Creating RSS for News Archives and Beyond

Sandip Debnath
Microsoft Corporation
1 Microsoft Way, Redmond, WA 98052
debnath@acm.org
(Work done while in Penn State University)

Abstract

RSS or Rich Site Summary is becoming an invaluable format/tool for news feeds. More and more news publishing organizations are realizing its benefits. Content publishers are joining the already heavily crowded RSS club. In the era of information explosion and peer-to-peer sharing, RSS is a great format for doing content publishing, archiving, sharing and much more. However, it came late. We realize that this should have started at the same time Internet became popular and news organizations are making their on-line debut. During the last decade, an enormous amount of news articles had already been published, and (at the same time,) improperly archived due to the lack of a flexible and widely accepted format of archival. However, better late than never. As we now explore possibilities of RSS, this is the time to make the transition smooth for old unformatted news articles and make it uniform across all (new and old) news articles. To do that we realized that extracting metadata of old news articles is one of the ways to create their RSS versions. In this paper we talk about our progress in extracting news metadata with the use of support vector classifier and show that an ordering of applying the classifiers is more useful than applying them in random order. We also show preliminary results on applying TIMEX tags to extract news events, which can be very useful to go beyond RSS to create individual event lines instead of taking the whole story under a single timeline.

Introduction

RSS (Rich Site Summary, RDF Site Summary or Really Simple Syndicate), has been fast becoming the de-facto industry standard for news, advertisements, and other on-line content publishing, and notification. As we have discussed in the abstract, thousands of companies have already joined the club. During the last decade, an enormous amount of news articles had already been published, and (at the same time,) improperly archived due to the lack of a flexible and widely accepted format of archival. However, better late than never. As we now explore possibilities of RSS, this is the time to make the transition smooth for old unformatted news articles and make it uniform across all (new and old) news articles. To do that we realized that extracting metadata of old news articles is one of the ways to create their RSS versions. In this paper we talk about our progress in extracting news metadata with the use of support vector classifier and show that an ordering of applying the classifiers is more useful than applying them in random order. We also show preliminary results on applying TIMEX tags to extract news events, which can be very useful to go beyond RSS to create individual event lines instead of taking the whole story under a single timeline.

Copyright © 2006, American Association for Artificial Intelligence (www.aaai.org). All rights reserved.

1 Over 20,000 content publishers are using RSS feed as found in http://www.syndic8.com including small and big names such as CNN, BBC, NASA, WIRED etc.

2 Though DateLine, HeadLine etc. are not exactly RSS/News XML tag names, however this does not change the generalization of underlying methodologies or use of fundamental concepts outlined here
yond and introduce the concept of tagging individual news events with respect to temporal behaviour. We used TIMEX tagging and showed an example page which describes how important the event organization could be.

Extracting temporal information is useful, not only in RSS but also in text-summarization or question-answering. In this paper we first described temporal information extraction (finding out the DateLine) as that is used later for improving other metadata extraction accuracies.

DateLine is defined as the date and time (if available) of the publication of the news article, as mentioned in the article itself. Most news articles mention the date of publication somewhere inside the body. As mentioned above, properly calculating the exact time-lines of individual events of a news article depends on finding the DateLine. In this paper we focus on finding the DateLine of an article using Support-vector (SV) learning approach.

For any referenced temporal expression (e.g. “last Friday”, “next month”, “next weekend” etc.) to be tagged with other temporal information such as year, month, or possible date and time, it is obvious that we need to add or subtract the proper difference of time from the DateLine of that article. In this paper we will see that finding the DateLine of an article is the most important task not only to find actual time-line, but to help increase the accuracy in finding the HeadLine and the ByLine.

The problem is not trivial due to several reasons. Firstly, temporal expressions are not always represented in a standard way. It has many different linguistic and geographical format. So it needs a proper grammar. Secondly the position of DateLine is not unique in a news article. As we see from Figure 1 and as explained later, it is not trivial to extract DateLine.

We approached the problem by identifying the proper set of parameters by which we will a train a learning classifier. Agreeing with our intuition, our choice of parameter-set combined with the SV based classifier, produced high accuracy.

The paper is organized this way: some related works are described in the next section followed by our approach. We thereafter talk about formats, data preparation algorithms, and training and testing phases. We described the general flow of our algorithm for all cases, be it DateLine, HeadLine, or ByLine. We show an example of TIMEX tagging of individual as part of going beyond if a single storyline and introducing events inside the article as separate entities, and conclude thereafter.

Related Work
Generating or converting old news articles into RSS or similar XML tagged format is not studied that extensively. The closest of this research trend is tagging news articles. Specifically time-tagging news article has received attention in recent years where most of the prior work is based on Natural Language Processing (NLP).

Unfortunately, we have not seen much prior work to find the HeadLine, DateLine, or ByLine of an article. The reason, as explained above, is due to the popular assumption that news data can be available from the archive, properly tagged.

In temporal annotations, we have seen prior efforts by Hwang and Schubert (Hwang & Schubert 1994), Kemp and Reyle (Kemp & Reyle 1993), Lascarides and Asher (Lascarides & Asher 1993), Allen (Allen 1984; 1995), Hitzeman (Hitzeman 1993) and others. They have used knowledge sources, tense, aspect, adverbs, rhetorical relations and of course background knowledge.

Regarding temporal significance, Allen’s general theory of action and time (Allen 1984) is very effective in structuring textual documents into temporally well-defined blocks. Some early approaches are very formal with finding time or time related expressions in documents but they were instrumental in setting up the ground-breaking steps. Based on that others tried to use rule-based or sometimes knowledge-based techniques. But most of the researchers related to text summarization, question answering or temporal ontology building, used or tried to use NLP techniques. NLP has its roots long back in time with Reichenbach (Reichenbach 1947) who pointed out the difference between the point of speech (time of utterance), the point (time) of the event and point of reference or the reference time.

Lascarides and Asher used “narration” relation in sentences to identify the time of events. Others have found that news stories may not be a right place to use the narrative convention. As researchers found, events in news articles are tough to order. But even before starting to order the events in a news article, the first and foremost requirement is to find the sentences carrying any occurrences of time units such as year, month, week, day and so on.

In most cases these time units are relative, meaning they are not expressed in complete time unit formats.

In Time Frames (Koen & Bender 2000), Koen and Bender stated the benefits of the time augmentation of news. Their time extractor extracts time with moderate precision and recall. MIT’s Questioning News System (Sack 1997) used individual documents of a set, but did not create a temporal structure as such. Other researchers such as Allen (Allen 1995), Dorr (Dorr & Olsen 1997), Mani (Mani & Wilson 2000), Lascarides (Lascarides & Asher 1993), Passebonne (Passebonne 1988), Ferro (Ferro et al. 2001), tried to approach it from NLP perspective using discourse structures, tense of the verb or the aspect. But as we have seen and explained before there is not enough evidence of classifying the temporal expressions using machine language techniques to find out the DateLine. It sounds obvious that without the proper DateLine, no technique could give the proper time-line of any events inside the article.

Regarding HeadLine or ByLine extractions of a news article, we have not seen much effort in the past. Use of regular expression is rampant and does not ensure any quality guarantee and above all not flexible. In this regard, we actually tried to compare our method with vanilla regular expression

3Complete time units are usually expressed in YY:MM::DD::HH::mm::SS following the ISO8601 guidelines or at least in a similar way, which can easily be converted to ISO8601 format using simple converter algorithms.
technique to show that our learning based approach not only just outperform the regular expression technique, but it also ensures a thresholded quality level.

Our Approach

We used a SV classifier (Hastie, Tibshirani, & Friedman 2003; Scholkopf et al. 2000; 2001) for all metadata extraction. For DateLine, we compiled our own temporal grammar and devised the TimeFinder algorithm (based on this grammar) to find all possible temporal expressions inside an article. We then compute the values of several parameters (these parameters are described later) for each of these expressions. We train the SV classifier with this data.

For a new set of articles, we process them first through TimeFinder to generate the set of temporal expressions available. We measure the parameter values for all these expressions and use our trained classifier to find the DateLines of these new articles.

The same procedure also applies for the other metadata, such as HeadLine or ByLine. Instead of temporal expressions, we use full sentences and noun phrases (using Alembic workbench) for them respectively. The general outline of this whole process is described in Figure 2.

Example

Figure 1 shows a sample HTML page from Yahoo finance website. Dotted rectangular boxes indicate the temporal expressions. We see several temporal expressions in the beginning of this article. However, none of them are the DateLine. The DateLine of this article is “December 06, 2002” (just above the heading “AMERISOURCEBERGEN CORP (ABC)”), contrary to the popular assumption of taking the first temporal expression as the DateLine. Clearly we cannot rely on that assumption.

(A) Time format and Grammar

We needed to use a standard date and time format. According to the ISO 8601 guidelines, the standard way of expressing the date is YYYY-MM-DD and that of time is hh:mm:ss. There is also specifications and off-the-shelf algorithms available5.

We devised our own grammar to extract temporal expressions. This include most of the time and date formats like “Jan 20, 2004”, “01/20/2004”, “2004-01-20”, “Jan 20th, 2004”, “20th Jan, 2004” etc. Moreover we also look for phrases like “2 months ago”, “3 weeks after”, “in 5 minutes”, etc. Though every entries of “YYYY-MM-DD hh:mm:ss” could not be filled, DateLine classification does not depend on that. We followed the initial work by Koen and Bender (Koen & Bender 2000) to classify time expressions into these categories.

- **Interval** Such as “twenty to twenty five minutes” (Koen & Bender 2000))
- **Age** Like “2 years old”, “A week after” etc.
- **Date** Such as “Jan 02, 2003”, or “03/04/2004” etc.
- **Precise Time** Such as “2:00pm”, or “Morning 7’O clock” etc.
- **Time Duration** “Evening”, “Morning”, “Dawn” etc.
- **Special Day** “Christmas”, “New Year’s Eve”, “Thanksgiving”, “Rosh Hashanah” etc.

(B) Word/Phrase

Word and phrases are extracted using our own regular expression grammar. To simplify the implementation, multiple words from the real ByLine has been clubbed together to represent one word. It is simple to modify it for n-gram.

5 Arthur David Olson and others maintain a database of all current and many historic time zone changes and daylight saving time algorithms: http://www.twinsun.com/tz/tz-link.htm
(C) Sentence
Extracting sentences is the easiest, but still not a trivial tasks. Abbreviations have to be tackled properly in the grammar used to extract sentences.

Data Preparation and Training Phase
DataPreparer measured the parameter (described in next subsection) values for all temporal expressions, sentences, phrases. ContentExtractor is an intelligent HTML to text converter (Debnath, Mitra, & Giles 2005)), which breaks the whole page into logical blocks, identifies the redundant blocks comparing with other HTML pages from the same source and keep the informative blocks of text. During the first pass, TimeFinder function finds all probable temporal expressions in every article (“training article”), and converts them into ISO 8601 format. In Algorithm 1, TimeFinder is basically part of the ItemFinder algorithm.

During the second pass, DataPreparer asks the user to identify the item (ByLine, DateLine or HeadLine) of the training article. The user identifies the correct temporal expression which can be attributed as the DateLine of the article. During the third pass, DataPreparer pulls every expression hash key and measures the values of different parameters (described next) by using MeasureParameterValue function.

For HeadLine ItemFinder works as a sentence extractor. For ByLine, Alembic Natural Language Processing suite has been chosen as ItemFinder.

Data Parameters
The following set of parameters are used to create training data for the SV classifier. These parameters are measured for each temporal expression, sentence, and phrase. Most of them fall under distance measures, with some as frequency measures.

- **Paragraph Distance (PD):** The paragraph distance consists of two parameters – how many paragraphs are there before a time expression or PDB and how many paragraphs are there after the time expression or PDA.
- **Sentence Distance (SD):** The sentence distance consists of two parameters – how many sentences are there before a time expression or SDB and how many sentences are there after the time expression or SDA.
- **Word Distance (WD):** The word distance also consists of two parameters – how many words are there before a time expression or WDB and how many words are there after the time expression or WDA.
- **Specific Words (SW):** Specific words (SW) are also very important to properly identify the DateLine. Words like “By”, “On”, etc. has more often been seen near the DateLine’s temporal expression compared to other temporal expressions.
- **Specific Symbols (SS):** In the same way we also consider the occurrences and distances between specific symbols (SS) and the time expressions. These symbols include special character-set like “−” or “:” which are also common near the DateLine expression.

Algorithm 1: DataPreparer (for Training phase): This algorithm prepares data to train SV classifier.

<table>
<thead>
<tr>
<th>Input</th>
<th>: HTML Page H, Parameter Set P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>: Training Set to train the Support-Vector Classifier</td>
</tr>
<tr>
<td>Standard</td>
<td>: Word/Phrase Extractor,ISO 8601 standard for date and time, Sentence Extractor Algorithm, etc.</td>
</tr>
</tbody>
</table>

```
begin
X ← ContentExtractor(H)
Pass 1:
T ← ItemFinder(H)
Extract all words/phrases/time expressions(using our grammar/sentences, assuming this set is T)
Pass 2: (User interface)
Ask the user to specify which word/time-line/sentence t ∈ T is the ByLine/DateLine/HeadLine.
Pass 3:
Measuring the P parameter values for the words/time expressions/sentences which are selected in the first pass.
for each t i ∈ T do

    P t i ← MeasureParameterValue(t, H, X);
    (P ti is a data row in the |T|X|P| matrix.)
Prepare all parameter values in tabular format and stores them in training datafile.
end
```

Algorithm 2: MeasureParameterValue (used in both training and testing phase): This function calculates all the parameter values for a temporal expression in an HTML page H.

<table>
<thead>
<tr>
<th>Input</th>
<th>: Word/Time expression/Sentence t, HTML Page H, Text Page X converted from H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>: Values of Word Data/Temporal Data/Sentence Data Parameters</td>
</tr>
</tbody>
</table>

```
begin
Function MeasureParameterValue(t, H, X)
We need both X, and H as some of the parameter calculations depend on HTML characters and some will be calculated from the text version of the article.
begin
Takes the content X and breaks it into Paragraphs, Sentences, Words . . . etc.
P is the Data Parameters
for each parameter p ∈ P do

    p ti ← value of p in X for t i;
    Push p ti in P ti .
return P ti (A row vector)
end
end
```
• Font Face Variation (FFV): Font face variation (FFV) is also another important factor which can be used to identify the location of DateLine. We see that usually the news publication date is placed close to the HeadLine of the news article and usually the HeadLine is written in different character size or in bold face. The regular text in normal font face follows it. Though things are not always written in the same way (that is why it is a challenging problem), yet there is a correlation between their locations and DateLine. We wanted to exploit this correlation and so we marked the places in the document where a change of font face occurs. Then we calculated distance D_{fi} where D^i is the shortest distance between t_i (the i^{th} temporal expression) and the marks. So if there are M places where font face changes, $D^i = \min(Distance(i,j))$, where $Distance(i,j)$ is character difference between t_i and j^{th} mark.

• Similarity Measures (SM): Similarity measures involve word level similarity between sentences before and after a time expression. The reason behind choosing this parameter is the observation that usually the HeadLine of a news article and the first paragraph just after the DateLine describe the same event, sometimes even using identical words or phrases.

Some of the parameters alone may not be sufficient in distinguishing the DateLine from other temporal expressions but taking everything into account helped in getting high accuracy. In future, importance of specific parameters and the redundancy of others will be reported.

Testing and Evaluation Phase

Financial news articles from various (here 19) Web-sites (Table 1) have been used. Column 3 and 4 represent accuracy of DateLine extraction by using SV classifier as opposed to specific regular expression (RE) for each Web-site. Column 5 and 6 show HeadLine extraction accuracy with and without the use of DateLine. Extracting the DateLine first and applying it as a parameter for HeadLine extraction improves the accuracy (in most cases).

Table 1 also shows the accuracy of our algorithm. Accuracy implies the classification accuracy whereas accuracy from regular expression methods simply means the percentage of time for which the DateLine has been identified correctly. From this table, it is clear that our approach can be used to achieve high accuracy and can outperform a generic regular expression matching algorithm to find DateLine.

Interestingly when we applied the same technique for HeadLine, we found that first classifying the DateLine has an added advantage of making the HeadLine accuracy better. Therefore in complex cases like this, not only classification, but the proper step-by-step use of it is equally important.

Conclusion

RSS is a useful concept for metadata tagged news articles, but it is only used for last few years. We came up with metadata extraction techniques which can be used to convert
On December 5, 2002, AmerisourceBergen Corporation (the "Company") issued a press release providing information about an investor meeting held that day by the Company in New York City, providing disclosure of the Company’s financial expectations for the fiscal quarter ending December 31, 2002 and affirming the Company’s financial expectations for the fiscal year ending September 30, 2003.

A copy of the press release is filed as Exhibit 99.1 to this report and incorporated herein by reference.

Table 2: RSS/XML-like tagging + TIMEX Tagging of a news article.

archived news articles into RSS. To do that we approached with Support Vector based classifiers. We devised the parameter set to best extract different metadata. We also show that a step-by-step process of applying SV classifier is better than applying them randomly for different metadata such as DateLine, HeadLine, or ByLine. We also want to tag individual news events inside a news story and showed that using TIMEX it is possible to tag individual events with temporal tag. Due to space constraints we would like to elaborate this in future.

References

