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Abstract 

The Principal Investigator (PI) in-a-Box knowledge-based 
system (KBS) helps astronauts perform science experiments in 
space. These experiments are typically costly to devise and 
build, and often difficult to perform. Further, the space 
laboratory environment is unique, ever-changing, hectic, and 
therefore stressful. The environment requires quick, correct 
reactions to events over a wide range of experiments and 
disciplines, including ones distant from an astronaut’s main 
science specialty. This suggests the use of advanced techniques 
for data collection, analysis, and decision-making to 
maximize the value of the research performed. PI-in-a-Box aids 
astronauts with “quick look” data collection, reduction and 
analysis, and also with equipment diagnosis and 
troubleshooting, procedural reminders, and suggestions for 
high-value departures from the pre-planned experiment 
protocol. The astronauts have direct access to the system, 
which is hosted on a portable computer in the Spacelab 
module. The system is in use on the ground for mission 
training, and has been delivered to NASA for in-flight use on 
the Space Life Sciences (SLS) 2 Shuttle mission scheduled for 
August, 1993. 

Introduction 

The critical resource in astronaut-tended flight 
experiments is time. The lack of time affects both pre- 
flight training for, and in-flight operation of, the 
experiment. This is true currently with the U.S. Space 
Shuttle program, and will persist with the advent of Space 
Station Freedom operations. Another key factor in space 
experimentation is the use of fixed experiment protocols. 
This major constraint severely limits the ability of an 
earth-bound scientist to change the course of an experiment 
even when the data and current situation clearly indicate 
that it would be scientifically more valuable to do so. 

The PI-in-a-Box KBS helps scientist-astronauts do better 
science in space, given fairly severe time constraints and 
the need to work in areas outside their main specialty. The 
goal is to help the astronaut become a scientific 
collaborator with the ground-based Principal Investigator 
(PI) who has designed the experiment. The system 
facilitates this by sharing with the astronaut observations 
about the quality and importance of the data as it is being 
collected in-flight. This system has the potential to funda- 
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mentally change the way crewmembers interact with 
ground-based investigators in the Space Station era. 

In this paper, we present a logical overview of the 
system, continue with a description of our first area of 
application, explain the technical details of the current 
implementation, and finally share some development philo- 
sophy used to manage this multi-year project. This system 
continues previous work described in (Young et al. 1989), 
(Haymann-Haber et al. 1989) and (Frainier et al. 1990). 

Functional overview 

The PI-in-a-Box system has several modules (figure 1). 
Together they allow the diagnosis of data-collection 
problems, hypothesis monitoring and formulation (limited 
to an analysis of “interestingness” in the initial system), 
determination and scheduling of the experiment’s steps, and 
general-purpose help for the astronaut-user. 

The Data Acquisition Module (DAM) and Data Quality 
Monitor (DQM) acquire data from the experiment 
(displayed in real-time), extract parameters from the data 
and interpret them. The DQM also analyzes the data to 
determine quality with respect to the experimental 
apparatus and provides results to the Diagnosis and 
Troubleshooting Module. 

The Diagnosis and Troubleshooting Module (DTM) helps 
the astronaut isolate and recover from experiment data- 
collection problems. It suggests tests to isolate equipment 
faults. It also presents recommendations based on a 
computation of problem severity and possible recovery 
strategies with respect to remaining experiment session 
time (i.e., the system can actually recommend that 
troubleshooting not be performed.). 

The Interesting Data Filter (IDF) module monitors data 
from the experiment passed to it by the DAM. The IDF 
analyzes the data to determine its fit with pre-flight 
hypotheses. The fit can be either statistical or heuristic. 
Deviations are reported as “interesting”. These deviations 
are defined as “needing confirmation”, even if not part of 
the original fixed protocol. Once confirmed, they cease to 
be interesting. 
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The Protocol Manager (PM) module generates the best 
possible experimental protocol for use at any given time in 
the experiment. It also displays information to, and accepts 
information from, the user-astronaut (user). Corresponding 
to these two major functions, the PM has two logical 
components: the scheduling component called the Protocol 
Suggester (PS) and the human-computer interface (HCI) 
component called the Session Manager (SM). 

The PS creates a new experimental protocol upon request. 
A request from the user is likely when: 
l there is a predicted shortage of time - possible need to cut 
steps. 
. there is a predicted excess of time - possible need, or 
opportunity, to add steps. 
l the experiment is giving interesting data - possible need 
to substitute steps that will collect more information about 
the interesting data. 

The SM displays the current state of the experiment 
including progress against the protocol and elapsed times, 
and the history of other sessions occurring earlier in the 
mission. The SM also displays procedural step-by-step 
checklists of experimental steps to be performed within the 
experiment by the user. The SM updates the current 
protocol and elapsed times automatically and in response to 
user editing. The SM also offers a scratch-pad to allow 
users to record their observations. Users can perform the 
following actions using the SM: 
l Display the status of the current session. This includes a 
list of completed steps, the current step, and all pending 
steps. It also includes temporal information about the 
session and the current step. 
l Display alternative protocols. 

The first domain - vestibular physiology 

. Display the history of other sessions occurring earlier in 
the mission. This history is a list of all completed steps, 
including the experimental conditions used for each step. 
l Display experiment checklists for a given experiment 

The system has first been used in conjunction with a life 
sciences experiment in vestibular physiology known as 
“The Rotating Dome Experiment”. It was devised by one 
of the co-authors, Prof. Laurence Young, who is the 
director of the Man-Vehicle Laboratory at the 
Massachusetts Institute of Technology. The experiment is 
conducted by one crew member while another one acts as 
subject. The purpose of the experiment is to understand the 
human occulo-vestibular system, and its relationship to the 
phenomenon of space motion-sickness. During the 
experiment, the subject’s visual field is filled by a dome. 
The dome, which contains a constellation of dots, is rotated 
at various speeds and directions. This induces “vection”, or 
the sensation that the subject is rotating instead of the dots. 
Voluntary and involuntary reactions to the vection are 
measured. There are typically two or three in-flight 
sessions each involving two to four crew members. An 

step. experiment session consists of equipment setup, equipment 
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l Edit the current protocol and all temporal information 
known, and used, by the system. 
l Replace the current protocol with any of the other 
available protocols. 
l Order a new set of protocols for consideration (by calling 
the PS). 
l Initiate an equipment troubleshooting session. 

Finally, an Executive module controls module activation 
and focus-of-attention. It is also used to augment the 
operating system environment, if necessary, for a particular 
host CPU. 

One further module is planned for future versions of the 
system: an Experiment Suggester (ES). The ES will work 
in conjunction with the IDF. Given a new hypothesis from 
the IDF, the ES will generate a set of tests that can be used 
to investigate the new hypothesis. 

Diagnosis/Troubleshooting Module ; 

Interesting Data Filter a 

Protocol Manager 
C 
e 
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Figure 1: major modules 
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electrical checkout, several experiment runs on the first 
subject, introduction of follow-on subjects, and equipment 
shutdown and stowage. The experiment has been flown in 
space three times in the past1 , and will fly again this year 
(1993). When performed in space, this experiment 
generates five analog data channels. While the astronauts 
could monitor two of the five channels in real-time on a 
small oscilloscope, they are not as expert as the ground- 
based investigator at validating, or reacting to, the data. 
Investigators can monitor all of the channels, but the 
experiment data are subject to delays and outages as they 
are passed from the shuttle to relay satellites to and through 
the ground-based telecommunications system. Further, the 
investigators are quite limited in their ability to change the 
course of the experiment during an hour-long session. In 
fact, they are limited in their ability to change the course of 
the experiment during any remaining in-flight experiment 
sessions. 

PI-in-a-Box has direct access to all five data channels and 
performs “quick-look” validation and analysis in real-time. 
The analysis is driven by heuristics compiled from the 
investigators and the results are communicated to the 
astronaut performing the experiment. Thus, the system 
provides the astronaut advice on how to best use the 
precious time allocated to the experiment. This advice is 
based on the preflight plan, modified by all of the events 
that have occurred in flight, including a record of the 
experiment apparatus’ performance, the list of crew 
members that have already performed the experiment, and 
what the analyzed data indicated about each of these 
subjects. Specific advice includes: 
l recommendations on accepting a degradation of the 
experiment’s data collection, or on spending time to repair 
a problem. If repair is elected, there is a step-by-step 
diagnosis/repair plan offered to the user. 
l advice on the order in which to test subjects, and the order 
of individual test steps for a given subject. 
l alerts about analyzed data that appear to be of particularly 
high value (“interesting” data). 

There are other features that allow review of previously 
completed portions of the experiment, and that facilitate 
planning and/or replanning future experiment sessions. 
Finally, there are features providing reminders on setting 
up and using the experiment apparatus. 

connection at the junction of two cables is damaged. The 
problem affects one of the two electromyography data 
channels. The experiment setup is “on time”, but the 
problem must be addressed. Further, there will be a voice 
and data outage (LOS) commencing in five minutes that 
will have a duration of 20 minutes. Without PI-in-a-Box, 
the crew would typically attempt to repair the apparatus for 
a while, and then ask the ground for advice if the effort was 
unsuccessful. If the LOS was in effect, the advice could not 
arrive until after the 20-minute blackout. With PI-in-a-Box, 
the crew could ask for a recommendation at any time. In 
this situation, even if the system had a repair procedure 
available it would recommend not spending time repairing 
the low-priority channel, but instead using that time to get 
data from the scheduled subjects. 

Let us now assume that the astronauts declined the 
recommendation and spent 20 minutes at the repair. They 
are now part way through the experiment protocol and 15 
minutes behind schedule. The astronauts realize that they 
are going to have to cut the experiment short. Without PI- 
in-a-Box, the crew would typically work as far along as 
they could and then cut the last steps of the protocol. In 
this case, the entire second subject would be eliminated. 
With PI-in-a-Box, the crew could ask again for a 
recommendation. Here, the system would recommend 
cutting the last experiment condition for the first subject, 
the first experiment condition for the second subject, and 
then continue with the rest of the experiment. This 
recommendation takes into account the various setup times 
and scientific importance of the experiment steps, realizing 
that a lengthy setup was required for two low-priority 
steps. Eliminating both the setup and the steps saved 13 
minutes and increased the “coverage”2 of the first session. 

Current implementation 

As fielded, the system runs on a single Macintosh 
PowerBook 170, which hosts all six modules. There is one 
other piece of hardware, an external (GW Instruments) 
analog-to-digital converter connected to the PowerBook’s 
Small Computer System Interface (SCSI) port. The 
PowerBook is fitted with 8 MB RAM (the maximum 
available on that model) and a 40 MB internal hard drive.3 

Some typical scenarios 

Let us assume that it is now two days after lift-off. The 
first session involves two astronauts who will alternate as 
subject and operator. The system has been set up for the 
first session but there is a problem. An electrical 

1 The Rotating Dome Experiment flew on Space Shuttle- 
hosted SpaceLab missions SL-1 (in 1983), D-l (in 1985), 
and SLS-1 (in 1991). 

2 The coverage heuristic states that it is better to have at 
least some data on each subject than to have a full set on 
runs on one subject with no data on another. 
3 All materials and equipment used on and in the Space 
Shuttle require a “qualification” (analysis and test for 
safety, reliability, etc.). These tests need to be performed 
in advance of the mission’s Critical Design Review. It 
was not possible to “flight qualify” more recent (and more 
capable) versions of the PowerBook for our target 
mission. 
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Figure 2: PI-in-a-Box physical-logical mapping 

Three main software tools were used; CLIPS, LabVIEW, 
and HyperCard. 

CLIPS, available from NASA/COSMIC, serves as the 
inference engine for the application. This OPS-style expert 
system shell is used by the system for schedule repair (PS), 
diagnosis (DTM), and symbolic analysis (IDF). Key factors 
indicating its use included: low cost, availability of source 
code (facilitating tool extension and customization), 
excellent support, continuous upgrades, a strong user 
group, and widespread use. 

LabVIEW, available from National Instruments, controls 
data collection, reduction, validation and archival. It is a 
graphical data flow language (“software from pictures”) 
with a mouse-oriented developer’s interface and excellent 
browsers. These features facilitated rapid development and 
code reuse. Another key feature is its support for data 
acquisition and analysis in a single package. Other key 
factors indicating its use included: excellent support, 

continuous upgrades, availability of runtime version, a 
strong user group, and widespread use. 

HyperCard (available from Apple) is used for the HCI, 
overall data management within the system, and module 
activation. Its procedural scripting language and part-whole 
object hierarchy facilitated the “rapid prototyping” style of 
HCI construction essential to our system’s development. 
Other key factors indicating its use included: low cost, 
widespread use, and good technical support from Apple. 

The three tools communicate with each other using 
AppleEvents and HyperCLIPS. HyperCLIPS, a set of two 
simple one-way drivers, was developed by our team for 
HyperCard-CLIPS interapplication communication. 
“AppleEvents” is an interapplication communication 
feature of the “System 7” version of the Macintosh 
Operating System. CLIPS and LabVIEW do not 
communicate directly with each other. 
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The system currently uses all 8 MB of RAM. Virtual 
memory was tested and rejected due to the associated 
performance penalty. HyperCard and LabVIEW are each 
allocated 2,500 KB of RAM, CLIPS is allocated 1,800 
KB, and the remainder is used by the computer’s Operating 
System. The system files4 currently occupy about 11 MB 
of hard disk storage. 

The mapping between hardware/software and each logical 
module of the system, as implemented for the Rotating 
Dome Experiment, is seen in figure 2. An obvious 
characteristic of our architecture is the necessity to make 
complicated technical tradeoffs when building systems 
which integrate different tools and solve real problems. 

The HCI, called SM in our system, has been built as two 
HyperCard stacks. One stack contains 26 “cards”. Fourteen 
of these serve as a persistent database (and are not viewed 
directly), and 12 are used for display. The second stack 
contains 16 “cards” that display pictures, line drawings, and 
real-time data traces. 

The data base is divided between HyperCard and CLIPS. 
The HyperCard-resident portion consists of 14 cards. Most 
of these are used to store data from the experiment: one card 
is used for each step of the experiment that generates data. 
There is one card used to display summary results of 
previous experiment sessions. Two cards are used to store 
data used “globally” by several of the modules. The 
CLIPS-resident portion consists of about 120 base facts. 
This number increases as the mission progresses and 
experiment history is generated. During the typical 
operation of the PS, there are about 200 facts in the data 
base at any one time (out of 120 base facts and 400 
generated facts). 

An illustration of the system in use 

Assume that the operator has just set up the laptop 
computer and analog-to-digital converter in anticipation of 
an experiment session. The system automatically loads 
upon power-up of the Macintosh. Two minutes and twenty 
seconds after power-on, startup is complete. The system 

PRINCIPAL INVESTIGATOR IN A BOX 
Version 1.0 

CURRENT SFTTINGS 
Session: s 1 

Begin Time: 0 l/03: 15:OO 
End Time: 0 l/03:55:00 
Subjekts: MS 1 PSI 

Y -1 . . 

1 Session Planning] 

MET 0 l/03:00:00 GMT 23:49 

Figure 3: Session startup 

4 Includes documentation text files, rule files, permanent 
data files, other application files and tool image files. 
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has selected the next scheduled session, and presents 
overview information such as the scheduled start time, end 
time and subjects (figure 3). In this example, there are two 
subjects, Mission Specialist 1 (MSl) and Payload 
Specialist 1 (PSl). If the begin time or end time has 

recently changed, the user communicates the currently 
scheduled time to the system by clicking over the item to 
be updated. There is also the ability to similarly 
change/edit the subject list, as well as other options. When 
the current settings are completely correct, the user 
proceeds by selecting “Begin Session”. 

The system prepares for the next action, a functional 
checkout of the experiment’s electrical outputs. Notice that 
since the “EMG” functional check should be performed, a 
graphic is displayed to help assure correct electrode 
placement (figure 4). 

The LabVIEW-based DQM is used for this checkout and 
autocalibration of the experiment apparatus (These checks 
typically occur after equipment setup and before each new 
subject enters the experiment, although they can be 
optionally performed at any time during a session). The 
system displays a list of the signals to be checked, with an 
arrow pointing to the currently-checked signal. As each lo- 
second check is occurring, a real-time trace of that signal is 
displayed (figure 5). There are five signal traces that are 
displayed from top to bottom on the left side of the screen: 
Joystick, Biteboard, Right-EMG, Left-EMG, and 
Tachometer. The Tachometer is a “heartbeat” trace that is 
only 2 pixels high. Note that in figure 5, the Right-EMG 

and Left-EMG signals are displayed simultaneously as part 
of the single EMG check, and so there are two arrows 
indicating the current signal. 

The DQM performs one of the more interesting, and 
challenging, tasks in our system. It was not obvious at 
first how to interpret and react to a lo-second slice of 
analog data. It was quickly realized during integration 
testing that the experiment hardware electrical 
specifications were not by themselves sufficient to 
determine if a,signal channel was functioning correctly. We 
settled on partitioning the lo-second test into three 
segments, a rest-condition segment, a full-positive- 
deflection segment, and a full-negative-deflection segment. 
These segments are identified by applying mathematical 
filtering and differentiation operations. Specific parameters 
are then calculated for each segment. The analysis of these 
three segments is combined with known operational and 
faulty states of the hardware to finally determine the health 
of a given signal channel. When a signal is identified as 
operationally OK, then the check further serves as a 
calibration of the channel and is used by the DAM during 
its run-data analysis. Then there is a problem, DQM does 
not always indicate a unique fault. Resolution must then 
occur later in a troubleshooting session. 

Upon completion of all requested checks, a summary of 
the results are displayed (figure 6). In this example, the 
experiment apparatus is functioning correctly. If a problem 
had been seen, then an automatic troubleshooting session 
@TM) is initiated, and a recommendation is prepared for 
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Figure 6: Functional check results 
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Figure 7: Main session display 

the user. If troubleshooting is pursued, a series of 
interactions guides the repair effort. 

Shown next is the main display screen (figure 7), with a 
summary of the current experiment protocol: (step) types, 
step (dur)ation in minutes, (subj)ect, experiment 
(cond)ition, etc. An arrow indicates the step currently being 
performed, check marks indicate completed steps and, 
finally, pending steps are listed below the current step. In 
this case, Mission Specialist 1 (MS 1) is entering the dome 
to be tested in the free-float condition. This information is 
echoed in the “next run” display area just below the current 
protocol listing, and can be changed/edited by mousing 
over the item in need of update. 

If the user wishes to check the procedures associated with 
the current, completed, or upcoming step, they merely 
click on that step in the current protocol window. A copy 
of the paper-based checklists and procedures is then 
displayed for review. These checklists exist as paper 
documents. They can be easily converted to “PICT” files 
which are then displayed by HyperCard. This facilitates 
maintenance of the procedures within the system as a result 
of Engineering Change Order (ECO) activity against the 
experiment apparatus. 

Real-time data collection and analysis 

PI-in-a-Box is a real-time KBS. It must receive, analyze, 
and then act on the data that is generated by the experiment 

quickly enough to be of use to the user. Each data- 
producing step in the vestibular physiology experiment 
consists of six 30-second data-producing trials (figure 8). 

Each trial has 20 seconds of data gathering and real-time 
display followed by 10 seconds of rest (figure 9). The 20- 
second data collection/display period is controlled by a 
LabVIEW-compatible driver supplied by GW Instruments, 
the maker of the A/D converter. All five data channels are 
sampled at a rate of 225 Hz. During this time, the driver 
used for data acquisition monopolizes the PowerBook (even 
the “mouse” is not tracked). The following 10 seconds are 
shared by LabVIEW and HyperCard. The DAM performs 
data analysis, reduction, parameter extraction, and archival. 
It also communicates results to HyperCard for use in alerts 
and for post-run analysis (If DAM determines that a critical 
signal has malfunctioned during a trial then the run might 
be halted for troubleshooting). 

The system performs several actions after a run of 6 
trials. It first checks that at least five of six trials in a run 
have been successfully completed. If so, the run is labeled 
“nominal”. It then checks the data for agreement with the 
current hypotheses (IDF). The IDF module presently 
consists of about three dozen CLIPS rules. Heuristics 
presently used to determine interestingness focus on the 
presence, onset latency, and intensity of “vection”. These 
domain-specific heuristics include the following: the onset 
of vection is interesting if it is consistently less than two 
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trial 1 trial 2 trial 3 trial4 trial5 trial 6 

Figure 8: A Rotating Dome Experiment run 

Between-run options 
seconds; early in the flight, maximum vection is 
interesting if it is consistently greater than 90%; the 
number of dropouts experienced by a subject is interesting 
if it is consistently low (0) under tactile conditions; it is 
interesting if maximum vection under tactile conditions is 
consistently greater than maximum vection under non- 
tactile conditions; etc. 

After the IDF module runs, the system prepares for the 
next run. Summary information is displayed for the user to 
review. A possible post-run display is seen in figure 10. In 
this case, the run was normal and the data was 
“interesting”. An explanation of the interestingness is 
available for review if desired. In this example, the run was 
interesting for two reasons. The sensation of vcction began 
quickly but with a low maximum compared to that 
predicted by the results of that same subject’s earlier runs 
(see figure 11). 

The user can invoke a variety of options (available from 
the “Options” pull-down menu) at this time. One option is 
to exploit the observed interestingness by asking the 
system for a better plan for session completion (experiment 
protocol). These protocols take into account the time 
remaining in the current session, as well as which subjects 
were tested, and with which results, from previous in-flight 
sessions. One of the two resulting suggestions is the 
“Proposed Protocol”. This protocol observes session time 
constraints. The other suggestion is the “Optimal 
Protocol“. This protocol relaxes the time constraint 
slightly to offer a focused plan with minimal negative 
impact on the mission time line. The time needed to 
suggest these new protocols is usually less than 30 
seconds. The PS module controlling this consists of about 
200 rules. 

-13 minutes-, 
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Figure 9: A Rotating Dome Experiment trial 
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Figure 10: Post-run display 
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Figure 11: A brief explanation of interesting data 
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The experiment protocol is conceptualized as follows. 
There are a number of experiment sessions in a mission. 
Each session is conducted in accordance with its protocol. 
The protocol consists of a number of blocks. There is one 
block for each subject, a block for experiment setup, and a 
block for experiment stowage. Each block has a number of 
steps. The setup and store blocks are straightforward, but 
the optimum subject block order (and run ordering within a 
given subject block) depends upon a complex interpretation 
of previous mission history. The first task is to determine 
which experiment steps should be performed and to assign 
a (science) priority to each. The block ordering is 
determined next. After that, step ordering within a block is 
determined. Following the step ordering, minor setup tasks 
are inserted. Finally, the result is checked against current 
time constraints. 

Heuristics presently used to determine new protocols 
include: 
l Get at least some data on every subject; 
l Complete the data collection using a full set of 
experiment conditions on at least one subject; 
. After some data has been obtained, prefer missing 
experiment conditions; 
l Do not schedule bungee runs if the Joystick signal is bad; 
. Schedule runs with similar experiment conditions 
together; 
l If the bungee is setup, schedule bungee runs first; if the 
bungee is not setup, schedule runs that do not need it first; 
. After some data has been obtained, if there are 
“interesting” data to be confirmed on a subject, then prefer 
that subject; 
. If a subject is currently setup in the test apparatus, 
schedule the remaining steps for that subject first; 
l If no subject is setup, give first preference to a subject 
with unfinished tests from an earlier session and give next 
preference to a subject who was giving “interesting” data; 
l If there was “interesting” data on a subject and experiment 
condition from the current session, and the subject and 
condition has not been repeated, then rerun the subject and 
condition; 
l If there was “interesting” data on a subject and experiment 
condition from the current session, and that condition was 
again run today, but was not again found to be 
“interesting” then run that subject in that condition one 
more time; 
l If there was “interesting” data on a subject and experiment 
condition from the current session, and that subject and 
condition was again run today, but the condition was not 
run on another subject, then run that condition on another 
subject; 
l If there was “interesting” data to be confirmed on a 
subject and experiment condition from a previous session, 
and that condition was not run today, then run that subject 
in that condition; 
l If there was “interesting” data to be confirmed on a 
subject and experiment condition from a previous session, 

and that condition was run today, but was not again found 
to be “interesting” then run that subject in that condition 
one more time; 
l If more time is needed than is currently allowed, cut the 
least desirable (from science standpoint) step; etc. 

As the previous paragraph suggests, it is difficult for an 
astronaut (or even an investigator) under time pressure to 
keep these heuristics together with their relative priority in 
short-term memory and to apply them correctly when 
rescheduling a session protocol. 

Troubleshooting 

Another option is to invoke a manual troubleshooting 
session (DTM). The user has a chance to indicate a variety 
of observed problems as seem in figure 12. In this case, the 
user has indicated that the “ECDS” display associated with 
an another onboard data-gathering computer is garbled. The 
system responds by recommending reinitializing the ECDS 
(figure 13), and displays the relevant portion of the control 
panel to aid recall (figure 14). A further example is seen in 
figures 15-16. Here, a bad EMG functional check lead to 
investigation of the EMG connectors, and later, to 
replacement of the EMG amplifier batteries. Additional 
functional checks are occasionally part of the 
troubleshooting process. 

The DTM module consists of about 200 CLIPS rules. 
The CLIPS rules work with procedural code in HyperCard 
to guide the user through troubleshooting and repair. The 
overall flow involves the formulation of a repair 
recommendation based on the current experimental 
situation (The recommendation could entail forgoing a 
lengthy repair, for example). If troubleshooting continues, 
the system traverses a graph step-by-step until either the 
problem is repaired, the user terminates the session, or the 
system has no further advice to offer. Steps include the 
display of pictures (figure 14), line drawings (figure 15), 
repair instructions (figure 16), conducting functional 
checks, and making observations for the system (figure 
15). 

There are several other between-run options that can be 
invoked from the “options” pull-down menu. These include 
the use of a notepad, the review of the history of 
previously-completed sessions, and a manual editing 
facility for the current protocol. Finally, as mentioned 
earlier, the procedures associated with any step can be 
brought up for review. 

System construction philosophy 

The system makes maximum use of Commercial off-the- 
Shelf Software to leverage programming effort and avoid 
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minutes behind minutes ahead 

15 10 5 0 5 10 15 

Dome Lights: 0 Both On 0 One Off 0 Both Off 
Video camera(s) failed: 0 CCTU 0 camcorder 
ECDS: 

E 
display is garbled 0 single LED element failure 
no response 

tlini-Oscilloscope failed:0 Bi teboard is loose: j-J 
Cannot insert contact lens:0 

Dome fails to turn:0 Dome fails to stop:n 

Signals: OK bad unknown 
Joystick @ 

O : Biteboard @I 0 
Right-EtlG @ 0 0 
Left-EMG 0 0 0 
Tachometer @I 0 0 

(entWrn) (canceD 

Review/modify data, Click OK to continue or Cancel to exit 
the troubleshooting session. 

MET 03/01:26:00 GMT 19:24 

Figure 12: Selecting manual troubleshooting 

minutes behind minutes ahead 

Recommend reinitializing the ECDS - due to 
possible LSLE chip failure - and following 
system prompts for further ECDS input. 
Do you concur with the recommendation? 

MET 03/01:26:00 GMT 19:24 

Figure 13: DTM recommendation 
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Press this button 
(found on the lower right portion 

of the ECDS control panel) 

minutes behind minutes ahead 

15 10 5 0 5 10 15 

INITIALIZE 
/HALT 

Please press the RUN INITIALIZE/HALT button on the right 
side of the ECDS front panel. 

(Cancel to terminate troubleshooting.) 

(ent&gJrn) (cancep 

MET 03/01:26:00 

Figure 14: DTM instruction 

GMT 19:24 

EMG amplifier (from subject) 

minutes behind minutes ahead 

1s 10 5 0 5 10 ls 

z 

4b 

Please visually check that the EMG connectors, J312 & 
‘On’. J3 13, are connected. 

(Cancel to terminate troubleshooting.) 
ent--5i&)m (cancep 

J3 12 to Left-EMG 

J313 to Right-EMG 
MET 03/O 1:26:00 GMT 19:24 

Figure 15: DTM request for information. 
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R 10A 1. Unstow EMG batteries (two) from Spares Kit 

4. Remove battery, label, temp stow 
5. Install battery in + UP position (Battery 

polarity installed in + UP posltion; UP is 
outward or exterior part of battery housing, 

Figure 16: DTM repair instruction. 

“reinventing the wheel”. Some custom coding was done 
when necessary. There are clear advantages here: 
development started against a target machine that was not 
yet available, continued on a first-generation offering, and 
was delivered on a second-generation machine. Thus, users 
have the high performance of (and “excitement” of using) 
current hardware, and developers are able to take advantage 
of the increased hardware and software capabilities of the 
host machine. This is important because application 
software, and the programming paradigms it is based on, 
change more slowly than Operating Systems, which in 
turn change more slowly than CPUs. [Consider that 
CLIPS has been around since 1986 (or earlier), HyperCard 
and LabVIEW were first released in 1988, Macintosh 
System 7 was released in 1991, and PowerBooks became 
available in quantity in 1992.15 Perhaps just as 
importantly, this approach has allowed better 
maintainability and a cheap upgrade path by leveraging off 
of the efforts of the technical staffs at Apple Computer, 
Claris, National Instruments, and the Johnson Space 
Center Software Technology Branch. For example, if we 
had to incorporate a complete interapplication communica- 

5 The pace of improvement of hardware-based computing 
power over the last 20 years has been astonishing. 
Looking ahead to operations on a space station with a 
projected life of 40 years or more, it is critical not to start 
with hardware systems that will be obsolete before they 
are launched. 

tion facility between CLIPS, HyperCard, and LabVIEW, it 
would have been more expensive, less robust, and would 
have probably locked us out of routine software upgrades. 
Instead, we experimented with incremental enhancements 
that we could discard or retain as more capable software 
became available, or as the system’s operational 
requirements changed. Another maintenance win occurs 
when team members occasionally, and inevitably, leave: 
there is a quick ramp-up for the new member who is 
already familiar with widely-used products like CLIPS, 
LabVIEW, and HyperCard. 

A modified version of the spiral model of software 
development was followed for most of the major modules. 
This is a “requirements discovery” style where a rough 
specification is used to guide knowledge engineering and to 
rapidly construct a prototype. The prototype is then 
demonstrated internally (development team and end users) 
and externally (colleagues and upper management). 
Comments are then fed back into the specification. This 
leads to a follow-on version of the module after another 
iteration of knowledge engineering and rapid-prototyping. 
We believe this approach to be superior to the waterfall 
model of software development for KBSs for two chief 
reasons. First, there is no reasonable way to determine a 
specification that is detailed enough to guide a multi-year 
effort. It was only after coding, demonstrating, and using 
prototypes that differences between the way the task was 
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described and how the task was performed were resolved6 
Second, the “knowledge” in the KBS is not static. As a 
result of the Space Life Sciences 1 Shuttle mission in 
June, 1991, there were significant changes not only in the 
experiment and its approach, but also in our conception of 
what the PI-in-a-Box system could best do. Our approach is 
not perfect. One potential problem is determining when to 
stop the development cycle. In our case, there were firm 
milestones associated with the flight schedule that provided 
the necessary constraints. Another potential problem is 
maintenance of requirements and test documents. As each 
development cycle modifies the system’s requirements, 
these changes must be captured and reflected in the test plan 
and other documents. We found these issues to be minor 
frustrations compared to the benefits of our software 
development scheme. 

An interesting approach to validating a module is “cross- 
prototyping”. This was used on one of the modules. One 
team member built a prototype of the module based on the 
Official Production System (OPS) style of representation. 
When that team member left the project, maintenance and 
extension of the module was given to a new member. The 
new member was initially much more familiar with 
object/frame representations than with the OPS paradigm. 
After understanding the purpose and current requirements of 
the module, a new prototype was quickly built in 
IntelliCorp’s KEE, and then translated to the Parmenides 
frame tool and FRuleKit OPS-style rule system (both from 
Carnegie Mellon University) running over Macintosh 
Allegro Common LISP. This provided performance 
comparisons between the two implementations and led to 
the discovery and elimination of several subtle bugs in the 
module. 

Benefits of the knowledge-based system 

The main benefit of this system is to maximize (or 
certainly increase) the scientific quality of data from 
experiments performed by humans in space. This in turn 
increases the value of the research performed. The increased 
value comes from increased crew productivity. This 
increased productivity has two dimensions. First, time is 
not spent on unproductive tasks after equipment failures. 
Second, reactions to the scientific consequences of already- 
gathered data are improved. Although caution should be 
exercised in generating dollar figures, we estimate savings 
of $6,000 per astronaut science hour (based on 20% crew 
productivity increase from operational use and a 
conservative figure of $30,00O/hour of crew time on the 
space station). 

6 These differences included both the ground-based 
scientists and the astronauts. In both cases, actual task 
performance style was more conservative than the idealized 
version articulated for the system developers. We feel that 
the key to a really useful and valuable system lies in 
aiding actual task performance. 

Future directions 

Use of the system in support of Space Shuttle mission 
SLS-2 will continue through this year. The team is also 
working to identify follow-on experiments in future 
missions to support. After one or two experiments, we 
hope to know enough to create a general-purpose tool to 
aid science experiments in space, or indeed in any situation 
where quick-look analysis can be used to guide the focus of 
attention for the remainder of a limited scientific 
observation period. Examples under consideration include 
other life science experiments, materials science 
experiments, atmospheric studies, and plasma physics. 
While the system yields maximum benefit when applied to 
a particular experiment, there is value in adding just the 
DAM, DQM, and DTM modules to major 
equipment/facilities on Space Station (e.g., centrifuge and 
gas-grain simulation facility). This would allow a general- 
purpose monitoring, diagnosis, and repair system to be 
used over the life (20+ years) of the orbiting equipment. In 
this case a repair recommendation is weakened to the extent 
that experiment-specific data-collection heuristics and 
history are not available. 

Alternative approaches 

There are alternatives to the in-situ knowledge-based 
approach described in this paper. A more traditional 
approach would be to add more ground support people at 
one of the existing sites with voice and data channel links. 
They would do the analysis and present results and 
recommendations to the scientist. The traditional AI 
approach would be to add LISPM (in place of people) in 
the back room of Shuttle operations with a data-link to the 
scientist. Both of these approaches are critically hindered by 
the key problem of any ground-based solution: delays and 
outages in receiving experiment data and transmitting 
solutions to the crew. We feel that space experimentation 
requires careful consideration of the tradeoffs between those 
approaches and on-board intelligence. 

Conceptually related work is associated with a Space 
Shuttle-based cryogenic experiment, SHOOT (Superfluid 
Helium On-Orbit Transfer). Two systems, AFDeX and 
CMS, facilitate the conduct of SHOOT (Raymond 1989), 
and (Shapiro and Robinson 1989). The AFDeX rule-based 
system is designed to provide intelligent process control, 
diagnosis, and error recovery. This system is hosted on a 
80386-based GRiD laptop and will be sited in the Space 
Shuttle’s Aft Flight Deck. The AFDeX system software is 
a combination of CLIPS and C code. AFDeX is capable on 
autonomous (closed-loop) control of the experiment, but is 
planned for use under astronaut control. The Command and 
Monitoring System (CMS) is designed to provide near real- 
time monitoring and control of the SHOOT experiment 
from the Earth by the investigator. The CMS is hosted on 
a Macintosh-II Computer. The system software is written 
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in Apple Computer’s MPW(C). It is anticipated that most 
(roughly 80%) of the time the SHOOT experiment will be 
under ground control, while the remainder is under 
astronaut control. 

Conclusion 

PI-in-a-Box is a unique KBS for aiding scientific 
experimentation in space. We have used AI (symbolic 
reasoning), formerly-AI (advanced object-oriented HCI) and 
non-AI (data acquisition and analysis) techniques to build a 
useful system. Our framework will be expanded and 
generalized into a tool to aid the investigations that will 
occur on Space Station Freedom in the latter part of this 
deca&. 
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