{P} \) is said to be positive if it is negation free. The definition of a predicate \(p \) consists of all rules having \(p \) in the head. A ground rule with empty body is a fact. A rule with empty head is a constraint. It is assumed that programs are safe, i.e. variables appearing in the head or in negated body literals are range restricted as they appear in some positive body literal.

The ground instantiation of a program \(\mathcal{P} \), denoted by \(\text{ground}(\mathcal{P}) \) is built by replacing variables with constants in all possible ways. An interpretation is a set of ground atoms. The truth value of ground atoms, literals and ground rules with respect to an interpretation \(M \) is as follows:

- \(\text{val}_M(A) = A \in M \), \(\text{val}_M(\neg A) = \neg \text{val}_M(A) \)
- \(\text{val}_M(L_1, \ldots, L_n) = \min\{\text{val}_M(L_1), \ldots, \text{val}_M(L_n)\} \)
- \(\text{val}_M(A \leftarrow L_1, \ldots, L_n) = \text{val}_M(A) \geq \text{val}_M(L_1, \ldots, L_n) \), where \(A \) is an atom, \(L_1, \ldots, L_n \) are literals and \(\text{true} \geq \text{false} \).

An interpretation \(M \) is a model for a program \(\mathcal{P} \), if all rules in \(\text{ground}(\mathcal{P}) \) are true w.r.t. \(M \). A model \(M \) is said to be minimal if there is no model \(N \) such that \(N \subseteq M \). We denote the set of minimal models of a program \(\mathcal{P} \) with \(\mathcal{M}(\mathcal{P}) \). Given an interpretation \(M \) and a predicate symbol \(g \), \(M[g] \) denotes the set of \(g \)-tuples in \(M \). The semantics of a positive program \(\mathcal{P} \) is given by its unique minimal model which can be computed by applying the immediate consequence operator \(T_{\mathcal{P}} \) until the fixpoint is reached (\(T_{\mathcal{P}}^\infty(\emptyset) \)). The semantics of a program with negation \(\neg \mathcal{P} \) is given by the set of its stable models, denoted as \(\mathcal{S}(\mathcal{P}) \). An interpretation \(M \) is a stable model (or answer set) of \(\mathcal{P} \) if \(M \) is the unique minimal model of the positive program \(\mathcal{P}^M \), where \(\mathcal{P}^M \) is obtained from \(\text{ground}(\mathcal{P}) \) by (i) removing all rules \(r \) such that there exists a negative literal \(\neg A \) in the body of \(r \) and \(A \) is in \(M \) and (ii) removing all negative literals from the remaining rules (Gelfond & Lifschitz 1988). It is well known that stable models are minimal models (i.e. \(\mathcal{S}(\mathcal{P}) \subseteq \mathcal{M}(\mathcal{P}) \)) and that for negation free programs, minimal and stable model semantics coincide (i.e. \(\mathcal{S}(\mathcal{P}) = \mathcal{M}(\mathcal{P}) \)).

Prioritized logic programs

Several recent works have investigated the introduction of various forms of priorities into logic languages (Brewka & Eiter 1999; Brewka, Niemela, & Truszczynski 2003; Delgrande, Schaub, & Top. P. 2003; Sakama & Inoue 2000). In this paper we refer to the extension proposed in (Sakama & Inoue 2000). A (partial) preference relation \(\succeq \) among atoms is defined as follows. Given two atoms \(e_1 \) and \(e_2 \), the statement \(e_2 \succeq e_1 \) is a priority stating that for each \(a_2 \) instance of \(e_2 \) and for each \(a_1 \) instance of \(e_1 \), \(a_2 \) has higher priority than \(a_1 \). If \(e_2 \succeq e_1 \) and \(e_1 \succeq e_2 \) we write \(e_2 \equiv e_1 \). If \(e_2 \succ e_1 \) the sets of ground instantiations of \(e_1 \) and \(e_2 \) have empty intersection. The relation \(\succeq \) is transitive and reflexive. A prioritized logic program (PLP) is a pair \((\mathcal{P}, \Phi)\) where \(\mathcal{P} \) is a program and \(\Phi \) is a set of priorities. \(\Phi^* \) denotes the set of priorities which can be reflexively or transitively derived from \(\Phi \). Given a prioritized logic program \((\mathcal{P}, \Phi)\), the relation \(\sqsubseteq \) is defined over the stable models of \(\mathcal{P} \) as follows. For any stable models \(M_1, M_2 \) and \(M_3 \) of \(\mathcal{P} \): (i) \(M_1 \sqsupseteq M_1 \); (ii) \(M_2 \sqsupseteq M_1 \) if \(a \) \(\equiv e_2 \in M_2 - M_1 \), \(\equiv e_1 \in M_1 - M_2 \) such that \((e_2 \geq e_1) \in \Phi^* \) and \(b \) \(\equiv e_3 \in M_1 - M_2 \) such that \((e_3 \geq e_2) \in \Phi^* \); (iii) if \(M_2 \sqsupseteq M_1 \) and \(M_1 \sqsupseteq M_0 \), then \(M_2 \sqsupseteq M_0 \).

If \(M_2 \sqsupseteq M_1 \) holds, then we say that \(M_2 \) is preferable to \(M_1 \) w.r.t. \(\Phi \). Moreover, we write \(M_2 \sqsupset M_1 \) if \(M_2 \sqsupseteq M_1 \) and \(M_1 \not\sqsubseteq M_2 \). An interpretation \(M \) is a preferred stable model of \((\mathcal{P}, \Phi)\) if \(M \) is a stable model of \(\mathcal{P} \) and there is no stable model \(N \) such that \(N \sqsubseteq M \). The set of preferred stable models of \((\mathcal{P}, \Phi)\) will be denoted by \(\mathcal{P}\mathcal{S}(\mathcal{P}, \Phi) \).

P2P systems: syntax and FOL semantics

A (peer) predicate symbol is a pair \(i : p \) where \(i \) is a peer identifier and \(p \) is a predicate symbol. A (peer) atom is of the form \(i : A \) where \(A \) is a standard atom. A (peer) literal is of the form \(\neg A \) where \(A \) is a peer atom. A (peer) rule is of the form \(A \leftarrow A_1, \ldots, A_n \) where \(A \) is a peer atom and \(A_1, \ldots, A_n \) are peer atoms or built-in atoms. A (peer) integrity constraint is of the form \(\leftarrow L_1, \ldots, L_m \) where \(L_1, \ldots, L_m \) are peer literals or built-in atoms. Whenever the peer is understood, the peer identifier can be omitted. The definition of a predicate \(i : p \) consists of all rules having as head predicate symbol \(i : p \). In the following, we assume that for each peer \(P_i \) there are three distinct sets of predicates called, respectively, base, derived and mapping predicates. A base predicates is defined by ground facts; a derived predicate \(i : p \) is defined by standard rules, i.e. peer rules using in the body only predicates defined in the peer \(P_i \); a mapping predicate \(i : p \) is defined by mapping rules, i.e peer rules using in the body only predicates defined in other peers. Without loss of generality, we assume that every mapping predicate is defined by only one rule of the form \(i : p(X) \leftarrow j : q(X) \) with \(j \neq i \).
definition of a mapping predicate $i : p$ consisting of n rules of the form $i: p(X_k) ← B_k$ with $1 ≤ k ≤ n$, can be rewritten into $2n$ rules of the form $i: p_k(X_k) ← B_k$ and $i: p(X) ← i: p_k(X)$, with $1 ≤ k ≤ n$.

Definition 1 A peer P_i is a tuple (D_i, LP_i, MP_i, IC_i) where (i) D_i is a (local) database consisting of a set of facts; (ii) LP_i is a set of standard rules; (iii) MP_i is a set of mapping rules and (iv) IC_i is a set of constraints over predicates defined in D_i, LP_i and MP_i. A P2P system PS is a set of peers $\{P_1, ..., P_n\}$.

Given a P2P system $PS = \{P_1, ..., P_n\}$ where $P_i = (D_i, LP_i, MP_i, IC_i)$, we denote as D, LP, MP and IC respectively the global sets of ground facts, standard rules, mapping rules and integrity constraints: $D = D_1 ∪ ... ∪ D_n$, $LP = LP_1 ∪ ... ∪ LP_n$, $MP = MP_1 ∪ ... ∪ MP_n$ and $IC = IC_1 ∪ ... ∪ IC_n$. With a little abuse of notation we shall also denote with PS both the tuple (D, LP, MP, IC) and the set $D ∪ LP ∪ MP ∪ IC$. Given a peer P_i, $MPred(P_i)$, $DPred(P_i)$ and $BPred(P_i)$ denote, respectively, the sets of mapping, derived and base predicates defined in P_i. Analogously, $MPred(PS)$, $DPred(PS)$ and $BPred(PS)$ define the sets of mapping, derived and base predicates in PS.

FOL semantics. The FOL semantics of a P2P system $PS = \{P_1, ..., P_n\}$ is given by the minimal model semantics: $PS = D ∪ LP ∪ MP ∪ IC$. For a given P2P system PS, $MM(PS)$ denotes the set of minimal models of PS. As $D ∪ LP ∪ MP$ is a positive program, PS may admit zero or one minimal model. In particular, if $MM(D ∪ LP ∪ MP) = \{M\}$ then $MM(PS) = \{M\}$ if $M ⊒ IC$, otherwise $MM(PS) = \emptyset$. The problem with such a semantics is that local inconsistencies make the global system inconsistent.

Weak model semantics

This section introduces a new semantics, called weak model semantics, based on a new interpretation of mapping rules, which will now be denoted with a different syntax of the form $H ← B$. Intuitively, $H ← B$ means that if the body conjunction B is true in the source peer the atom H could be imported in the target peer, that is H is true in the target peer only if it does not imply (directly or indirectly) the violation of some constraints. The following example should make the meaning of mapping rules crystal clear.

Example 2 Consider the P2P system depicted in Figure 2. P_2 contains the fact $q(b)$ whereas P_1 contains the fact $s(a)$, the mapping rule $p(X) ← q(X)$, the constraint $r(X), r(Y), X ≠ Y$ and the standard rules $r(X) ← p(X)$ and $r(X) ← s(X)$. In this case the fact $p(b)$ cannot be imported in P_1 as it indirectly violates its integrity constraint.

Before formally presenting the weak model semantics we introduce some notation. Given a mapping rule $r = A ← B$, with $St(r)$ we denote the corresponding logic rule $A ← B$. Analogously, given a set of mapping rules MP, $St(MP) = \{St(r) \mid r ∈ MP\}$ and given a P2P system $PS = D ∪ LP ∪ MP ∪ IC$, $St(PS) = D ∪ LP ∪ St(MP) ∪ IC$. In the next two subsections we present an alternative and equivalent characterizations of the weak model semantics. The first semantics is based on a different satisfaction of mapping rules, whereas the second one is based on the rewriting of mapping rules into prioritized rules (Brewka, Niemela, & Truszczynski 2003; Sakama & Inoue 2000). For the rest of this section we assume that all peers are locally consistent, i.e. for each peer P_i, the database D_i and the standard rules in LP_i are consistent w.r.t. IC_i, $(D_i ∪ LP_i |= IC_i)$. In such a case we say that the P2P system is consistent and inconsistencies may be introduced when peers import data from other peers. The generalization for inconsistent peers will be considered in the next section.

Preferred weak models

Informally, the idea is that for a ground mapping rule $A ← B$, the atom A could be inferred only if the body B is true. Formally, given an interpretation M, a ground standard rule $D ← C$ and a ground mapping rule $A ← B$, $val_M(C ← D) = val_M(C) ≥ val_M(D)$ whereas $val_M(A ← B) = val_M(A) ≤ val_M(B)$.

Definition 2 Given a P2P system $PS = D ∪ LP ∪ MP ∪ IC$, an interpretation M is a weak model for PS if $\{M\} = MM(St(PS^M))$, where PS^M is the program obtained from $ground(PS)$ by removing all mapping rules whose head is false w.r.t. M.

We shall denote with $M[D]$ (resp. $M[LP]$, $M[MP]$) the set of ground atoms of M which are defined in D (resp. LP, MP).

Definition 3 Given two weak models M and N, we say that M is preferable to N, and we write $M ≡ N$, if $M[MP] ⊇ N[MP]$. Moreover, if $M ≡ N$ and $N ⊇ ...
For any P2P system \mathcal{PS} system will be denoted by $WM(\mathcal{PS})$, whereas the set of preferred weak models will be denoted by $PWM(\mathcal{PS})$.

Proposition 1 For any P2P system \mathcal{PS}, \sqsubseteq defines a partial order on the set of weak models of \mathcal{PS}. \hfill \Box

The next theorem shows that P2P systems always admit preferred weak models.

Theorem 1 For every consistent P2P system \mathcal{PS}, $PWM(\mathcal{PS}) \neq \emptyset$. \hfill \Box

\begin{center}
\begin{tikzpicture}[node distance=2.5cm, on grid]
 \node (P1) at (0,0) [draw, circle, inner sep=0pt, minimum size=3cm]{
 \begin{itemize}
 \item \texttt{p(X) ⊑ q(X)}
 \item \texttt{← p(X),p(Y),X ≠ Y}
 \end{itemize}
 }
 \node (P2) at (3,0) [draw, circle, inner sep=0pt, minimum size=3cm]{
 \begin{itemize}
 \item \texttt{q(a)}
 \item \texttt{q(b)}
 \end{itemize}
 }
 \draw[<->] (P1) -- (P2);
\end{tikzpicture}
\end{center}

Figure 3: The system \mathcal{PS}

Example 3 Consider the P2P system \mathcal{PS} depicted in Figure 3. \mathcal{P}_2 contains the facts $q(a)$ and $q(b)$, whereas \mathcal{P}_1 contains the mapping rule $p(X) ← q(X)$ and the constraint $← p(X),p(Y),X ≠ Y$. The weak models of the system are $M_0 = \{q(a),q(b)\}$, $M_1 = \{q(a),q(b),p(a)\}$ and $M_2 = \{q(a),q(b),p(b)\}$ whereas the preferred weak models are M_1 and M_2.

We conclude this section showing how a classical problem can be expressed using the preferred weak model semantics.

Example 4 Three-colorability. We are given two peers \mathcal{P}_1, containing a set of nodes, defined by a unary relation \texttt{node}, and a set of colors, defined by the unary predicate \texttt{color}, and \mathcal{P}_2, containing the mapping rule

\begin{itemize}
 \item \texttt{colored}(X, C) \leftarrow 1:\texttt{node}(X), 1:\texttt{color}(C)
\end{itemize}

and the integrity constraints

\begin{itemize}
 \item \texttt{← colored}(X, C_1), \texttt{colored}(X, C_2), C_1 ≠ C_2
 \item \texttt{← edge}(X, Y), \texttt{colored}(X, C), \texttt{colored}(Y, C)
\end{itemize}

stating, respectively, that a node cannot be colored with two different colors and two connected nodes cannot be colored with the same color. The mapping rule states that the node x can be colored with the color c, only if in doing this no constraint is violated, that is if the node x is colored with a unique color and there is no adjacent node colored with the same color. Each preferred weak model computes a subgraph which is three-colorable. \hfill \Box

Prioritized programs and preferred stable models

We now present an alternative semantics based on the rewriting of mapping rules into prioritized rules (Brewka, Niemela, & Truszczynski 2003; Sakama & Inoue 2000). For the sake of notation we consider exclusive disjunctive rules of the form $A ⊕ A' ← B$ whose meaning is that if B is true then exactly one of A or A' must be true. Note that the rule $A ⊕ A' ← B$ is just shorthand for $A ← B, not A', A' ← B, not A$ and $← A, A'$.

This illustrates the possibility of eliminating ‘exclusive’ disjunctions from a logic program.

Definition 4 Given a P2P system $\mathcal{PS} = \mathcal{D} \cup \mathcal{LP} \cup MP \cup IC$ and a mapping rule $r = i : p(x) ← B$, then

- $Rew(r)$ denotes the pair $(i : p(x) \oplus i : p'(x) ← B, i : p(x) \geq i : p'(x))$, consisting of a disjunctive mapping rule and a priority statement,
- $Rew(MP) = (\{Rew(r)[1] | r \in MP\}, \{Rew(r)[2] | r \in MP\})$ and
- $Rew(\mathcal{PS}) = (\mathcal{D} \cup \mathcal{LP} \cup Rew(MP)[1] \cup IC, Rew(MP)[2])$. \hfill \Box

In the above definition the atom $i : p(x)$ (resp. $i : p'(x)$) means that the fact $p(x)$ is imported (resp. not imported) in the peer \mathcal{P}_i. For a given mapping rule r, $Rew(r)[1]$ (resp. $Rew(r)[2]$) denotes the first (resp. second) component of $Rew(r)$.

Example 5 Consider again the system analyzed in Example 3. The rewriting of the system is $Rew(\mathcal{PS}) = (\{q(a),q(b),p(X) \oplus p'(X) ← q(X), \leftarrow p(X),p(Y),X ≠ Y\}, \{p(X) ≥ p'(X)\})$.

$Rew(\mathcal{PS})[1]$ has three stable models:

- $M_0 = \{q(a),q(b),p'(a),p'(b)\}$,
- $M_1 = \{q(a),q(b),p(a),p'(b)\}$,
- $M_2 = \{q(a),q(b),p'(a),p(b)\}$.

The set of preferred stable models are $\{M_1, M_2\}$. \hfill \Box

Example 6 The rewriting of the mapping rules of Example 4 consists of the ‘disjunctive’ rules

\begin{itemize}
 \item $colored(X, \text{red}) \oplus colored'(X, \text{red}) \leftarrow node(X)$
 \item $colored(X, \text{blue}) \oplus colored'(X, \text{blue}) \leftarrow node(X)$
 \item $colored(X, \text{yellow}) \oplus colored'(X, \text{yellow}) \leftarrow node(X)$
\end{itemize}

plus the preferences:

\begin{itemize}
 \item $colored(X, \text{red}) ≥ colored'(X, \text{red})$
 \item $colored(X, \text{blue}) ≥ colored'(X, \text{blue})$
 \item $colored(X, \text{yellow}) ≥ colored'(X, \text{yellow})$
\end{itemize}

Given a P2P system \mathcal{PS} and a preferred stable model M for $Rew(\mathcal{PS})$ we denote with $St(M)$ the subset of non-primed atoms of M and we say that $St(M)$ is a preferred stable model of \mathcal{PS}. We denote the set of
preferred stable models of \mathcal{PS} as $\mathcal{PSM}(\mathcal{PS})$. The following theorem shows the equivalence of preferred stable models and preferred weak models.

Theorem 2 For every P2P system \mathcal{PS}, $\mathcal{PSM}(\mathcal{PS}) = \mathcal{PWM}(\mathcal{PS})$.

For the system of the previous example, $\mathcal{PSM}(\mathcal{PS}) = \{\{q(a), q(b), p(a)\}, \{q(a), q(b), p(b)\}\}$.

Query answers and complexity

We consider now the computational complexity of calculating preferred weak models and answers to queries. As a P2P system may admit more than one preferred weak model, the answer to a query is given by considering brave or cautious reasoning (also known as possible and certain semantics).

Definition 5 Given a P2P system $\mathcal{PS} = \{\mathcal{P}_1, \ldots, \mathcal{P}_n\}$ and a ground peer atom A, then A is true under

- brave reasoning if $A \in \bigcup_{M \in \mathcal{PWM}(\mathcal{PS})} M$,
- cautious reasoning if $A \in \bigcap_{M \in \mathcal{PWM}(\mathcal{PS})} M$.

The following lemma states that for every P2P system \mathcal{PS} an atom is true in some of its preferred weak models if and only if it is true in some of its weak models.

Lemma 1 $\bigcup_{M \in \mathcal{PWM}(\mathcal{PS})} M = \bigcap_{N \in \mathcal{WM}(\mathcal{PS})} N$.

The upper bound results can be immediately fixed by considering analogous results on stable model semantics for prioritized logic programs. For disjunction-free (\(\vee\)–free)\(^2\) prioritized programs deciding whether an atom is true in some preferred model is Σ_2^P-complete, whereas deciding whether an atom is true in every preferred model is Π_2^P-complete (Sakama & Inoue 2000).

Theorem 3 Let \mathcal{PS} be a P2P system, then

1. Deciding whether an interpretation M is a preferred weak model of \mathcal{PS} is coNP-complete.
2. Deciding whether an atom A is true in some preferred weak model of \mathcal{PS} is NP-complete.
3. Deciding whether an atom A is true in every preferred weak model of \mathcal{PS} is in Π_2 and coNP-hard.

Conclusion

In this paper we have introduced a logic programming based framework for P2P deductive databases. The new semantics, called preferred weak model semantics, is based on a new interpretation of mapping rules. We have presented a different characterization of the semantics based on preferred stable models for prioritized logic programs. Moreover, we have also provided some preliminary results on the complexity of answering queries in different contexts.

References

