
The Development of
SYLLABUS—An Interactive,
Constraint-Based Scheduler
for Schools and Colleges
Rick Evertsz

In most schools and colleges, producing a timetable is a task that is
dreaded by those charged with annually creating it. In schools in par-
ticular, it can be difficult to produce any solution at all because teach-
ing resources are usually stretched to the limit. This situation is made
more difficult by the fact that the person making up the timetable
must not only produce a valid solution but one that is of good quality.

A large number of judgmental factors are involved in producing a
good-quality timetable. Some of these are educational (for example, it is
undesirable for a group of pupils to have a Spanish lesson immediately
following a German one), others pertain to the work conditions of the
staff (for example, the teaching load should be distributed evenly
through the day so that no teacher has a long, contiguous block of
lessons), and others are political (for example, a senior teacher should
not end up with fewer free periods than a more junior one). These qual-
itative factors make an already difficult problem time consuming indeed.

For a medium-sized school (about 1,000 pupils), even a veteran at

From: IAAI-91 Proceedings. Copyright © 1991, AAAI (www.aaai.org). All rights reserved.

the task takes several weeks to produce a satisfactory timetable. Despite
this great investment in time and concentration, the timetable will in-
evitably contain errors, such as requiring a teacher to be in two places
at once. Tight resources, together with the need to juggle many quali-
tative factors, means that the person creating the timetable only has
one shot at producing a solution: The timetable is effectively set in con-
crete and is only amenable to minor modification. Because of the time-
consuming nature of manually producing a timetable, there is no op-
portunity to try alternative scenarios that might enable cost savings or
late extensions to the curriculum.

With the advent of greater access to digital computers, attempts
began in the seventies to solve this problem by computer. Given the
difficulty of manually producing a timetable, one would expect a com-
puter-based timetable program to be a godsend. Early computer-based
timetable programs ran on mainframe computers: The school would
send its requirement to the administrative center, which would enter
the data and run the timetable program overnight. The resulting
timetable was usually unsatisfactory because it violated constraints that
were important to the school. As a result, school timetable programs
got a bad name for themselves. As far as schools were concerned, com-
puters were incapable of producing a solution of the quality achieved
by humans performing the same task.

Previous timetable systems have been based on operations research
techniques. Although able to generate solutions, the main failing of
this approach is the lack of control available to the user. The only way
to alter the solution is to change some of the numeric parameters that
control the priority of the various factors. This approach is fairly hit or
miss because it is never clear what effect altering some numeric value
will have on the overall solution. Based as they are on mathematical
programming methods, such timetable programs are difficult to con-
trol because their processing is completely opaque to the user.

In contrast, AI approaches to problem solving are characterized by
their reliance on symbolic, rather than numeric, methods. This tech-
nique makes it much easier for a program to communicate its prob-
lem-solving rationale to the user. The application of AI to scheduling
has a relatively short history, only starting to gather momentum in the
mid-eighties (for example, Fox and Smith [1984] and Keng, Yun, and
Rossi [1988]). Constraint-satisfaction problem techniques (in particu-
lar) seem to offer a powerful way of solving scheduling problems (com-
pare Dincbas, Simonis, and Van Hentenryck [1988] and Keng and Yun
[1989]). SYLLABUS uses a constraint-satisfaction problem approach to
producing timetables, rarely fails to produce a timetable, and can usu-
ally detect such cases before it begins scheduling. However, it is com-

40 EVERTSZ

mon for operations research–based timetable programs to only man-
age to produce a timetable for some 90 percent of the curriculum,
leaving the user to manually insert the remaining lessons. Unfortunate-
ly, these lessons are typically the hardest to fit; so, the machine is only
solving the simple part of the problem.

The School Timetable Problem
It comes as a surprise to many who are familiar with scheduling prob-
lems to learn that in practice, the setting up of school timetables is one
of the hardest problems to solve. The main reason is that school re-
sources are about as tightly stretched as they can be without also facing
an insoluble timetable problem (for example, one 1600-pupil school,
for which SYLLABUS successfully produced a timetable, had 98 percent
use of its mathematics teachers). There is also a large degree of inter-
action between timetable resources: Teachers can teach a range of sub-
jects (in some order of preference), and rooms can have more than
one possible use. Therefore, in assigning a mathematics-French teach-
er to a mathematics lesson, the person producing the timetable must
be wary of the fact that s/he might no longer be able to allocate
enough teachers to the remaining French lessons. Assessing the
ramifications of such assignments is not easy, and as a result, injudi-
cious choices early on can lead to much backtracking.

A particular thorn in the side of those producing a timetable is the
option group, which is designed to provide the pupil with greater cur-
ricular choices and is used extensively in the upper school. An option
group is a composite lesson consisting of a set of subjects (options) of-
fered to a set of classes (groups of pupils). Each pupil in each class
makes a choice from those subjects offered in the option group and
joins the pupils from the other classes who chose the same option. A
typical option group is as follows:

Classes: 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H
Subjects: Biology, Chemistry, English, Economics, French,

Geography, History, Latin, Mathematics, and Physics

Some children from each of the 8 classes might take biology, where-
as other children from these classes might study physics. This problem
can be hard to solve in a timetable. The person developing the
timetable must find a time slot (possibly several periods in length)
where all 8 classes are free, and 10 teachers of the appropriate kind are
available, as are 10 suitable rooms (for example, the science lessons
typically require an appropriate laboratory). As the timetable process
unfolds, these lessons become more and more difficult to place. The

SYLLABUS 41

assignment of option groups is further complicated by the fact that
there is a lot of interaction between them. For example, the previous
option group would have to be assigned to a time slot that, through the
available resources, enables the classes 4A to 4H to have the same
teacher throughout the week.

In summary, the high demand for teaching resources, together with
the complex interactions caused by option groups, makes school
timetable production a difficult scheduling problem. This already
difficult problem is further complicated by the need to satisfy the many
qualitative factors that a school timetable should incorporate.

Development History
In 1987, my research group was approached by Kent County Council,
which wanted to investigate the feasibility of applying AI to its timetable
problems. Council members believed that better use could be made of
the county’s teaching staff by, for example, sharing some teachers be-
tween adjacent schools. It was estimated that a 1⁄2percent saving could
be made in the annual education budget of $680,000,000.

Such a solution would only be acceptable if it did not compromise
the educational quality of the current timetables. The first prototype
was developed in 15 days at a 1,600-pupil school, using Intellicorp’s KEE

on a Symbolics Lisp machine. Although adequate, its solutions were
not favored by the school doing the evaluation because staff members
did not have sufficient control over the process. The first prototype was
completely discarded, and in the interests of efficiency, a new version
was implemented in Lisp. The user was provided with a graphic inter-
face through which s/he could select a lesson that needed to be sched-
uled in a timetable, place it on a free period, and select the resources
needed by the lesson. The machine would advise him(her) (graphical-
ly) in the choice of lesson, time slot, and resources. The user could also
ask the machine to explain its advice, so s/he could make a more in-
formed choice when choosing to override the machine’s suggestions.

This solution proved satisfactory, but the machine was not solving
the problem: It was merely acting as a decision support tool for the
user, who was the final arbiter in the choice of lesson allocation. It was
clear that one could add an automatic timetable facility to the program
by making it follow the advice that it was offering the user. The user
could freely switch between automatic and advisory mode, reallocating
choices made by the machine that s/he did not like. Together with its
use of AI techniques, this design feature was what set SYLLABUS apart
from earlier systems.

The prototype’s performance was acceptable, taking roughly 3 hours

42 EVERTSZ

to produce a timetable for a medium-sized school. However, the hard-
ware was far too expensive (about $85,000). From published Lisp
benchmarks, it was estimated that porting the Lisp implementation to
386-based personal computers and 68030-based Macintoshes would de-
grade the performance of SYLLABUS by a factor of 5 to 7. This perfor-
mance would have been unacceptable, so it was necessary to redesign
the scheduling algorithm.

To maximize portability between the two platforms, the scheduling
kernel was completely separated from the user interface by adopting
an object-oriented design. The interface is in control of the overall
program and treats the kernel as a black box to be interrogated. It
communicates with it by sending messages, such as “Timetable another
lesson;” “Add a new teacher, called Mr. Peters, who teaches French as a
primary subject and German and games as secondary subjects;” or
“Why can’t I place this lesson here?” The kernel never calls interface
functions, it merely obeys commands and occasionally complains about
what it has been asked to do (for example, if the teacher Mr. Peters
were already defined, then it would signal an error to the interface,
which would then decide what to do about it).

The use of object-oriented techniques provided a clean division be-
tween interface and kernel, speeded development, improved portabili-
ty, and facilitated maintenance. The kernel was defined as an object
that handles a certain message-passing protocol. This narrow bandwidth
communication channel enabled the implementation of a dummy ver-
sion of the kernel in three days, which meant that the user interface on
each platform could be developed independently of the kernel.

With its newly designed scheduling kernel, SYLLABUS is 100 times
faster than its predecessor on a Lisp machine. On a 68030-based Mac-
intosh, it is 15 times faster than the earlier Lisp machine version, pro-
ducing a timetable for a medium-sized school in about 12 minutes.
Considering the complexity of the task, this performance is acceptable.
The size of the Macintosh application is 3 megabytes (MB); thus, it
runs comfortably on a 4-MB machine.

The Macintosh and IBM PC–compatible implementations were devel-
oped by a team of 3, one working on the kernel, and the other 2 each
working on one of the interfaces. The kernel was developed in 2 per-
son-months, and each interface took about 3 person-months. Another
4 person-months were devoted to optimizing the kernel in an effort to
obtain acceptable performance on the IBM PC; the latter goal was not
achieved. Despite the fact that they were running the same scheduling
kernel, the IBM PC version ran about 5 times more slowly than the Mac-
intosh version and required a minimum of 6 MB. From a hardware
perspective, one would not expect code generated by a Lisp compiler

SYLLABUS 43

on a 386 to be any slower than that for a 68030. The problem was that
the only Microsoft Windows-based Lisp compiler available for the IBM

PC–generated 286 code; this code is inherently more verbose than 386
code based on a flat memory model.

The researchers in my group believe that the decision to use Lisp,
rather than a conventional language such as C, led to the relatively
short development time. When delivering on low-specification hard-
ware, it is common practice to recode an AI application in a more con-
ventional language. However, experience has shown that through good
design, it is possible to produce Lisp applications that are efficient in
both space and time on standard hardware.

Once developed, SYLLABUS was beta tested in 10 separate schools.
This period spanned 4 months, during which bugs were removed, and
new functions were added. It was relatively easy to incorporate the re-
quests of the beta test sites for two reasons: (1) the features of Lisp that
foreshorten development time (object orientation; automatic memory
management; wide choice of data structures) also make extensions eas-
ier to incorporate and (2) the constraint-based architecture means that
new constraints can be added without having to fundamentally alter
the kernel’s architecture.

The beta test cycle was complete in June 1990, at which point the
Macintosh product was fully released in the United Kingdom. In the 6
months since June, it sold about 50 copies; this number is high, given
that the United Kingdom Macintosh market is only 10 percent of the
size of the personal computer market.

An Outline of the SYLLABUS Functions
The user enters details about the school through a set of data-input
windows. The school parameters window is used to define the format
of the school week (number of days, periods in each day, break and
lunch times, and periods not available for teaching).

The user can then enter details of the subjects to be taught and any
pedagogic constraints (for example, avoid setting the subject physics
next to chemistry). Teaching profiles are entered through the teachers
window (figure 1). In this example, the teacher Thomas Boots is
defined as primarily a chemistry teacher; however, he can also teach
mathematics and physics. He does not teach on the last 3 periods of
Monday; this condition is shown in the grid that represents the week as
5 days (rows) of 6 periods (columns), with breaks after the second and
fourth periods. Thomas Boots also requires 10 free periods each week.
Further data-input windows are used to define the characteristics of the

44 EVERTSZ

classrooms and the structure of the curriculum. The user can then in-
voke an automatic set of feasibility checks on the data. This module an-
alyzes the data and prints a report of why, if at all, it is impossible to
generate a timetable. This facility is invaluable because it is easy for an
inexperienced person to enter a curriculum requirement that is impos-
sible to satisfy. Common errors include (1) assigning insufficient teach-
ers for the quantity of subjects being taught, (2) giving a group of
pupils more lessons than can fit in a week, and (3) grouping the op-
tions within the option groups so that the dependencies between all
option groups preclude the production of a valid timetable. Error 3 en-
tails examining the connectivity between option groups, as defined by
their possible resource profiles, and is equivalent to the graph-col-
orability problem. It highlights groups of lessons that must be placed
back to back; a timetable cannot be produced if the total length of a
lesson sequence is greater than the number of periods in the week.

Once any problems discovered by the feasibility checks are rectified,
the user can start producing the timetable. The task is performed
through the timetable pane (figure 2). SYLLABUS sorts the classes (shown
by the leftmost list) in terms of how constrained they are. The user
should select the uppermost class in the list because it has the most con-
strained lesson in the whole school. The lessons for the selected class
are then displayed in the adjacent list, again sorted by how constrained

SYLLABUS 45

Figure 1. The Definition of a Chemistry Teacher.

they are. The user then selects the uppermost lesson in this list and is
presented with a shaded timetable grid. The lesson cannot be assigned
to those time slots that are shaded with a diagonal line; those that are
shaded but have no diagonal line are inadvisable but valid (for exam-
ple, cell (2,2) is inadvisable because option 1 is a double lesson and,
thus, would straddle the midmorning break). The unshaded cells are
those that SYLLABUS recommends for the selected lesson.

The figure shows the user clicking on the last period on Thursday to
find out why the lesson cannot be placed there. The reasons appear in
the pane below the shaded grid. Note that each barred period has a
different level of grey; this level signifies how impossible the period is.
Those with a higher level of grey have more reasons why they cannot
be used than those with a lower level. In the limit, where there are no
periods available for allocation, the different levels of grey enable the
user to identify those periods with the fewest problems. For example, a
period with only a room missing is fairly easy to satisfy; the user only
needs to shift the lesson currently in the room to a different period.
However, a period that is short of several teachers and rooms and for
which several of the classes are unavailable would be hard to free up.

In interactive mode, the user is not forced to follow the system’s ad-
vice. In fact, interactive mode is generally used when the user wants to
override the SYLLABUS choices, for example, when allocating lessons that
are fixed points in the timetable (for example, the lessons are the same
every year). The user can pass control to SYLLABUS by clicking on the

46 EVERTSZ

Figure 2. Creating Timetable Option1 Interactively.

start auto button. SYLLABUS then starts producing the timetable by select-
ing the most constrained lesson, shading the grid, choosing the best cell
for the lesson, and then allocating it together with an appropriate set of
resources. The user can monitor this process and interrupt at any time
to override a system choice (for example, edit the resources chosen by
SYLLABUS, or move an allocated lesson to another cell).

An Overview of the Implementation
In automatic mode, the SYLLABUS control structure consists of three oper-
ations: First is choose-event. This operation selects the most critical lesson.
Informally, this lesson has the least flexibility at a given point in time; in
other words, it has the fewest time slots and resources available to it.

Second is choose-time. Given a most critical lesson, this operation
chooses the best time slot for this lesson and combines the following
factors: (1) a good spread of similar subjects (for example, English
lessons are evenly spread throughout the week, and French lessons are
kept apart from German ones); (2) multiple-period lessons evenly
spread throughout the week; (3) a smooth distribution of teaching
load; (4) a given group of pupils always taught a given subject by the
same teacher; (5) multiple-period lessons not crossing an intraday
break unless absolutely necessary; and (6) a time that maximizes the
use of primary, rather than secondary, resources.

Third is choose-resources. Given a lesson and a selected time slot, this
operation selects the best set of resources for the lesson on the basis of
factors 3, 4, and 5 for the choose-time operation.

The SYLLABUS approach is based on the view that producing a
timetable is a constraint-satisfaction problem. A constraint-satisfaction
problem consists of a set of variables, V = {v1,…, vn}; a set of related do-
mains {D1,…, Dn}; and a set of constraint relations between these vari-
ables, {C1,…, Cm}. Each variable, vi, takes its values from the finite do-
main, Di. Each constraint, Cj, is expressed with respect to some subset
of the variables in V and defines the consistent tuples of domain values
that this subset can take (that is, Cj D1 × … × Dn).

Each lesson is associated with a set of constraint variables: time,
teachers, and locations. In the simple case, a lesson has only one teach-
er and one location; however, with option groups, the lesson typically
involves a number of teachers teaching in different locations. Given a
set of variables in a lesson, the actual legal subset of values that these
variables can take is defined by the set of constraints.

Although time can be viewed as a resource, SYLLABUS treats this vari-
able in a special manner for two reasons: (1) Users are familiar with

 ⊆

SYLLABUS 47

the notion of allocating a lesson with a set of resources to a given time
period; therefore, it makes sense to schedule from this perspective be-
cause the advice and explanations will more easily be understood. (2)
Time is a particularly constraining resource: A lesson (option group)
can have a set of teachers and a set of locations, but it can only be as-
signed one time period.

Each time period for a lesson is associated with a number denoting
the resource overflow-underflow (RVF). These values are incrementally up-
dated as resources are allocated to, and deallocated from, other lessons.
For example, if a lesson requires eight teachers, but only three of the
appropriate kind are available during the first period, then RVF would
be –5. SYLLABUS sums the positive values in this time vector to obtain a
measure of the survivability of the lesson. The lesson with the lowest sur-
vivability is the most critical and is chosen by choose-event. When a re-
source is allocated to a lesson, the survivability of all lessons that could
have used this resource is updated. Here, the key to efficiency lies in
making incremental updates rather than recomputing the survivability
from scratch on each cycle. When a set of resources, Ri, is assigned to a
lesson, l i, at time, t i, then for each lesson that might have used one or
more of R i, SYLLABUS decreases RVF for t i. If this value is already nega-
tive, then the survivability remains unchanged. However, if this value is
positive, then the incremental change is applied to the survivability
measure. The inverse procedure is applied when freeing resources.

SYLLABUS makes extensive use of bit vectors to rapidly compute the ef-
fects of assignments. For example, each resource is associated with a bit
vector that represents those lessons that it is allowed to use in the
timetable (regardless of time period). When a given set of resources is
assigned to, or removed from, a lesson, the set of lessons whose surviv-
ability is affected can rapidly be computed from the inclusive Or of
these bit vectors (that is, the union of these sets). The set of resources
available at a given time period is represented as a bit vector (the re-
source-availability-bv). To compute the set of resources available to a par-
ticular lesson at a given time period, SYLLABUS takes the bit vector that
represents those resources that can supply the subject taught in the les-
son and computes its logical And and the resource-availability-bv.

As the timetable process progresses, the variable domains are gradu-
ally reduced by forward checking (Haralick and Elliot 1980; Van Hen-
tenryck and Dincbas 1986). In this scheme, when the domain of a vari-
able is reduced by some action, the invalidated domain elements of
other variables are immediately removed, saving a number of the con-
sistency checks that must be performed. For example, if a group of
pupils has five science lessons during the week, and the first of these

48 EVERTSZ

lessons is assigned a teacher, r i, the other four pupils have their teacher
domains reduced to {r i}. This number, in turn, usually restricts the time
periods available to the other four lessons (because r i might be busy at
these times).

SYLLABUS is both space efficient and fast. Much of this speed and
compactness results from the use of bit vectors to represent the do-
mains of variables and perform set union, intersection, and comple-
ment operations.

Discussion
SYLLABUS provides its users with a number of benefits. The most obvious
of these benefits is the time saved by the senior staff member who nor-
mally has to spend weeks producing the timetable. A customer survey
shows that new users take between one and five days to produce a final
timetable. This total time includes the time taken to enter all the raw
data (note that entering the raw data goes quickly after the first year
because much of them remain constant from year to year). The upper
bound of five days is surprisingly quick because it relates to users who
are computer naive and have no experience producing a timetable.
Those who are experienced producing a timetable manually complete
the task in under two days and are delighted with the time saved and
the quality of the results.

Because of the time saved, it is now possible to experiment with dif-
ferent timetable scenarios; thus, SYLLABUS becomes a planning tool.
Schools can now obtain answers to questions such as “Can we add envi-
ronmental studies to the curriculum without hiring another teacher?”
This ability not only increases the educational choice of the pupils but
gives the school a competitive advantage over others. This bonus is im-
portant for private schools that are competing with others for a limited
supply of paying pupils. Because SYLLABUS can dynamically reschedule
those parts of the timetable that are affected by an unexpected exter-
nal event (for example, absent teacher or storm or fire damage to one
of the school buildings), it can be used as a crisis-management tool.

SYLLABUS gives schools the opportunity for substantial cost savings.
Sharing teachers between adjacent schools has already been men-
tioned; in a private school, cutting the staffing needs by one teacher
can save about $42,000 each year (which favorably compares with the
cost of SYLLABUS: $1,700). One private school has used SYLLABUS to re-
move the need for Saturday morning teaching from their timetable,
representing the first time that it has been able to generate a full
timetable that fits in less than 51⁄2 days. Furthermore, this five-day

SYLLABUS 49

timetable was judged to be of better quality than any of the 51⁄2–day
schedules manually produced in previous years. Some schools can use
SYLLABUS to generate income by releasing resources such as sports halls
and language laboratories. This task is achieved by making the rooms
in question unavailable for, say, a complete afternoon and then run-
ning SYLLABUS to see whether it is still possible to produce a satisfactory
timetable. A similar approach can be used to save on winter fuel bills
by switching off the heating in some blocks of the school building.

To date, these potential savings remain an unexploited benefit of SYL-
LABUS. Schools prefer to use SYLLABUS to improve the educational quality
of the timetable (after all, education, rather than cost savings, should be
the primary goal). It would be a shame if SYLLABUS were used to ruthless-
ly cut costs at the expense of educational quality. Schools in the United
Kingdom are currently going through a transition period from a state
in which cash savings are returned to the education authority to one in
which the school is allocated a budget and can use the funds as it sees
fit. Only when this transition is complete will it be worth using SYLLABUS

to make cash savings that can be redeployed within the school.
Those who have been responsible in the past for producing a

timetable by hand are particularly taken with the feasibility checks be-
cause they can now make a watertight case that a given curriculum can-
not fit in a timetable. In the past, they have had to waste weeks strug-
gling to produce a timetable before the head of the school finally
relented and allowed changes to the curriculum.

In delivering SYLLABUS, it was important to the research staff that it
look like any other application. In this market, the use of AI has a negli-
gible effect on users’ perception of the product. This situation meant
that SYLLABUS had to be compact and responsive; users would not be
satisfied with excuses such as “Well yes, it is slow, but it is doing some
very clever things.” SYLLABUS is sold as a school timetable program, not
a Lisp-based AI application. The researchers in my group believe that it
is unique in being a mass-market, off-the-shelf AI application imple-
mented in Lisp. Having successfully delivered the final product, they
believe that the time is ripe for using Lisp to deliver mass-market, mi-
crocomputer-based AI applications.

Acknowledgments
Apart from myself, many people have been involved in the develop-
ment of SYLLABUS. Geoff Forster has been involved with the project
from the start. Mark Dalgarno and Stuart Watt worked on the design
and implementation of the first product. Ian Assersohn, Diana Bil-
ligheimer, and Jane Pusey have been involved with augmenting the SYL-

50 EVERTSZ

LABUS functions. Pauline Wilson has been advising schools with
timetable problems for 20 years; her input to SYLLABUS has and contin-
ues to be invaluable.

References

Dincbas, M.; Simonis, H.; and Van Hentenryck, P. 1988. Solving the
Car-Sequencing Problem in Constraint Logic Programming. In Pro-
ceedings of the Eighth European Conference on Artificial Intelligence,
290–295. London: Pitman.

Fox, M. S., and Smith, S. F. 1984. ISIS: A Knowledge-Based System for
Factory Scheduling. Expert Systems 1(1): 25–49.

Haralick, R. M., and Elliot, G. L. 1980. Increasing Tree Search Efficien-
cy for Constraint-Satisfaction Problems. Artificial Intelligence 14:
263–313.

Keng, N. P., and Yun, D. Y. Y. 1989. A Planning/Scheduling Methodolo-
gy for the Constrained Resource Problem. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence,
998–1003. Menlo Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Keng, N. P.; Yun, D. Y. Y.; and Rossi, M. 1988. Interaction-Sensitive Plan-
ning System for Job-Shop Scheduling. In Expert Systems and Intelligent
Manufacturing, ed. M. D. Oliff, 57–69. Amsterdam: North-Holland.

Van Hentenryck, P., and Dincbas, M. 1986. Domains in Logic Program-
ming. In Proceedings of the Fifth National Conference on Artificial In-
telligence, 759–765. Menlo Park, Calif.: American Association for
Artificial Intelligence.

SYLLABUS 51

