
Intelligent Control of Life Support Systems for Space Habitats

Debra Schreckenghost, Daniel Ryan, Carroll Thronesbery, Peter Bonasso, Daniel Poirot

Texas Robotics and Automation Center
NASA Johnson Space Center/ER

Houston, TX 77058
d.schreckenghost@jsc.nasa.gov

Abstract
The Interchamber Monitoring and Control (IMC) system
is semi-autonomous, intelligent software that controls life
support systems designed for recycling air in remote space
habitats. The IMC system was developed using the 3T
autonomous control architecture. This architecture
integrates traditional control with reactive task sequencing
and deliberative planning technology. The IMC system
was used during the Phase III test of NASA's Lunar/Mars
Life Support Test Program (LMLSTP). For this test, four
crew members lived in a closed habitat for 91 days. The
objective of using an intelligent control system was to
reduce the need for crew involvement in nominal control
of life support by automating control operations. Prior to
this test, manually intensive traditional process control
software had been used to control LMLSTP life support
systems. It is impractical and inefficient for crew at a
remote site to continuously monitor day-to-day operation
of life support systems. Our intelligent control software
autonomously handles nominal and expected anomalous
situations. The crew only intervenes in exceptional or
novel situations. During the Phase III test we
demonstrated the viability of using intelligent control for
such automation.

Description of Life Support Tasks

The Interchamber Monitoring and Control (IMC) system
is semi-autonomous, intelligent software that controls life
support systems designed for regenerating the air in
remote space habitats. This software was used during the
Phase III test of NASA's Lunar/Mars Life Support Test
Program (LMLSTP). For this test, four crew members
lived in a closed habitat for 91 days. Wheat for air
recycling and food was grown in a separate closed
chamber. The wheat was planted and harvested in stages,
separated by 16-24 days. At any given time, there were
four different stages in the plant chamber. This crop
could provide enough oxygen (O2) for one of the four
crew members. Crew solid waste was incinerated every
four days; effluent from this incineration contained carbon
dioxide (CO2) that the plants recycled into O2. Other

Copyright © 1998, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

sources of CO2 included gas removed from the air in the
crew chamber and a pressurized bottle.

The IMC system managed the transfer of O2 and CO2
(called product gases) among gas reservoirs to ensure
crew and crop health and to recycle gases produced by
waste incineration (figure 1). These reservoirs included a
crew habitat, a plant chamber, an airlock, and a number of
pressurized tanks. The IMC system performed the
following tasks autonomously during the 91 day test:

• Controlled the concentration of O2 in the plant
chamber to maintain a setpoint

• Controlled the injection of CO2 into the plant chamber
to maintain a setpoint needed for plant growth

• Managed the storage and transfer of O2 from the plant
chamber to the crew habitat for use by the crew

• Managed the storage and transfer of O2 from the plant
chamber for use during solid waste incineration

• Selected and configured for use the best available
source of CO2 for the plants

The objective of building this intelligent control system
was to reduce the need for human involvement in nominal
control of life support systems by automating control

Incinerator

Airlock Plant Chamber

 CO2
Bottle

 O2
Tank

Crew Chamber

 CO2
 Tank

Oxygen Carbon Dioxide
Legend

Accumulator

Figure 1. Product Gas Transfer for Phase III Test

From: IAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

operations. Prior to this test, traditional process control
software had been used to control life support systems
developed for LMLSTP. Operation of this software is
manually intensive, requiring vigilance monitoring and
frequent manual adjustment of control parameters. It is
impractical and inefficient for crew at a remote space site
to continuously monitor day-to-day operation of life
support systems. Our intelligent control software
autonomously handles nominal and expected anomalous
situations. The crew only intervenes in exceptional
situations. During the Phase III test we demonstrated the
viability of using intelligent control for such automation.

Description of Control Application

The basis of the IMC system is the three tier (3T)
autonomous agent control architecture (Bonasso, et.
al.,1997a). 3T integrates traditional control with reactive
task sequencing and deliberative planning technology.
The lowest tier is the skill manager, which interfaces with
the life support hardware controllers and sensors. The
middle tier is the sequencer, which dynamically selects
groups of skills to effect standard operating procedures
and alarm handling. The top tier is the planner, which
predicts product gas needs and availability and generates
a plan based on these predictions that is implemented by
the sequencer. All tiers of the 3T architecture
continuously monitor data from sensors and reactively
alter control at each level based on changes in the
environment (figure 2).

Each tier of 3T corresponds to a program. In the lowest
tier, each skill manager is a C program. At the middle
tier, the sequencer is the Reactive Action Package System
(RAPS) (Firby, 1989). At the top tier, the planner is the
Adversarial Planner (AP) (Elsaesser and MacMillan,
1991). Both the planner and sequencer are developed in
LISP and are executed in separate LISP threads. All
processes execute on a Sun Unix workstation.

Hierarchical Distributed Control
3T utilizes a different knowledge representation at each
tier. The tiers usually are distributed as separate
processes on different platforms. Thus, in addition to the
usual communication between skill managers and the
controlled system’s effectors and sensors, 3T also defines
protocols and a methodology for communication between
the layers of the architecture. The sequencer tier acts as
the locus of mediation between multiple skill manager
processes, user interface processes, and the planning tier
by employing a communication channel abstraction for
integrating the various interprocess communication
interactions.

The communication channel abstraction is
implemented in object-oriented fashion with
specialization for different types of channels possible on
an abstract link class. These link specializations depend
on the dimension of description including: (1) structure
of the data being communicated (e.g., per-byte encoding,
simple strings, nested structures), (2) lower level
transmission mechanism (e.g., sockets, RPC, or CMU's
IPC package), and (3) communications protocol shared
with the connecting process (e.g., monitoring and control
process such as a user interface). In addition to
supporting the fundamental job of sending and receiving
messages, every comm link responds to a standard set of
messages for creating, destroying, starting, stopping,
pausing, resuming, resetting, and clearing. Thus, the
design for distributed communications makes possible
dynamic and incremental reconfiguration of the
architecture without affecting continuous operation of
active processes.

The IMC system was distributed over four platforms:

• Sun Ultra Sparc running sequencer & planner (Lisp)
and Tcl/Tk user interface with Solaris operating system

• Sun Sparc 5 running eight skill managers written in C
and running under SunOS

• Pentium class PC running the user interface in the crew
chamber under Windows 95

• Pentium class PC running one of the data servers
described below under Windows NT

Beginning at 3T's lowest level with the skill interfaces to
the existing life support hardware and software, there are
3 unique and custom interfaces to life support systems:

• Bi-directional data exchange with the data acquisition
system for the crew chamber. IMC did not directly
control crew chamber air regeneration hardware but it

 Planner
 (LISP)

 Sequencer
 (LISP)

 Skills
 (C)

 GUI
Tcl/Tk
Clim

 Unix
Workstation

 Interface Process

 Incin Data Acq
 (LabView)

HP Unix

 RPC Server (C)

Win95Workstation

NT Workstation

Plant Growth Annex Crew Control Room

 Atmosphere Cntrl

Plant Chamber

 Incinerator

Plant Data Acq (Basic)

 ARS Data Acq
 (Cimplicity)

3T

NT Workstation

Crew Habitat

 Air Revitalization
 System (ARS)

Figure 2. IMC Control Architecture

influenced this control by providing data about product
gas transfer to the air regeneration control software.

• Data and command interface with the data acquisition
system for the plant chamber

• Data monitoring interface with the control system for
the solid waste incinerator

We used 8 skill managers to interface to these 3 systems.
In turn the sequencer interacts with each skill manager

using an instantiation of a skill manager link class. These
links utilize sockets for low-level transmission duties.
The communications between sequencer and skill
manager links are based on a protocol where the
sequencer activates and deactivates control skills leading
to contexts in which event occurrences are monitored.
The sequencer may query the skill managers for local
state information in addition to reconfiguring and
resetting each skill manager individually. In the IMC
application , 3T was operated in a number of skill
configurations, depending upon ongoing operations. A
skill manager was only executed when activities using its
skills were in progress (e.g., incinerator skill manager was
executed only during an incineration).

The interaction between planner and sequencer
proceeds differently. Instead of the planner controlling the
sequencer similar to the way the sequencer controls skill
managers, the planner suggests modes of operation for the
sequencer. In the IMC application the mechanics of this
interaction were supported by having the planner and
sequencer run in the same Lisp process but in different
threads. The planner could then directly read from and
write to sequencer memory. We describe this integration
in more detail in the section on the uses of AI technology.

Interaction with the User
The 3T architecture was developed originally for control
of autonomous systems. Practical demands of the IMC
required user-initiated intervention in autonomous
control. The integration of user initiative into the
autonomous control architecture supports reactive manual
control and reconfiguration in response to novel
situations. Situations where such manual interaction was
needed include:

• Uncontrollable Events and Unanticipated Operations:
provide manual capability for responding to events the
autonomous software cannot control (e.g., failure of
external data source, such as rebooting data acquisition)

• Unavailable Instrumentation: accommodate events
that could not be instrumented sufficiently to enable
autonomous control (e.g., manual sensor calibration)

• Safety: permit a user to override the autonomous
system for safety reasons (e.g. erroneous sensor
measurement results in unsafe action by the
autonomous system)

• User Preferred Tactics: permit a user to select which
redundant sensor should be used for control or to
specify control parameters (e.g., control setpoints)

Our application design has the following characteristics
that enable such manual intervention:

• Explicit specification of Level of Autonomy (LOA). We
parameterized the LOA for both O2 and CO2 control.
The LOA specifies whether the autonomous system or
the user isssues control commands (Bonasso, et al,
1997b). The LOA is specified at startup for each type
of gas and can be changed during system execution.

• Separation of monitoring and control. The sequencer
both changes controller states to handle nominal and
expected anomalous situation (control) and detects
caution and warning (C&W) situations (monitoring).
Our sequencer design separates the modules performing
monitoring from those performing control. This
approach permits operating the system with only
monitoring activated as well as with full monitoring
and control. When LOA is manual, no changes to
controllers are made by the autonomous system but the
user is provided with C&W information useful in
maintaining situation awareness while performing tasks
manually. We also modularized separable control
segments (O2 and CO2 control). This permits manual
intervention in the control of one type of gas while
remaining autonomous on the other type of gas.

• Manual activation of each hardware controller. For
the 3T system, this corresponds to providing for user
activation of skills to control life support hardware.
We implemented this through the sequencing tier,
which guarantees that the control system maintains
accurate values for the current state of all manually
controlled hardware (Kortenkamp, et al., 1997).

• User-specified control preferences. The product gas
transfer system includes redundant and alternative
sensors and controllers. IMC supports user in
specifying preferred instrumentation when multiple are
available. These preferences are used by the sequencer
as context for selecting methods. Only data from a
preferred sensor is monitored when determining control
changes. Specifying a preferred controller reconfigures
the gas flow network through the selected controller if
possible.

• Interlocks permitting manual override of autonomy.
For product gas transfer, interlocks are implemented to
inhibit O2 concentration and CO2 injection in the plant
growth chamber. These interlocks were needed to
accommodate plant lighting profiles and to ensure
human safety. Since these interlocks can be activated
by either the user or the autonomous system, we
provide a priority scheme where manually activated
interlocks override autonomously activated interlocks.

• Manual reconfiguration for hardware maintenance. It
was important to provide manual capability to take
sensors out of the control loop (offline) temporarily
with minimal effect on the control of product gas
transfer. Every 2 days the gas analyzers needed to be
calibrated. Occasionally a broken sensor needed to be

repaired. The control tactics to take a sensor offline
were implemented at the sequencing tier. When
multiple sensors were available, we switched to a
redundant sensor when one was offline. If all sensors
were offline, we stopped all active control relying on
that sensor until it became available. We also alerted
the user.

• Parameterized control setpoints and C&W thresholds.
The values of control setpoints and C&W thresholds
could be changed during execution by either a user or
the planning tier (e.g., planner lowered the O2 setpoint
to accelerate CO2 consumption by the plants). These
changes were interleaved with the execution of
autonomous control to guarantee control was not
executed with inconsistent settings.

This manual intervention capability in combination with
modularity in control segments provides the flexibility to
respond to situations that could not have been anticipated.
For example, it was decided well after the Phase III test
had started that we should change the control scheme for
raising CO2 levels in the plant chamber after a crop
harvest. Since there were few harvests remaining when
this decision was made, we avoided major changes to the
autonomous software by setting LOA manual for CO2 and
manually activating the preferred method of CO2
injection until chamber concentrations were nominal.
Throughout this operation, O2 control was autonomous.

The user interface supports supervisory monitoring as
well as manual intervention. It provides test engineers
with a summary of the current control situation. It can be
scanned quickly for critical parameters, configurations,
and anomalies. It logs control actions taken and alarms
detected. Such a summary is useful when the control
system is untended during round-the-clock operations.
This user interface was developed using Tcl/Tk.

Uses of AI Technology

The IMC system combines a number of AI technologies
with traditional control. The basis of the control system is
an autonomous agent architecture. This architecture
includes a deliberative planner, a reactive sequencer, and
a set of tight sense/act processes that interface to control
instrumentation. We use planning technology to predict
gas needs and to specify activities that change control
strategy to meet those needs. We use reactive task
sequencing to automate standard operating procedures and
alarm handling. The sequencer selects control tactics
from a set of alternative approaches. This selection is
based on matching a sensor-based assessment of situation
to the method best suited for that situation. The
sequencer also alters control tactics in response to
anomalies in the environment or the control
instrumentation.

This test was a 91 day experiment, so equipment and
control schemes were changed and new data values
obtained after analysis of previous activities. Thus, a 91

day plan would become infeasible after a few weeks. We
made use of the fact that there are regular, repeated
activities in the plan to partition the planning operators.
Solid waste needed to be incinerated every 4 days and
some portion of the plants were harvested and replanted
every 16, 20 or 24 days. Lower level planning operators
were developed to generate various types of four day
plans (e.g., with planting and harvesting, with changes in
setpoints), and higher level operators could compose these
into longer plans based on plant crop rotations. Thus,
plans of varying length could be generated, and new plans
could be made at any time. This replanning was possible
without stopping the sequencer since the planner draws its
state conditions from the current sequencer memory.

To specify control strategy, the planner’s primitive
operators invoke top level sequences which change values
in the sequencer memory that represent the desired
strategy. The sequencer reacts to effect this control
strategy as best as it can, given the current situation in the
environment. This is an example of using plans as guides
rather than as blueprints for execution (Agre and
Chapman, 1990). This approach allows the sequencer to
select an alternative to the preferred strategy, should there
be a problem with implementing that strategy. For
example, the planner may specify that the strategy for
oxygen control is to accumulate O2 for an impending
incineration. If the pressure in the O2 accumulator gets
dangerously high because of an unexpectedly high output
from the plants, the sequencer will ignore the preferred
strategy to store O2 and will transfer gas out until the
pressure is at a safe level. This approach also supports
our phased integration approach described later by
permitting the planning tier to be replaced by manual
intervention.

Integration with User Interface
An important modification made to the 3T architecture
was developing a principled approach for user-initiated
interaction with the autonomous control software. We
modified the sequencer for bi-directional communication
with a user interface process and developed user interface
capability that aided the user in communicating with the
sequencer. The IMC supports a variety of modalities for
the user to interact with the control system, including:

• User or the control system volunteers information

• User responds to information requests by the control
system (e.g., the planner predicts a time region for
incineration, but requests the user to confirm start time)

• User executes a function in the sequencer
There were several sequencer extensions required for
human interaction. First, the approach whereby the
sequencer monitors each skill manager for context-
dependent events was generalized to allow for events
received by monitoring and control links, such as a user
interface. This enhancement included the ability for the
sequencer to make arbitrary queries of monitoring and
control links without blocking for answers. Second, a

dynamically configurable facility for process and data
subscription was created so that each user interface could
subscribe to ongoing operational changes reflected in the
sequencer memory or data store. Finally, a
communication protocol message semantics for the
monitoring and control links was defined to convey these
new type of messages.

The graphical user interface (GUI) was an independent
process which communicated with the control software
by:

• Data Updates received periodically on a change-only
basis. The GUI displayed this information on a
continual basis, regardless of the level of autonomy.

• Messages from the sequencer containing information
about caution and warning, observed states, and control
states. The GUI logged this information in a file and
optionally displayed messages as they were received.

• Sequencer Function Execution Requests from the GUI.
User-initiated functions altered sequencer memory to
accomplish changes in control strategy (e.g., change
LOA) and tactics (e.g., change to a different
controller).

• Queries from the sequencer to the user to obtain data
not available from instrumentation. Queries could
arrive in any order and could be answered in any order.

• Hardware Control Commands from the GUI. These
commands were executed through the sequencer to
avoid conflict with automatic controls by the
sequencer.

Integration with Traditional Control Software
For the Phase III test, the IMC system was integrated with
two legacy control systems (control for the plant chamber
and for the crew habitat) and one new control system (for
the incinerator). Intelligent control is integrated with these
traditional control systems at the skill tier of 3T. Skills
interface with the continuous control instrumentation,
providing data which the sequencer translates into
symbolic state information. The skills developed for the
IMC ranged from simple binary switches to sophisticated
adaptive controllers (e.g., feed forward & PID
controllers).

IMC was not allowed to issue control commands
through two of these legacy systems (crew habitat and
solid waste incinerator). We integrated by monitoring
data from these systems and making sure product gas
transfer control actions that affected them were consistent
with their control objectives and caused no harm. For
example, IMC stopped providing oxygen to the crew
habitat when O2 concentrations in that chamber were
above normal. The O2 alert levels that we used to stop
injection were well below the alert levels used by the
legacy system so we would not reverse or impede its
control actions to remedy the situation.

For the integration with the plant chamber control, no
software could be changed in the legacy system. We

were required to make all control inputs as if they were
inputs from the user interface to the legacy system. This
system only permitted one user input every data cycle
(~15 seconds). Thus, we were unable to take advantage
of parallelism inherent in the control problem because of
the integration approach with the legacy system.

In all of these cases, however, our ability to devise
strategies that integrated data transfer among these
heterogeneous systems with minimal change to legacy
software was pivotal in gaining the customer’s
cooperation and support. Another confidence-building
integration strategy we implemented was the ability to
hand over control to the legacy system in case of a serious
alarm. During the test, we never exercised this capability
because we never saw a serious alarm (i.e., IMC always
recovered from anomalies before hand-over conditions
occurred).

Application Development and Operation

The IMC system was developed at a 2 staff level in
collaboration with a product gas engineer using an
iterative development methodology. To demonstrate
feasibility, we developed a subset of the control system
that maintained gas concentrations for wheat grown in the
plant chamber. This 5-month development included
testing in the lab with an emulation of life support
hardware and recorded data. Then we integrated this
prototype with the life support hardware for the plant
chamber and tested it during a wheat growth test (3.5
months). During this test, we demonstrated 2 modes of
operation: monitoring only, and monitoring and control.

Once we had demonstrated feasibility, we began
developing the operational system. The operational design
was based on the feasibility prototype, with significant
changes to address what we learned in the wheat test and
to add full product gas transfer capability. Developing the
operational system took 2 months. As with the feasibility
prototype, we tested the operational system in the lab
before integrating with the life support hardware.
Integration took 2 months, and extended past the start of
test because of delays in the installation of life support
hardware, and network loading problems that required
changing network hardware. Once these issues were
resolved, the IMC operated round-the-clock for 73 days.

Phased Integration of Control
We integrated the 3T application in phases, starting with
the lowest tier and moving to the top tier. As each tier
was integrated, we provided a usable (though incomplete)
capability. When the skills were integrated, we could
manually control the life support system using a
computer. When the sequencer was integrated, control
tactics were automated but manual intervention was
required for changes in control strategy. The full system
capability was available only after the planner was
integrated.

Product gas transfer was a new life support system with
hardware installed just prior to using it in the Phase III
test. The installation and checkout of this hardware did
not always occur as planned, resulting in subsets of
hardware becoming available for integration with the
control software in an unpredictable order. The customer
desired that we control "as much as possible as soon as
possible". To achieve this objective, we modularized the
control system into separable control segments, and
provided the ability to control each segment either
manually or autonomously. O2 control was a separate
module from CO2 control. Since the CO2 gas transfer
hardware was installed much sooner than the O2 gas
transfer hardware, we were able to complete integration
with CO2 control software and begin autonomous
operation while still performing manual integration
testing on O2 gas transfer hardware.

For phased integration of new capability into an
operational system, the developer must be able to meet
operational objectives and test new software at the same
time. Software errors discovered while integrating new
capability would bring down the operational system
occasionally. It was important to provide a computer
capability to monitor life support instrumentation for
assessing system state and to take manual control actions
for maintaining safety while the autonomous system was
down. For the Phase III test, this capability was
implemented below the skill tier. For future systems, it
would be useful to include this capability at the skill tier.

Application Use
This application was developed to support the Phase III
test of the LMLSTP. This test started on September 19,
1997. The control software was operational on October 6.
It successfully managed the transfer of product gases
round-the-clock until the end of test on December 19.
Except when we were integrating new capability or
responding to an anomaly, the system typically ran
without human supervision or intervention. Three times a
week a user would take gas analyzers offline for
calibration. When waste was incinerated (every 4 days
during portions of the test), we manually reconfigured
skill interfaces to receive data from the incinerator control
software. We also manually transferred data files logged
by the IMC to a centralized computer 3 times a week.

The limited human role in operating the IMC contrasts
significantly with the operation of the more traditional
process control software used with the other life support
systems developed for LMLSTP. Operation of other
software was manually intensive, requiring vigilance
monitoring and frequent manual adjustment of control
parameters. One person was on shift for 16 hours daily to
perform these tasks. Operating the IMC typically
required 6-8 hours weekly of shift work, with an
additional 6 hours for each incineration and 3 hours for
each harvest.

An interesting aspect of the IMC application was the
use of Lisp in a long duration operation. Lisp's use of

garbage collection has been mentioned as a liability for its
use in “real world” applications. We did not find this to
be the case. We were able for the most part to perform
garbage collection during times that did not affect system
performance. Only when the Lisp process size increased
significantly (above 30Mb) due to an as yet undiagnosed
memory leak did garbage collection time become a factor.

Another benefit of using Lisp was the ease with which
changes could be incorporated into the sequencer while
executing. Using the Emacs to Franz Allegro Lisp
interface, several Emacs Lisp buffers were used to
interact with the running sequencer while receiving low-
level status information from the Lisp process. This status
information proved useful in determining possible sources
of communications problems between the sequencer and
the various interacting processes. One challenge we
overcame was limiting the maximum size of the status
buffer (i.e., ordinarily Emacs buffers retain a complete
output history), and yet maintaining continuous output of
status information to the buffer. An automated solution
was implemented by which Emacs periodically checks the
buffer size and deletes the oldest status information when
the buffer history length reaches a specified size.

As described elsewhere, the IMC was integrated with a
heterogeneous set of legacy software processes operating
on different platforms. This diverse set of data
connections resulted in a number of communications-
related problems during operations, including loss of
communication due to high bandwidth network traffic,
failure to terminate another node on our network, and
rebooting of legacy systems. Since most of these
problems resulted in suspension or termination of
communications among our processes, we could have
recovered automatically from many of these problems if
we had added software to monitor the health of process
communication.

Future Work

The successful demonstration of autonomous control
using AI technology during the Phase III test resulted in
the selection of this architecture for controlling life
support systems being developed for the Space Station.
We are currently developing 3T control software for use
in a 1999 ground-based demonstration of life support
systems.

Acknowledgements. This work was funded by the
National Aeronautics and Space Administration. We
would like to thank M.Edeen/NASA for domain
knowledge, R. Burridge/ Texas Robotics and Automation
Center for CO2 injection skills, and D. Overland/NASA
for an interface to a legacy control system.

References

Agre, P.E., and Chapman, D. 1990. What are Plans for?
Journal of Robotics and Autonomous Systems. 6: 17-34.

Bonasso, P., Firby, J., Gat, E., Kortenkamp, D., Miller,
D, and Slack, M. 1997a. Experiences with an Architecture
for Intelligent, Reactive Agents. Journal of Experimental
Theory of Artificial Intelligence. 9: 237-256.

Bonasso, P., Kortenkamp, D., and Whitney, T. 1997b.
Using a Robot Control Architecture to Automate Shuttle
Procedures. In Proceedings of 9th Conference on
Innovative Applications of Artificial Intelligence, 949-956
Providence, R.I.

Elsaesser, C., & MacMillan, T.R. 1991. Representation
and Algorithms for Multiagent Adversarial Planning.
Technical Report MTR-91W000207. MITRE, Wash. D.C.

Firby, J. 1989. Adaptive Execution in Complex
Dynamic Domains. Ph.D. diss., Yale University.

Kortenkamp, D., Bonasso, P., Ryan, D,
Schreckenghost, D. 1997. Traded Control with
Autonomous Robots as Mixed Initiative Interaction.
AAAI-97 Spring Symposium Workshop on Mixed Initiative
Interaction.

