
EASy: Expert Authorizations System

Jonathan Altfeld Douglas E. Landon, Ph.D.
Senior Knowledge Engineer Senior Systems Analyst

Brightware, Inc. Equifax Check Services
11080 MoYcomb Bridge Rd. Ste 300 5301 W. Idlewild Ave.

Roswell, GA 30076 Tampa. FL 33634
jonathan@brightware.com landon@packet.net

Charles J. Daniels
Lead Programmer/Analyst

Equifax Check Services
5301 W. Ldlewild Ave

Tampa, FL 33634
repoman@cftnet.com

Abstract
Equifax Check Services provides retail merchants and
other businesses with quality decisions concerning the
acceptability. risk. or fraudulence of customer checks.
The greatest percentage of these decisions are provided
automatically through on-line links with point-of-sale
termmalls. When a transaction is suspect, a referraY
notice is generated directing the merchant to call one of
Equifax Check Services’ authorization centers for
additional processing. This processing considers a
wide variety of information unavailable through online
processing, thereby giving consumers the greatest
possible benefit of doubt prior to declining checks.
These high-risk authorizations had historically been
handled using a legacy mainframe system involving a
high degree of manual intervention. Authorizations
agents would complete a lengthy, rigorous training
regimen, and be monitored as to their performance.
Pursuit of service excellence caused Equifax, in
conjunction with Brightware Corporation, to develop
the Expert Authorization System (EASY), a rule-based
solution for check authorizations that uses an
innovative twist on a standard blackboard architecture.
EASy was deployed and is used today by as many as
300 concurrent users. By encapsulating extensive
domain knowledge, EASy has effectively eliminated
authorization errors, provided consistent and replicable
decisions, reduced elapsed time to a decision, and
reduced the average agent training time from 4-6 weeks
to 3 days.

Problem Description

The original check authorization system was Tandem-
based, utilizing 3270 screens to provide authorization
agents with various types of information. These Agents
would enter some information, then page through several
3270 screens in order to accumulate a critical mass of
information about the check-writer and the transaction. As
this information built up, the agents would apply decision
rules to specific circumstances and deliver an authorization

decision. Agents were required to follow suggestions from
the system, know when to ignore or overrode the system.
and know when specific exceptions applied. Trained agents
knew which screens KO view in the appropriate order. and
they knew how to scroll through historical information of
various kinds to identify concerns which might affect an
approval decision. Even with QA monitormg and
established procedures, there was still agent variability in
the approval process.

Yn addition, the existing system was experienced as
being both difficult to learn and inflexible. From four to six
weeks of extensive group and individual training was
required. This was followed by a period of high QA
monitoring to ensure proper decision making. Intermittent
long-term QA monitoring was required to maintain high
quality authorization decisions.

Since training required so much time and effort,
coordinating the hiring, training, and QA monitoring
schedule was a significant challenge, particularly during the
holiday season, when the number of agents more than
doubled.

Maintenance and reliability issues were concerns with
the Tandem-based system. The legacy system had
expanded over many years to account for new functionality
and legal restrictions, utilizing expensive and increasingly
outdated computing systems. Additionally, manpower was
limited for Tandem support and was becoming increasingly
more expensive. Continued software and hardware
maintenance was producing diminishing returns on this
system. Agents were using 286 model diskless PC’s, which
supported 3270 emulation into a Mainframe and a Tandem,
and in some cases over a Novell LAN.

Objectives of the Expert Authorizations System

Equifax Check Services needed a way of standardizing
authorization decisions as well as exception-handling. The
complex nature of these decisions lent themselves perfectly
to Expert System technology, and posed significant
problems for a procedural and/or mainframe-based
approach in designing a replacement system. A decision
was made that there was little or no room for error, and a

Case Studies 1421

From: IAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

great need was realized for a malleable solution with more
centralized control over authorization decision-making.

There were a number of objectives for the replacement
authorization system, to include:

0 Standardization and automation of all types of
check authorization decisions across the entire agent
pool.
0 Migration from reliance on legacy mainframe
systems to an open and cost-effective PC/LAN-based
client-server solution.
0 Replacement of a limited, inflexible system with
an intelligent, more easily modifiable, and flexible
system.
0 Reduction in call times (i.e. time to make
decisions).
l Reduction of training time. complexity, and costs,
combined with improvement to the training process.
0 Elimination of risk due to improper decisions.
0 Enabling of customer-specific processing.

Previous Similar Work
At first glance, EASy needed to accomplish much of what
had been accomplished with the American Express
Authorizer’s Assistant (AA) expert system, but with a few
notable differences.

The following are some similarities between the AMEX
AA and EASY:

0 Both needed to apply business policies towards on-
line incoming transactions in order to reach a faster,
more consistent and reliable approval decision.
0 Both worked in conjunction with authorizations
agents in order to provide a human interface to their
customers.
e Both systems handled the anomaly decisions
through agent intervention.
0 Both systems rely on alternative on-line systems to
handle all of the straightforward decisions; this
represents in both cases a significant percentage (a
proprietary, variable number). Those transactions
which require more attention are referred in both cases
to AA and EASY, respectively.

The following are some differences between the two
systems:

@ AA is a credit granting system which extends
credit, while EASy is a check authorizations system.
No credit is granted because the intention in EASy is to
guarantee the likelihood of existing funds availability
through a combination of factors. AA already has a
significant portfolio of information on their customers
which originates with a credit application, and builds
through repeated use of the card. EASY, by contrast,
can have more or less information to work with,

depending on the consumer’s identification and the
nature of the transaction.
0 AA’s customers are the consumers. EASY’S
customers are the merchants who require check
guarantees for their customers (the consumers)
payment.
0 While AA requires flexibility and intelligence on
the part of their agents. allowing decision-override
capabilities under specific circumstances, all of EASY’S
check authorizations decisions occur within the expert
system. The EASy agent guides the customer through
providing appropriate information as EASy requests it.
and relays the decision to the customer0

Application Description

The replacement system is called the Expert Authorizations
System, or EASY. EASy processes from 4-6% of all
transactions handled by Equifax Check Services, depending
on the settings of certain business parameters. On-line
transaction-based systems are called directly by retail point-
of-sale terminals for the majority of decisions; most of these
decisions are comparatively simple to make and usually
result in immediate check approvals. Suspect transactions
are referred with a request to contact an authorizations
center.

Figure 1: Approval Notification

When the merchant calls in to an authorizations center,
an authorizations agent using EASy retrieves certain
information about the merchant’s customer (the consumer),
and the check which caused the referral. This identification
and transactional information is processed by EASy in
combination with various types of information held at
Equifax, and an authorization decision is returned.

1422 IAAI-96

Figure 2 : lln-Process Funds Verification

Figures l-2 provide examples of some of EASY’S
graphical screens using fictitious data. Basic consumer
information is entered by the agent through data request
screens similar to that in Figure I. The types of consumer
data, and the order in which it is obtained, is controlled
through rule firings in the EASy knowledge base.

As EASy progresses through its decision-making, it may
request that the agent obtain additional data or perform
certain actions. An example of the latter is shown in Figure
2, where EASy has requested that the agent obtain funds
verification from a bank.

Once all the necessary information has been gathered
and the processing completed. EASy will display an
authorization decision as shown in Figure 2, which shows
an example of an authorization approval message. There
are a variety of approval, decline, and informational
messages that can be displayed depending on the results of
the decision process.

Mow the KB software solution fit these tasks

Both the problem domain and the expert knowledge
embodied by the agents both through training and
experience lent themselves clearly and immediately to a
rule-based system. At a high level, the following activities
occur over and over again at each agent’s station:

0 A new transaction arrives
0 The system requests information
Q Information is processed through a business model
0 More information is obtained as needed
0 More processing occurs
0 A decision is rendered
0 The system cleans up and refreshes itself

The basic function of obtaining data via indicators
derived from a business model is a nearly classic
description of a backward chaining expert system. The goal
is an approve/decline authorization decision, and the system
must request information to “prove” one or the other goal.
However, reasoning forward from data provided by an

Case Studies 1423

agent is a more classic forward-chaining mechanism, thus
also indicating an expert system approach. Additionally,
because of a long history of developing and refining the
business modei for check authorizations, Equifax Check
Services developed a robust set of “rules” governing what
actions the agents should take to make a decision.

To capture these various aspects of authorization
decision-making, a blackboard type of expert system
architecture was designed, with the knowledge sources
consisting of various cells of related rules that embodied the
specific aspects of decision-making. The knowledge
sources are activated using an innovative twist in the
standard blackboard architecture that we refer to as rule
phases. Further on we will describe how this differs from a
classic ruleset approach.

EASy’s User Platform

Each agent sits in front of a 486 or PentiumB PC running
Microsoft@ Windows@ 3.1. Upon system boot-up,
Windows starts up automatically, followed by EASY’S
agent login screen. Upon a validated login, agents can
immediately begin taking calls.

These PC’s locally run a Microsoft Visual Basic@
application, a 32-bit ART*EnterpriseB application which
operates on top of the Win32s libraries, a Microsoft
Access@ database, and a network layer to connect to the
Equifax LAN. These applications are described in more
detail in the next section.

EASy’s Pseudo Three-Tier Environment
In addition to the expert system, EASy includes two
additional software components, and represents a near-
perfect model of a clear three-tier solution architecture.
EASY’S architecture differs from the purist definition of
three-tier only in that the Graphical User Interface (GUI)
and the Knowledge Base (P<B) components sit on the same
platform. a PC clone running Windows 3.1. The
components are modified and/or maintained by different
developers, and isolate areas of functionality, but they
reside together and communicate back and forth with each
other.

The EASy GUI. EASY’S GUI was built using Microsoft
Visual Basic 3.0. The Visual Basic GUI component
contains neither knowledge nor transactional drivers. The
extent of its intelligence is to check for some informational
validity (i.e, that a number field actually contains a
number). For its actions, it depends entirely on the EASy
knowledge base.

The GUI utilizes static data stored in local databases
implemented through Microsoft Access. Since an
important quality parameter for authorization decisions is

the average call time, the GUI also tracks
displays call time durations.

and prominently

This {roughly 600-rule, 800-function)
system was implemented using ART* Enterprise from
Brightware, Inc. All of the business knowledge which
Equifax Check Services has developed over the course of
its history about how to process checks resides here. The
KB fully drives the GUI component, waits for data from the
GUI, processes decisions or partial decisions, and then
informs the GUI of either of those decisions or directs the
GUI to display screens where the agent can enter additional
data.

The EASy Database Layer. EASy makes use of numerous
sources of data in determining consumer risk. This data
resides within various databases maintained by Equifax
Check Services. These operate or exist on numerous server
platforms, incPuding UNIX workstations and an IBM
Mainframe system. Some of these servers are locally-based
to the authorizations LAN, and some are remote.
Concurrent on-line remote connections supporting Check
Authorizations as well as other systems fully support all the
required bandwidth problems posed by EASY.

Integrating EASy’s Three Primary Components

Visual Basic (VB) integration with ART*Enterprise was
accomplished with functionality built into both the GUI and
the KB components. On the KB component, functionality
was designed to send either messages or requests to the
GUI, at different times, for different purposes. The Log
window shown in Figure 5 displays these flow-control
instructional messages.

On the GUI component, a rudimentary token parser was
built on top of a DDE server. Interestingly, the author of
the GUI component wanted to improve maintenance issues
and enhance communication across the DDE link. He
therefore designed the VB DDE-Server’s token parser to
process a limited grammar modeled after ART*Script, the
flexible scripting language within ART*Enterprise. Thus,
ART*Script could send DDE messages with any of a
specified set of ART*Script commands, and they would be
processed in the GUI component as though VB were an
extension of ART* Enterprise.’

In order to integrate the KB component with the
Database component, specialized Equifax-proprietary

’ ART*Enterprise does contain an integrated platform-independent
object-oriented GUI development tool. In mid-1993, Equifax was a beta-
tester of ART*Enterprise while they were moving forward with EASY’S
design. The EASy team needed to commit to a more functional and
extensible GUI for EASY’S Windows-based user platforms, where no
portability was required. Visual Basic offered an immediate non-beta
solution, and was readily integrated with ART*Enterprise.

1424 IAAI-96

network message-passing calls were utilized to send
information from the KB to multiple sources, and to request
processing or information from any of multiple databases or
external application processors. EASy’s developers
implemented this capability in Borland C8, using a
Windows Dynamically Linked Library (DEL), to which the
KB would send calls.

Processing Residing Outside the

EASy relies on some processing which occurs on external
application processors In these cases, it sends a custom
network request to return results for a particular job. Thus,
it could be said that some of the application’s knowledge
resides outside the knowledge base. For example, EASy
relies on external processing for the validation and analysis
of consumer identification.

Additionally, EASy relies on external applications
residing at various computers on the Check Services
authorization Local Area Network [See Figure 31. These
external applications provide additional input to EASy
regarding a variety of parameters that may affect the
authorization decision. These parameters generally involve
basic guidelines that are followed in an authorization
decision and are derived from a combination of Equifax
Check Services’ business rules and agreements with
merchants utilizing authorization services. These
parameters and processes are external to EASy primarily
because they are also used for the automatic electronic
authorization processing.

Various Network Data Sources

Figure 3: EASy LAN Topology

The types of information returned by these external
processes provides EASy with initial information and status
indicators for the current authorization transaction. These
status indicators are prioritized by EASy and used as a basis

for determining the order of processing of EASY’S rule
phases.

Design
Figure 4 illustrates the flow of the EASy KB process. The
overriding structure of the KB is a traditional blackboard
architecture, In order to organize the decision process the
multiple mechanisms involved in the decision process were
separated and implemented as independent sets of rules.
Traditionally, using ART*Enterprise, a grouped set of rules
is Binked using the ruleset mechanism. I-Iowever, the ruleset
mechanism was felt to be too restrictive for the EASy
application for several reasons. including:

1. Check Authorizations management felt that
custom processing options at a customer-specific level
was a necessary future enhancement for EASy in order
to deliver all proposed service enhancements; this was
always envisioned as utilizing rule-set capabilities. It
was determined that all possible custom rules for a
given client would not easily be classified into singular
areas of the knowledge base, and therefore should not
be implemented as rule parameters.
2. It became obvious that different actions could
occur within a given processing area, under the same
conditions, depending on what might have occurred in
the knowledge base beforehand. So the knowledge
base at a micro level was non-deterministic, but was
still deterministic at a macro level. Investigating
further, two classifications could be made for particular
rule-groups within the knowledge base. There were
those that could be “called” at the top level, and those
that could be “called” as functions of higher level
knowledge base areas. The sequencing of certain rule-
groups was critical to the decision process.

Based on the above reasons, rule groups became phases of
a transaction. A deterministic set of all paths through these
phases in any given transaction was mapped out, and
mechanisms were created to allow orderly flow of a
transaction through its phases. When rules and their
corresponding exceptions needed to be able to fire under
several different phases, their host phases could be enabled
concurrently with other phases.

Like rulesets, phases were implemented with a simple
control fact mechanism, but additional facts would be
asserted in parallel. These would indicate which phase led
to the current phase, how the current phase had been
entered, and if the current phase was completed, indicating
that control could be passed to another phase. This can not
be fully viewed as procedural, because multiple phases can
be concurrently enabled under known circumstances.

Case Studies 1425

Top-Level Phases c-
j / _...- ----- -- ---------.______ .----___-

Nondeterministic route through various phases of processing, determinir

Figure 4: Phase Topology and Blackboard Architecture

Within each phase of processing, the EASy KB
primarily uses forward-chaining, data-driven rules to
accomplish its decisions in a classic non-deterministic
fashion. However, as previously noted, one of the major
features of the EASy KB is its ability to drive a user-
interface and obtain additional data as needed, which is
usually a function of backward-chaining rules.

The backward-chaining mechanism was directly
implemented using a few simple rules that fired based on
facts asserted within the forward-chaining phases. These
facts were essentially goal facts which specified that certain
types of information should be transferred to the GUI, and
that the KB should wait for a response from the GUI.
These GUI rules have the lowest priority in the KB. The
KB behavior, in effect, is to process as much as it can on
the current information, assert GUI goal facts if a rule
determines that more information is needed, and then let the
forward-chaining phases essentially run out of rule
activations and allow the GUI rules to fire. The GUI then
asserts the obtained data back into the KB, which in turn

causes the forward-chaining, data-driven mechanism to
resume.

ases Mechanism and Topology

The following diagram illustrates the flow of phases and
their relationship to the KB Blackboard.

Please note that in the following rule examples, all
proprietary details have been left out.

A Phase Switch Initiation

(define-rule Switch-to-Phase-A
"Recognize the switch moment for phase A"
(phase current-phase & -A)
(transaction data one)
(transaction data two)
. . .

=>
(assert (switch-to phase A)

(completed-phase ?current-phase))

1426 IAAI-96

ln this generically defined rule, a firing would indicate that
Phase A must be scheduled. It watches working memory to
insure identify what phase is currently active. If the phase
it wants to schedule (in this case A) can follow the currently
active phase, and other conditions for phase entry are met,
them the request to switch to the new phase is submitted by
fact assertion The Blackboard phase transition rules then
retract the current phase gating fact [e.g. (phase
current-phase <phase-name>)‘$, and assert the
necessary activation facts for the new phase. In a phase
switch action, the current phase is considered completed
and the new phase is considered active.

A Blackboard Phase-Switch rule

A follow-up rule-firing to the previously described example
would be the standard Phase-Switch rule, shown
immediately above, which effects all switches at the
toplevel, regardless of their name/purpose. It is treated as
being a Blackboard rule due to its applicability at any time
throughout a transaction to any pair of phases.

Au Intra-Phase Concluding Rule
(define-rule Sub-Call-Phase-A

"Recognize the subroutine moment for A"
(phase current-phase & -A)
(phase-stack $?SEQ
EC: (not (member$ A $?SEQ))I ;prevent loop

(transaction data one)
(transaction data two)

. ” ”

=>
assert (sub-call phase A) 1

In this rule, a firing would indicate that EASy should
suspend the current phase for later re-activation, and enter
Phase A much like a procedural subroutine. A decision
from Phase A is required to assist the current phase with its
own decision making. Note that a fact relation (phase-
stack...) is maintained on the Blackboard, in order to
store an ordered list of the current phase sub-calls.
Localized facts used in the higher phases remain unused,
with no matches, until their appropriate phase scope is re-
activated.

Application Use and Payoff

Improvements in Agent Training
EASY has been fully deployed and in operation since
February of 1995. During off-peak season. the minimum
number of concurrent daytime users at all authorization
sites is approximately 100. Given that the system operates
24 hours a day, 7 days a week, the total number of
Authorizations Agent employees is higher.

Durmg the height of peak season. the total number of
transactions received by the on-line authorization system
has reached 800,000 per day. On a peak day, up to 300
concurrent EASy users have taken 45,000 calls per day,
where each call represents a transaction that has been
referred from the on-line authorization system. Since the
hohday shopping process ramps up substantially earlier
than Thanksgiving, it takes time to ramp up the number of
authorizations agents; training for peak used to be very
costly.

As much as six weeks of training for each employee,
using a methodology which required substantial individual
attention, has been reduced to 3 days of group classes and
supervision. As a result, EASy has reduced total training
time by about ninety per-cent per year. This dramatic
reduction in time, and therefore cost, has enabled EASy
supervisory staff to more easily fill any openings caused by
employee turnover during the peak season, and thereby
maintain high levels of service throughout peak.

A residual but significant benefit of reduced training
time is that agents can begin taking calls far earlier than
before. This requires less training schedule management
than before, because under EASY. extensive training
courses do not need to be staggered over long periods of
time. This directly and rapidly increases the productivity
and consistency of decision-making in the authorizations
department.

Enabling of Wider Service Offerings

Certainly an important future benefit is the enabling of
customer-specific service offerings. The flexibility of the
system provides for the incorporation of these specialized
single-customer rule-sets in the short term. Work toward
this area has already begun.

General System-Wide Benefits

Through the use of EASY, the time it takes to provide an
authorizations decision has been slightly reduced, with
significantly increased levels of confidence and reliability.
However, EASy provides much more functionality than
was available in the legacy system, and therefore some of

Case Studies 1427

the time savings of a KB implementation is given up to new
processing and increased intelligence. This directly reduces
the number of agents required during peak hours while
providing shorter wait-times.

To help agents reduce their call times, they now have a
color-coded timer bar running across the top of the Visual
Basic GLJP to indicate how much time has elapsed. At
specific timer intervals the color changes from Green,
through yellow and finally to Red. I[f a call that has
extended into the red timer bar has not been resolved after a
short while, the red timer bar begins flashing to provide
additional impetus to complete the call.

Because of the reliability of EASY’S standardized
decision making, Equifax no longer must expend resources
to transaction-process-monitor (TP Monitor) Check
Authorizations that get routed to the authorizations center.
Once the expert system has been validated by the experts
and distributed to all the EASy stations, it needs no on-line
monitoring. Should any issues arise, agents are able to
report any problems or anomalies through their supervisory
staff.

Application History

EASy Project History
EASy was designed and implemented to the point of
deployment within 18 months, and has been deployed and
fully operational since February of 1995.

EASy was implemented in stages, using an experimental
approach to identify the best method of storing information,
and the most optimal mechanisms for rule pattern-
matching. Purity of design was originally sacrificed in
order to provide proof of concept through rapid
prototyping. This was done in order to provide continuous
feedback as to the value and productivity of development
within the rule-based paradigm.

The rapid-prototyping approach was combined with a
modified spiral methodology, thereby providing for the
effective inclusion of new developers on the project at any
stage.

In practice, as EASY’S multiple components approached
completion, and testing/validation efforts rapidly increased,
a waterfall methodology took precedence in order to
validate new functionality and bug-fixes.

The following describes the major steps in EASY’S
development. The # of PC’s refers to the total install base
in a given time period, which is a superset of the total
number of concurrent users at any given moment.

1428 IAAI-96

8 July 1993 - July 1994: Primary development
effort Resulted in 8 PC’s running an early test version
periodically under structured testing against real calls.

8 5 developers totulp 3 at any one time.
0 Users.

0 J”l; 1994 - September 1994: Bug Fixing
combined with an upgrade from ART*Enterprise
R.O.Beta to ART*Enterprise l.O.General Availability.
Resulted tn 16 PC’s running a newer test release of
EASyS stilt under strict supervision but more frequent&y
than before.

e 5 developers total. 3 at any one time.
e O-I 6 Users, Alpha Release.

e October 1994 - December 1994: C&s were
being taken on a regular basis on 16 PC’s with u more
stable andfunctional verston. Development durtng this
phase included some performance tuning;. application
re-engineering, and addition of new functionality.

e 4 developers total, 3 at any one time.
e 16-50 Users, Beta Release

8 December 1994 - February 1995: A completion
and cleanup of re-engineering effort; result is a new
phased blackboard software architecture, and a new
EASY which is deployed on 80 PC’s locally, and 50
PC’s at other locations.

9 3 developers concurrently.
e 50-130 Users, Initial Full Roll-out.

e February 1995 - April 1995: A concentrated
period of enhancements and system stabilizing.
Resulted in an unprecedented level of confidence in
decision making. Peripheral results included the
elimination of multiple extraneous KB mechanisms
which had been built over time as patches, and not yet
removed as part of the new phased architecture.

0 2 developers concurrently.
9 Full user deployment based on seasonal
requirements.

@ April 1995 - September 1995: Virtually
eliminated reliance on legacy systems by adding to
EASy the capability to interface with a new PC-based
Authorizations System which provides suggestions for
how to process transactions.

0 2 developers concurrently.
9 Full user deployment bused on seasonal
requirements.

e September 1995 - November 1995: During this
period, developers and testers performed a ‘pre-
season shake-out” in order to hammer out any rare but
potential problems before the peak season arrived.

e 2 developers concurrently.
9 Full user deployment based on seasonal
requirements.

9 Naveanber 1995 - Present: Stable Operation,
minimal rrsk. Equijbx Management approval has been
obtaivaed to Knitlate an extenswe fearure-enhancemenr
program.

9 2 developers concurrently.
* Full user deployment based 00 seasonal
reqwu-ements.

Mow was EASy validated?
A paraileR testbed system, using the same hardware as the
production system but entirely different data paths, was
developed to mirror the same capabilities available in the
production system. Sample transactions could be run and
recorded against the testbed system without any impact to
production data or actual consumer transactions. The
experts consulted by the Knowledge Engineers were the
authorizations management and supervisory staff, which
comprised the primary resting and validating group.

As either new functionality or bug fixes were coded, an
update to a set of test PC’s would occur. The experts would
run real transactions which were known to be standard
and/or boundary cases against the testbed EASy. If the
system passed all the obvious tests designed to weed out
problems. unstructured regression testing would occur A
set of standard unrelated transactions would be run to
validate thaw existing functionality had not been broken.
Those transactions had not been formalized largely because
the experts could type in those transactions faster than
developers could write them down.

Should any problems have missed detection by the
experts. they were certainly found in production. Calls
would be routed for particular problems to an agent who
would complete the transaction manually, and a knowledge
engineer could sit at that agent’s PC, interrupt the
production transaction. and call up ART*Enterprrse’s
Command Interpreter to mvestigate the state of the
problem. ‘Usualliy the developer wouSd immediate]) be able

-

$.tatiwt t

I ,\

Number:
--1__11

260: 8000 ANY:APPROVAL-CONFIRMED f-610 N f-598 f-597 f-629 f-583 f-626 f-f
<== f-610 [TRANSACTION CODE 2120)
==> f-631 [PROCESSING APPROVAL-CONFIRM)
==> f-632 [POST-APPROVAL-CONFIRM CODE 2120)
==> f-633 [APPROVE CONFIRM]
==> f-634 (GWTASK -1 ASK-QUESTIONS “16384”]
FIRE 261: 5000 GUI:REMOVE-SENT-TO-HOST-FLAG f-605 N
<== f-605 [GUI:FlAG SENT-TO-HOST]
FIRE 262: 0 TEMP:CREATE-TRANSACTION f-583 f-598 f-564 f-565 f-566
FIRE 263: 0 TEMPXREATE-PRIOR-TRANSACTION f-626 f-628 Schema PERSON-ENT
FIRE 264: 1 TEMP:COPY-CONSUMERS-DOB f-596 Schema PERSON-ENTITY-8RZUSE
FIRE 265: 0 TEMP:CREATE-DRIVERS-LICENSE Schema PERSON-ENTITY-8RZUSB4

-1000 GULENUMERATE-TASK f-634
fGUl:TASK -1 ASK-QUESTIONS “16384”1

QUE?TIONS “16384”]

[!JWOl/ll 09:26:52] <-- DDE Execute: [eual(dde:funcall check-inquiry “1021122005”
[9fi/Bl/ll 09:26:55] --> DDE Execute: (CISK-QUEST I ONS “16384”)

[96/01/11 09:26:55] --> DDE Execute: (ENflBLE-INPUT)
[96/01/11 09:27:03] <-- DDE Execute: [eual(dde:funcall ualidation-answers
[96/01/11 09:27:07] --> DDE Execute: (SET-TRfiNSfbCT I ON “2156 00-l 00000 GfI
[96/W/11 09:27:08] --> DDE Execute: (ENABLE-INPUT)

Figure 5: KB Development Environment

Case Studies 1429

to tell what went wrong in the knowledge base or GUI. In the opinions of the authors of this paper, three
However, the transaction would always be completed such elements contributed to the rapid completion and success of
that the merchant received an appropriate decision, even if
this required supervisory intervention.

ART* Enterprise provides a highly customizable
development environment. To simplify the development
and maintenance of EASY, a specialized development
environment was created by unlinking the GUI and other
unused ART*Enterprise tools, and adding functions and
browsers that made rapid development and debugging of
EASy code faster and easier. Figure 5 shows an example of
a debugging session using a custom DDE message log
window, and an enhanced Rule tracing facility.

With the modified bare KB studio, developers rapidly
developed command-line functionality and skills for
debugging EASy that allowed for rapid problem isolation.

Coupled with the visually minimal but significantly
extended ART* Enterprise environment, a special DDE
Message log-window provided through the EASy GUI,
enabled only for developers, makes for a very ideal
problem-solving environment in the EASy application.

The EASy Deployment Process

It took six months to deploy the EASy system on all agents’
stations as a replacement for their Tandem screens, from
July, 1994 to January 1995.

To elaborate on the itemized timeline shown 2 sections
prior, at first, 8 EASy PC’s were brought up initially for
testing purposes. Shortly after 8 seemed stable, 8 more
were installed, but these were still primarily for structured
periods of monitored testing. After 2 months of testing and
debugging, EASy had stabilized to the point of leaving
those 16 stations up and running continuously. By peak
time (early-mid November, 1994) the number of EASy
PC’s had grown to about 50 workstations.

A policy had been issued by Equifax management that
no new EASy releases could be installed during the peak
season. This offered a prime opportunity for the developers
to begin thinking about how to re-engineer the knowledge
base. Equifax needed to be convinced that the investment
in that activity would have clear payoffs. The knowledge
engineers had found that they had reached a point of
diminishing returns on working on bug-fixes. Thus
spending time on debugging seemed to be the more
questionable investment, as opposed to imposing a new data
flow architecture on existing mechanisms.

Based on these and other reasons, Equifax gave the go
ahead to complete the new knowledge-base architecture.

Before peak season was over (last week in December
1994), that re-engineering had begun, and by the middle of
January, a re-engineered EASy was fully deployed across
all the authorizations agents.

EASy’s modification.
0 The use of a knowledge-based paradigm had
created within EASy the cellular groupings of data
processing that automatically lent themselves to
isolated rule-firing chains. Mechanisms that
interoperated between these cells were easy to
distinguish, clean up, and structure, such as control
facts, absence of control facts. objects. and various
types of consumer and merchant data.
0 The use of ART*Enterprise as the Expert System
development tool, which provided the ability to extend
development functionality, eliminate unrelated tools
from the Studio, and provide run-time debugging
capability. ART* Enterprise/Windows allowed for
integration of C code both directly and through DLL’s,
as well as setting up and maintaining DDE
communication with the GUI component of the
application.
0 The creation of a team of knowledge engineers,
GUI programmers, expert users and committed
managers, all of whom provided Equifax with an
unsurpassed level of aggregate knowledge, creativity,
skill, and commitment to improving quality and
supporting new technologies.

Application Maintenance

How EASy is Maintained and Updated
EASy is a living system which must comply with new and
updated legal requirements affecting financial risk and
authorizations systems. As a result, the system is never
considered fully completed, and must be updated regularly.
Knowledge Engineers are on staff at Equifax to update the
EASy knowledge base, and they divide their time amongst
updates, fixing bugs, adding functionality, and performing
unit testing.

To achieve uniformity with respect to new system
releases, Equifax’s Quality Assurance manager maintains
revision control and system update distribution. In order to
release a new version, the new release must pass a variable
suite of basic transactions, and be fully tested with
boundary conditions against any bugs found through
monitoring particular transactions against the previous
release. Regression testing was not formalized due to the
variable growth of the system over time under a rapid
prototyping approach.

No hands-on distribution is necessary. To release a new
version that has passed all compilation and testing steps, the
QA manager sends the new software to a location on the
LAN, and informs the supervisory staff for Authorizations

1430 IAAI-96

that a specaal utility program for installing new versions of
EASy can be run on each EASy station. This utility
reconciles the current versions of all EASy applications and
files with those found on the locaP PC.

The entire update process can be accomplished in less
than an hour, assuming no errors were found during
compiling and testing.

Who maintains EASy and how often?
Two ful%-time programmers/knowledge engineers maintain
the system currently, alongside efforts to add/modify
functionality. The users of the system are responsible for
identifying any problems with the system, and their
supervisors are responsible for determining what constitutes
a user error vs. an actual system problem. Code
modifications are made by knowledge engineers, tested
against a testbed system, and agent supervisors then test the
system in order to approve the code modifications prior to
installation in the production environment.

Modifications to the system now occur once every 2
weeks, and these now encompass almost entirely new
pieces of functionality, as opposed to bug-fixes.

Does EASy know more over time?

EASy must comply with changing state/local laws and
Federal industry regulations, and so must be modified
periodically to address such legal and regulatory concerns.
Further, EASy has enabled the addition of new business
knowledge that would have been difficult or impossible to
implement with the legacy mainframe/Tandem based
solution.

Does EASY’S design ease/enable modification?

Several issues contribute to EASy being easily modifiable,
including the choice of Al technology in general, the choice
of ART*Enterprise as the tool to provide that technology,
and the choice of a phased blackboard architecture.

It was a central deliverable of the application to be able
to change over time. The extent to which the system could
be modified was proven during the phased architecture re-
engineering process. In few other paradigms than a rule-
based approach can you take a complete existing system
with little structure and impose a clear structure in just over
a month, automatically eliminating a significant number of
bugs, without causing additional ones. In a procedural
paradigm a rewrite would likely be required for the same
level of modifications.

Future Plans
The current phasing architecture has provided EASy with a
good deal of flexibility in dealing with the process of
authorization decision making. The current phasing

methodology is based on an underlying business model
which could be more flexible in terms of what phases can
fire and in what order. A fully non-deterministic approach
would improve the ability to allow more variable
authorization processing. To accommodate these
requirements, the authorization business model is being
sub-divided into its component processes When this has
been completed, an improved methodology for selecting
custom authorization processing may be possible.

As might be imagined, this presents a variety of
challenges for the current phase-based blackboard
architecture. Although phases may be clearly considered as
components, in hindsight, there are alternative ways to view
a component-based authorizations decision which may be
more applicable. For example, a specific customer may
want components A, B, and D to be applied to their
authorizations, skipping component C. This could present
problems for both components B and D if component B,
when viewed as a phase, wants to “naturally” transition to a
phase (component) C. Also, component (phase) D may
naturally require information normally supplied by
component (phase) C. In the above example, a component
may be required to process a transaction with incomplete
information. A phasing architecture in this case may be
required to schedule phases in a partially deterministic
fashion based on customer requirements.

Work on these modifications to the EASy phase-based
blackboard architecture has already begun. Equifax is re-
examining the current business model to determine the
extent to which partial information can be effectively
applied in a component-based system, in order to reach a
very clear (i.e. not partial) approval decision. As a result,
the granularity of the components is also under review.

Summary

Through the Expert Authorizations System, Equifax Check
Services has improved the quality of their existing services,
and significantly enhanced their current and future services
offerings. All of these benefits are now provided at lower
cost to Equifax than the previous Tandem-based system
could have allowed.

Since Equifax has shown EASy to numerous other
departments, Expert System technology has received a
high-level of buy-in and visibility. Other internal groups
have begun exploring how to incorporate innovative AI
approaches to improve their own productivity and quality.

In addition, through improved training quality, reduced
training time and costs, and the user-friendly EASy
environment, the authorizations department can now
provide improvements in customer satisfaction.

Case Studies 1431

Acknowledgments

The authors of this document would like to extend their
hearty thanks to the following individuals who have been
involved with EASY, in varying degrees, over the course of
the project:

From Equzjkx: Greg Mallare, Margaret Fortson, Bill
Overbay, Tim Prosser, Mike Hernandez, Cathy Reed,
Lynda Patry, John Starch, and many others who have
provided indirect but equally important assistance.

From Brightware: Bill Richer, Jeff Eivesay, Kate
Murphy, Greg Hadaller, Raj Rao

Special thanks go from Brightware to Greg Mallare and
Margaret Fortson of Equifax, who were committed beta-
testers and users of ART*Errterprise/Windows from the
earliest releases onward.

Trademark Acknowledgments

ART*Enterprise is a registered trademark of
Brightware, Inc.

Microsoft is a registered trademark of Microsoft
Corporation.

Microsoft Windows, Microsoft Access, and Microsoft
Visual Basic are trademarks of Microsoft Corporation.

References

Dzierzanowski, J., Chrisman, K., MacKinnon, G., Klahr, P.,
1989. The Authorizer’s Assistant, A Knowledge-Based
Credit Authorization System for American Express.
Proceedings of the 1989 Conference on Innovative
Applications of ArtiJicial Intelligence, AAAI Press,
Stanford. CA.

1432 IAAI-96

