Distributed University Timetabling with Multiply Sectioned Constraint Networks

Yang Xiang
University of Guelph, Canada

Wanling Zhang
SAP Canada Labs, Canada

Abstract

Although timetabling has long been studied through constraint satisfaction based techniques, along with many alternatives, only recently work has been reported where distributed timetabling problems (DisTTPs) were studied as distributed constraint satisfaction problems (DisCSPs). We present an alternative method for solving DisTTPs based on multiply sectioned constraint networks (MSCNs). The proposed solution has several distinguishing features: Unlike the existing algorithms for DisCSPs whose worst-case time complexities are exponential, the algorithm suite based on MSCNs is efficient when the network topology is sparse. Unlike the existing DisTTP algorithm where a central agent is needed, there is no need for a central agent in the proposed solution. Unlike the existing DisTTP algorithm where partial timetables of other agents must be disclosed to the central agent, the proposed method keeps partial timetables of all agents private. We report our preliminary experimental result on distributed university timetabling problems (DisUTTPs).

Multiagent system, Multiply Sectioned Constraint Networks, Distributed Constraint Satisfaction, Distributed University Timetabling.

Introduction

The timetabling problem (Schaerf 1999; Rossi-Doria et al. 2003; McCollum 2007) deals with scheduling of a set of lectures within a prefixed time period (typically a week) subject to a set of constraints involving instructors, students and space. Often, lectures are managed by different departments within an institution. The problem can be solved by centralized timetabling, where constraints are collected centrally from departments and space is centrally managed. A timetable that satisfies all constraints will be produced centrally, imposed onto departments, and space necessary to execute the timetable is allocated. Collecting departmental constraints centrally is subject to the communication cost, the cost to translate local knowledge into a common format, and time delay. It is often undesirable to centralize local constraints for privacy reasons.

Distributed timetabling offers another alternative. In such a setting, space is managed by individual departments. Each department timetables its own lectures. However, due to interdependency of some lectures managed by different departments (e.g., a lecture to be attended by students from multiple departments), timetables of departments involved must be coordinated. Solved properly, distributed timetabling avoids communicating and translating local constraints centrally, shortens scheduling process, and protects departmental privacy.

Although timetabling has long been studied through constraint satisfaction based techniques, along with many alternatives (Werra 1985; Schaerf 1999; Rossi-Doria et al. 2003), only recently work has been reported where DisTTPs were studied as DisCSPs (Meisels & Kaplansky 2002). The solution is obtained by a multiagent system consisting of one scheduling agent (SA) per department and an additional central agent (CA). SAs are responsible to propose departmental timetables that satisfy their local constraints. CA collects proposed departmental timetables and checks against global constraints. If violated, CA instructs SAs to revise departmental timetables. Experimental study was conducted in nurse timetabling. No general completeness or complexity analysis of the algorithm is reported.

In the more general quest for solving DisCSPs, most existing algorithms are extensions of CSP algorithms based on backtracking or iterative improvement. These include ABT (Yokoo et al. 1992; Silaghi & Faltings 2005; Bessiere et al. 2005), AFC (Meisels & Zivan 2007), AWC (Yokoo et al. 1998), and DBA (Yokoo & Hirayama 1996; Hirayama & Yokoo 2005). Among them, ABT, AFC and AWC guarantee completeness. Although they perform well on average problem cases, their worst-case time complexities are exponential. This means that for any problem, before search starts, no time bound better than exponential can be pre-specified.

In this work, we present an alternative method for solving DisTTPs based on MSCNs (Xiang & Zhang 2007). The proposed solution has several distinguishing features: Unlike the existing algorithms for solving DisCSPs whose worst-case time complexities are exponential, the algorithm suite based on MSCNs is efficient when the network topology is sparse. Unlike the existing DisTTP algorithm (Meisels & Kaplansky 2002) where CA is needed, there is no need for a central agent in the proposed solution. Unlike the existing DisTTP algorithm where partial timetables of other agents must be disclosed to CA, the proposed method keeps partial timetables of all agents private. We report our preliminary experimental result on DisUTTPs.

Background on MSCNs

We present background on representation of a DisCSP as an MSCN and on how to solve the DisCSP using a compiled representation of the MSCN (Xiang & Zhang 2007). How to model a DisUTTP as an MSCN will be presented in a subsequent section. We refer to principals involved in a DisCSP as departments because the semantics is obvious in the con-
text of DisTTPs and the application focus of this work is on
DisUTTPs. We assume that each department is aided by an
agent and the agents form a multiagent system.

An MSCN encodes a DisCSP in a problem domain consisting of a set \(V \) of variables and constraints specified over
subsets of \(V \). Each department/agent is concerned with a
subset \(V_i \subset V \) (called a subdomain) and a subset \(\Lambda_i \) of constraints specified over \(V_i \). A subdomain and constraints over it are encoded as a constraint subnet \(\mathcal{R}_i = (V_i, \Lambda_i) \). Each
node in the subnet is labeled by a variable in \(V_i \). For each
constraint \(\mathcal{R}_X \in \Lambda_i \) over a set \(X \) of variables, elements of \(X \) are pairwise connected in the subnet. The subnet is
embedded in the agent that represents the corresponding de-
partment. Note that \(\mathcal{R}_i \) can be equivalently represented by a
primal graph \(G_i = (V_i, E_i) \), where \(E_i \) is the set of links
determined by \(\Lambda_i \). Without confusion, we will refer to both
\(\mathcal{R}_i \) and \(G_i \) by subnet.

Interdependencies between departments \(i \) and \(j \) are en-
coded through overlapping of their subdomains (i.e., \(V_i \cap V_j \neq \emptyset \)) and constraints over \(V_i \cap V_j \). Agents solve the
DisCSP by exchanging messages about partial solutions over
these intersections. For such message passing to guar-
antee finding a solution if one exists and terminating if none
exists, subdomains (and agents) are organized into a hypertree. Each hypernode is labeled by a subdomain and is as-
associated with a corresponding agent. Each hyperlink is la-
beled by the intersection of two subdomains connected and
is called an agent interface. The hypertree is so organized that the intersection of any two subdomains is contained in
each hypernode on the hyperpath between them. Fig. 1 (a)
shows subnets of an MSCN for a four-department DisCSP.
The hypertree as well as agent interfaces are shown in (b).

To solve a DisCSP effectively by message passing among
agents, each subnet is compiled into a cluster tree, called a
junction tree (JT). For each link in each subnet, the corre-
sponding constraint is assigned to a cluster in the JT. Based
on assigned constraints, illegal configurations in the space of
each cluster are eliminated locally. Each agent interface is
also compiled into a cluster tree, called a linkage tree (LT),
and JTs are linked through clusters of the LT (called link-
ages). The resultant runtime representation is a linked junction forest (LJF) (Xiang 2002), as illustrated in Fig. 2. The
compilation of an MSCN to LJF is efficient.

Constraint propagation is performed through two rounds of
message passing in the LJF. An arbitrary agent is selected as
the root of the hypertree. In the first round, messages flow
from leaf agents towards the root agent. At each agent, local
constraint propagation is first performed so that its JT is arc-
consistent, taking into account the constraints received from
child agents. It then passes the updated constraints on link-
ages to the parent agent. At the end of the first round, each
parent agent is arc-consistent relative to each child agent.
This round of message passing succeeds if there exists a so-
olution for the DisCSP. Otherwise, the message passing ter-
minates early and signifies that the DisCSP has no solution.
In the second round, messages flow from the root agent to-
wards leaf agents. Each agent receives from the parent agent
a configuration over each of their linkages. Taking into ac-
count of these messages, the agent performs local constraint
propagation to determine the configuration for each cluster
in its JT as well as that for each linkage with each child
agent. It then sends the configurations over linkages to child
agents. At the end of the second round, each agent will have
determined the value for each variable in its subdomain.
The collection of these value assignments constitutes a solution
to the DisCSP. Hence, the algorithm suite is complete. Fur-
thermore, the computational complexity is \(O(n t k^{2q}) \) (X-
ang & Zhang 2007), where \(n \) is the number of agents, \(t \) the
maximum number of clusters in a subnet JT, \(q \) the maximum
size of clusters, and \(k \) binds cardinalities of spaces for vari-
ables in \(V \). Hence, the computation is efficient when the size
of the largest cluster is upper-bounded.

The DisUTTP Problem

The DisUTTP problem used in our experimental study is as
follows: A university has a number of departments, each of which offers a number of courses to students in a
given semester. The semester is divided into several weeks.
Courses are scheduled for one week and the timetable is re-
peated for each week. Each week is divided into a set of
prefixed time slots. Each course consists of two or more
lectures per week and each lecture lasts for one time slot.
Each department is allocated with a given number of lecture
rooms. Scheduling is subject to several types of constraints.
1. No two lectures can be offered in the same room at the same time slot.
2. Lectures offered by the same instructor cannot be scheduled at the same time slot.
3. Lectures of the same course cannot be offered at the same time slot.
4. If two courses are to be taken by students in the same semester, then their lectures cannot be scheduled at the same time slots.

The last type of constraints can arise primarily due to two reasons: At a given semester, students in a given department may be required to take certain courses by the departmental curriculum. Such restriction is curriculum-imposed. The restriction is known well before timetabling is to be performed and must be respected by timetabling.

Alternatively, a given student or a group of students may choose to take a set of courses together in a given semester even though it is not required by the curriculum. Such preference is student-imposed. Most universities do not consider such preference in timetabling (McCollum 2007). To the contrary, students must pick among timetabled courses such that what they take are not in time-conflict. In light of this practice, we assume that the last type of constraints above is curriculum-imposed. If a student-imposed preference is general enough relative to a large group of students of the same year in their program, we assume that such preference has been communicated to the department and incorporated into the curriculum.

Courses in each department are scheduled independently into its available rooms over available time slots, unless there exist inter-departmental constraints. The type 4 constraints affect both intra and inter-departmental scheduling. For instance, students in department \(\text{Dept}_1 \) are required to take courses \(\text{Crs}_1 \) and \(\text{Crs}_2 \) in a semester, while students in \(\text{Dept}_2 \) are required to take \(\text{Crs}_2 \) and \(\text{Crs}_3 \) in the same semester. Hence, \(\text{Crs}_2 \) must be scheduled identically at both departments, its lectures cannot be scheduled into the same time slots with lectures of \(\text{Crs}_3 \) at \(\text{Dept}_1 \), and no be scheduled into the same time slots with lectures of \(\text{Crs}_3 \) at \(\text{Dept}_2 \). That is, timetabling of \(\text{Crs}_1, \text{Crs}_2 \) and \(\text{Crs}_3 \) at both departments must be coordinated.

Given the above problem description, the objective is to timetable lectures of courses in each department into the given set of rooms and the given set of time slots such that all intra and inter-departmental constraints are satisfied.

Representing DisUTTP as MSCN

To solve the DisUTTP, we encode it into an MSCN. As the weekly timetable is repeated (this is the case in the institution of the first author), we focus on scheduling of lectures in a week over predetermined time slots.

We choose to represent each lecture during the week as one variable \(x \). The collection of such variables forms the domain \(V \) of the MSCN. Each variable \(x \) is associated with a tuple \((C_x, I_x, t_x, r_x, CO_x) \). \(C_x \) is a course ID specifying the course that lecture \(x \) belongs to. Each course is offered by a unique department. \(I_x \) is an instructor ID specifying the instructor who has been assigned to teach the course. Element \(t_x \) is itself a variable, representing the time slot that lecture \(x \) will be scheduled into. Time slot \(t_x \) is associated with its space \(D_{t_x} \). In the most general case, \(D_{t_x} \) would include all time slots of the week. Element \(r_x \) is also a variable, representing the room where lecture \(x \) will be offered. Room \(r_x \) is associated with the space \(D_{r_x} \). In the most general case, \(D_{r_x} \) would include all lecture rooms allocated to the department that manages the course \(C_x \). Finally, \(CO_x \) \((C_x \notin CO_x)\) is a set of IDs for courses required to be taken with \(C_x \).

Given the associated tuple \((C_x, I_x, t_x, r_x, CO_x)\), the space \(D_x \) of variable \(x \) is defined as the Cartesian product \(D_x = D_{t_x} \times D_{r_x} \), representing all possible ways in which lecture \(x \) may be timetabled. Such a representation, although general, suffers from high computational cost. Since \(D_{t_x} \) includes all time slots of the week and \(D_{r_x} \) includes all lecture rooms allocated to the relevant department, the cardinality \(|D_x| = |D_{t_x}| \times |D_{r_x}| \) can be large. Let the largest space cardinality for variables in \(V \) be denoted by \(\alpha \). Furthermore, any two variables \(x \) and \(y \) whose spaces \(D_x \) and \(D_y \) overlap are constrained due to type 1 constraints. That is, they should be directly connected in the MSCN. As the result, in each constraint subnet (corresponding to lectures managed by a department/agent), every pair of variables is directly connected. Let the largest number of lectures managed by a department be denoted by \(\beta \). The computational complexity to solve the MSCN is proportional to \(\alpha^\beta \) (see section on Background). Based on this representation, solving the resultant MSCN will be intractable.

To avoid the intractability, we explore preassignment of time slots and rooms to lectures. That is, we will heuristically reduce the spaces \(D_{t_x} \) and \(D_{r_x} \) for each variable \(x \), and effectively reduce the cardinality of the space \(D_x = D_{t_x} \times D_{r_x} \). As a result, \(\alpha \) will be reduced. Furthermore, as the space of each variable \(x \) is reduced, less pairs of variables will have overlapping spaces. This results in a more sparse MSCN graphical structure and smaller clusters in the compiled LJF. As mentioned in the background section, if the size of the largest cluster in the LJF is upper-bounded, then solving the MSCN is efficient. Preassignment has been discussed in the literature (see, for example, (Werra 1985; Schaerf 1999)) as a practical need to be addressed in timetabling. In this work, we approach preassignment from a different perspective for efficiency improvement in solving DisUTTPs based on MSCNs.

Once domain variables are determined, constraints between them are specified in each constraint subnet. This amounts to connecting each pair of variables if there exists a constraint between them. Below, we elaborate on each type of constraints presented informally above.

1. Room-slot constraint: No two lectures can be offered in the same room at the same time slot. If lecture variables \(x \) and \(y \) satisfy \(D_{r_x} \cap D_{r_y} \neq \emptyset \), then they are subject to a room-slot constraint. A legal configuration over \(\{x, y\} \) must satisfy the condition: either \(r_x \neq r_y \) or \(t_x \neq t_y \).

2. Instructor constraint: Lectures offered by the same instructor cannot be scheduled at the same time slot. If
lecture variables \(x \) and \(y \) satisfy \(I_x = I_y \), then they are subject to an instructor constraint. A legal configuration over \(\{x, y\} \) must satisfy the condition: \(t_x \neq t_y \).

3. Course constraint: Lectures of the same course cannot be offered at the same time slot. If lecture variables \(x \) and \(y \) satisfy \(C_x = C_y \), then they are subject to a course constraint. A legal configuration over \(\{x, y\} \) must satisfy the condition: \(t_x \neq t_y \).

4. Course group constraint: If two courses are required to be taken by students in the same semester, then their lectures cannot be scheduled at the same time slots. If lecture variables \(x \) and \(y \) satisfy \(C_x \in CO_y \), then they are subject to a course group constraint. Note that if \(C_x \in CO_y \), then it must be the case \(C_y \in CO_x \). A legal configuration over \(\{x, y\} \) must satisfy the condition: \(t_x \neq t_y \).

The following algorithm describes the construction of a constraint subnet associated with an agent.

Algorithm 1 (SetSubnet)

\[\text{Input: The set of lectures } V_i \text{ for all courses to be taken by students in } i^\text{th} \text{ department.} \]

\[\text{Output: A constraint subnet } R_i = (V_i, \Lambda_i). \]

\[
\begin{align*}
\text{begin} \\
\Lambda_i &= \emptyset; \\
\text{for each pair of } x \in V_i \text{ and } y \in V_i, \text{ do} \\
&\quad \text{if } D_x \cap D_y \neq \emptyset, \\
&\quad \quad \text{add } (x, y) \text{ to } \Lambda; \\
&\quad \quad \text{label } (x, y) \text{ as a room-slot constraint;} \\
&\quad \text{if } I_x = I_y, \\
&\quad \quad \text{if } (x, y) \notin \Lambda, \text{ add } (x, y) \text{ to } \Lambda; \\
&\quad \quad \text{label } (x, y) \text{ as an instructor constraint;} \\
&\quad \text{if } C_x = C_y, \\
&\quad \quad \text{if } (x, y) \notin \Lambda, \text{ add } (x, y) \text{ to } \Lambda; \\
&\quad \quad \text{label } (x, y) \text{ as a course constraint;} \\
&\quad \text{if } C_x \in CO_y, \\
&\quad \quad \text{if } (x, y) \notin \Lambda, \text{ add } (x, y) \text{ to } \Lambda; \\
&\quad \quad \text{label } (x, y) \text{ as a course group constraint;} \\
\text{return } R_i = (V_i, \Lambda_i); \\
\end{align*}
\]

Note that a given pair of lectures may be labeled with multiple constraints, e.g., an instructor constraint and a room-slot constraint. Next, we consider inter-department constraints and their representation. The following cases may arise.

1. An instructor may be jointly appointed by two or more departments and hence may teach courses offered by each department involved. We represent lectures for these courses in the subnets of all relevant departments so that instructor constraints over these lectures can be respected in timetabling.

2. A lecture room may be shared by two or more departments and hence courses from each department involved may be timetabled into the room. We represent those lectures, whose preassigned rooms include such rooms, in subnets of all relevant departments so that room-slot constraints over these lectures can be respected in timetabling.

3. Students in a given department may be required to take courses offered by a different department. For instance, Computer Science students are required to take Calculus offered by Mathematics department. Lectures of courses to be offered by a department but to be taken also by students in another department will be represented in subnets of both departments. Therefore, course group constraints affecting these lectures will be respected in timetabling.

Based on the above representational scheme, these lecture variables as well as the constraints among them will form the agent interfaces in the MSCN between relevant subnets.

Experimental Results

We report results from preliminary experiments. The experimental setup consists of five departments. Each week is divided into 15 time slots. Each department offers 20 lectures per week by 15 instructors. Each department manages four rooms exclusively plus one room shared by all departments. The experimental implementation is based on WEBWEA VR (Xiang), a Java-based toolkit for graphical models.

![Figure 3: The hyperchain of MSCN for the first DisUTTP.](image)

Two different DisUTTP problems were solved. For the first problem, the inter-departmental course dependency results in a hyperchain agent organization, shown in Fig. 3. The five agents are indexed as \(A_0, \ldots, A_4 \). Each hypernode in the hyperchain is associated with an agent \(A_i \) and is labeled in the figure by the primal graph \(G_i \) of its subnet. Agent interfaces are illustrated in terms of lecture variables contained in each interface.

Table 1 illustrates the subdomain of \(A_0 \). For each lecture in the subdomain, its course ID, instructor ID, time slot pre-assignment, and room pre-assignment are shown in the first four columns. If the lecture is in the agent interface, the agent interfaced with is shown in the fifth column. The type of interdepartmental dependency that causes the inclusion of the lecture in the interface is indicated in the last column.

In the second DisUTTP problem, the agent organization is a more general hypertree, as shown in Fig. 4.

Table 2 summarizes key parameters of the MSCN and the LIF compiled from it for the first DisUTTP problem. Each row characterizes the subnet and its JT of one agent. The number of variables in each subnet is shown in the second column. The total number of lectures timetabled is 100. The sparseness of each subnet is indicated by the number of links
Table 1: Subdomain of agent A_0 in the first DisUTTP.

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Instructor ID</th>
<th>Time Slot</th>
<th>Room</th>
<th>Agent Interfaced</th>
<th>Interface Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>1</td>
<td>2,6,12</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a2</td>
<td>2</td>
<td>1,9,11</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a3</td>
<td>3</td>
<td>3,7,13</td>
<td>2,3,9</td>
<td>A_1</td>
<td>room</td>
</tr>
<tr>
<td>a4</td>
<td>4</td>
<td>5,8,15</td>
<td>3,4,9</td>
<td>A_1</td>
<td>room</td>
</tr>
<tr>
<td>a5</td>
<td>5</td>
<td>4,8,14</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a6</td>
<td>6</td>
<td>3,8,13</td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a7</td>
<td>7</td>
<td>5,9,15</td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a8</td>
<td>8</td>
<td>2,7,12</td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a9</td>
<td>9</td>
<td>1,10,11</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a10</td>
<td>10</td>
<td>4,10,14</td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a11</td>
<td>11</td>
<td>1,6,11</td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a12</td>
<td>11</td>
<td>1,6,11</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a13</td>
<td>12</td>
<td>2,7,12</td>
<td>1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a14</td>
<td>12</td>
<td>2,7,12</td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a15</td>
<td>13</td>
<td>3,8,13</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a16</td>
<td>13</td>
<td>3,8,13</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a17</td>
<td>14</td>
<td>4,9,14</td>
<td>2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a18</td>
<td>14</td>
<td>4,9,14</td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a19</td>
<td>15</td>
<td>5,10,15</td>
<td>3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a20</td>
<td>15</td>
<td>5,10,15</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1</td>
<td>16</td>
<td>5,6,12</td>
<td>6,7,9</td>
<td>A_1</td>
<td>room</td>
</tr>
</tbody>
</table>

Table 2: Key parameters of MSCN and its LJF for the first DisUTTP.

<table>
<thead>
<tr>
<th>Agent</th>
<th>#Variable</th>
<th>#Link</th>
<th>#Cluster</th>
<th>Max Cluster Size</th>
<th>Max Cluster Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>21</td>
<td>46</td>
<td>12</td>
<td>6</td>
<td>$6^2 \times 9$</td>
</tr>
<tr>
<td>A_1</td>
<td>23</td>
<td>54</td>
<td>15</td>
<td>6</td>
<td>$6^5 \times 9$</td>
</tr>
<tr>
<td>A_2</td>
<td>22</td>
<td>53</td>
<td>16</td>
<td>6</td>
<td>6^5</td>
</tr>
<tr>
<td>A_3</td>
<td>24</td>
<td>57</td>
<td>16</td>
<td>6</td>
<td>6^6</td>
</tr>
<tr>
<td>A_4</td>
<td>22</td>
<td>55</td>
<td>15</td>
<td>6</td>
<td>6^6</td>
</tr>
</tbody>
</table>

Figure 4: The hypertree of MSCN for the second DisUTTP.

Table 3 summarizes key parameters of the MSCN and its compiled LJF for the second DisUTTP problem.

As described in the background section, solving an MSCN consists of two rounds of constraint propagation along the hypertree of its LJF. It can be shown that after the first round of propagation, the JT in each agent is internally arc-consistent. Furthermore, each parent agent is arc-consistent relative to each child agent. This intra-agent arc-consistency and inter-agent arc-consistency guarantee backtracking-free solution of the MSCN through the second round of propagation. The dual arc-consistency holds even though JTs are not internally arc-consistent before the first round of propagation. Although the internal arc-consistency before the first round is unnecessary, it can reduce the number of legal configurations in each cluster in a JT. As seen from Tables 2 and 3, the maximum number of configurations per cluster for the two problems are sufficiently large. To reduce the space consumption during first round of propagation, we choose to run one round of internal constraint propagation in the JT of each agent, termed preprocessing.
Table 3: Key parameters of MSCN and its LJF for the second DisUTTP.

<table>
<thead>
<tr>
<th>Agent</th>
<th>#Variable</th>
<th>#Link</th>
<th>#Cluster</th>
<th>Max Cluster Size</th>
<th>Max Cluster Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₀</td>
<td>21</td>
<td>49</td>
<td>11</td>
<td>6</td>
<td>6^6</td>
</tr>
<tr>
<td>A₁</td>
<td>22</td>
<td>54</td>
<td>14</td>
<td>6</td>
<td>$6^5 \times 9$</td>
</tr>
<tr>
<td>A₂</td>
<td>25</td>
<td>56</td>
<td>18</td>
<td>6</td>
<td>$6^5 \times 9$</td>
</tr>
<tr>
<td>A₃</td>
<td>23</td>
<td>53</td>
<td>14</td>
<td>6</td>
<td>6^6</td>
</tr>
<tr>
<td>A₄</td>
<td>22</td>
<td>58</td>
<td>14</td>
<td>6</td>
<td>6^6</td>
</tr>
</tbody>
</table>

Table 4: Runtime for solving the two DisUTTP problems.

<table>
<thead>
<tr>
<th>Agent Organization</th>
<th>Preprocessing</th>
<th>Propagation</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperchain</td>
<td>5min 45sec</td>
<td>6min 23sec</td>
</tr>
<tr>
<td>hypertree</td>
<td>5min 23sec</td>
<td>10min 46sec</td>
</tr>
</tbody>
</table>

Remarks

We presented an alternative method for solving DisUTTPs based on MSCNs. Existing DisCSP algorithms based on ABT, AFC, AWC and DBA have exponential worst-case complexity. No time bound better than exponential can be given before problem solving starts. The MSCN based algorithm is efficient when the largest cluster in its LJF is upper-bounded in size. As long as sparseness of the MSCN remains the same, complexity of the algorithm grows linearly with the number of agents and sizes of subnets. The size of the largest cluster is known after LJF compilation. Hence, for sparse MSCNs, a linear time bound is available before problem solving starts. When clusters in LJF are too large, the MSCN can be be made sparser by relaxing some soft constraints before recompilation and problem solving.

The existing DisTTP algorithm based on SA/CA needs a central agent CA to whom partial timetables of other agents must be disclosed. The MSCN based algorithm selects an arbitrary agent as root who is identical function-wise to any other agent. The only timetables exchanged between agents are those over their interfaces - lectures shared by multiple departments, and hence better agent privacy is achieved.

Investigation of alternative DisUTTP problems for further improvement of efficiency and more extensive experimental study are underway.

Acknowledgement

Financial support to the first author through Discovery Grant from NSERC, Canada is acknowledged.

References

Xiang, Y. WebWeavr-IV Research Toolkit. www.cis.uoguelph.ca/~yxiang/.

