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Abstract 

LifeCode™ (patent pending) is a Natural Language 
Processing and Expert System that extracts demographic 
and clinical information from free-text clinical records.  The 
initial application of LifeCode is for the Emergency 
Medicine clinical specialty.  An application for Diagnostic 
Radiology is now in beta-test.  A pilot program for 
performing data mining on acute care clinical records has 
been completed.  The LifeCode NLP engine uses a large 
number of specialist readers whose particular outputs are 
combined at various levels to form an integrated picture of 
the patient’s medical condition(s), course of treatment and 
disposition.  The LifeCode Expert System performs the 
tasks of combining complementary information, deleting 
redundant information, assessing the level of medical risk 
and level of service represented in the clinical record and 
producing an output that is appropriate for input to an 
Electronic Medical Record (EMR) system or a billing 
system.  Because of the critical nature of the tasks, LifeCode 
has a unique “self-awareness” feature that enables it to 
recognize the limits of its competence and thus ask for 
assistance from a human expert when faced with 
information that is beyond the bounds of its competence.  
The LifeCode NLP and Expert Systems are wrapped as 
DCOM servers and reside in various delivery packages 
including On-Line Transaction Processing (OLTP), a web-
browser interface and an Automated Speech Recognition 
(ASR) interface. 

 
Problem and Task Description 

LifeCode™ (patent pending) is a Natural Language 
Processing (NLP) system that extracts clinical 
information from free-text medical records.  In the United 
States alone, medicine is a trillion dollar per year business 
and generates in excess of seven hundred million clinical 
documents in transcribed free-text form. Viewing 
medicine as a business, the clinical information in the 
free-text records has a necessary application in producing 
a bill for services and facility utilization.  This is the 
realm of medical coding and billing.  Another desirable 
business application of the information is tracking 

physician performance and resource utilization.  From the 
clinical perspective, the information in the clinical notes 
can be used to improve communications between multiple 
providers for the same patient, to monitor the efficacy of 
alternate courses of treatment and to provide feedback and 
alerts relative to the course of care for a particular patient. 

Although the Electronic Medical Record (EMR) has 
been a major goal in Health Information Management 
(HIM) for more than two decades, the success of such 
systems has been seriously limited due to the relative 
inaccessibility of the information in free-text clinical 
documentation.  Attempts to change the documentation 
habits of physicians have not had significant success 
largely due to the increased time and inconvenience 
associated with using computer interfaces that require 
formatted input. Further, numerous consultations with 
practicing physicians have taught us that there is a basic 
inability of fully structured systems to represent many of 
the nuances that make each case unique.   

Other programs for NLP of medical free-text differ 
substantially from LifeCode.  Medical document retrieval 
and classification systems determine only if a particular 
subject is discussed within a document (Aronow and 
Shmueli, 1996; Aronow, Cooley and Sonderland, 1995; 
Aronow, et.al., 1995; Aronow and Feng, 1997; Croft, 
Callan and Aronow, 1995; Hirsch and Aronow, 1995; 
Lenhert, et. al., 1994; Sonderland, et.al., 1995). Such 
approaches do not distinguish typical roles such as agent 
(who performed the surgery) or patient (who had the 
illness).  They do not discern temporal information such 
as duration (how long has the patient been ill) or timing 
(how frequent are the bouts of pain).  They do not discern 
negation (the patient was diagnosed not to have the illness 
under discussion). The list goes on, but these examples 
should be sufficient.  Medical word and phrase tagging 
systems operate at a much more granular level to apply 
tags that disambiguate semantic senses (Sager, et.al., 
1994a; Sager, et.al, 1996). They would discern, for 
example, between the verbal use of “burning” (e.g. the 
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flame was burning the patients finger) and the adjectival 
use (e.g. the patient had a burning substernal chest pain). 
Tagging does not in itself solve issues such as roles, 
negation and temporality.  Attempts to do medical coding 
(assignment of predefined medical codes that identify 
diseases, injuries, medical procedures, etc.) typically have 
not dealt with the issues of role, negation, timing, etc. 
(Larkey and Croft, 1995; Lenert and Tovar, 1993; Yang 
and Chute, 1992).  Some, however, use very complex 
linguistic processing and achieve very high accuracy 
(Sager, et.al. 1994b), but such systems require many years 
of development and have not been able to move easily 
into the commercial marketplace. Systems that use a less 
rigorous linguistic approach either in specific medical 
specialties such as radiology (Ranum, 1988; Zingmond 
and Lenert, 1993) or in general medical texts 
(Sneiderman, et. al., 1995; Sneiderman, Rindflesch and 
Aronson, 1996) typically lack both the specificity (in 
terms of roles, temporality, etc.) and the accuracy (in 
terms of precision and recall) to be used in critical tasks 
such as medical billing or populating an EMR from free-
text. None of the systems and projects discussed thus far 
incorporate the inference and logic capabilities necessary 
to refine medical diagnosis and procedure codes per the 
extensive medical and legal guidelines, nor do they have 
the knowledge required to use coded information for 
reporting purposes.  

Further, by way of comparison, commercial products 
that advertise medical NLP (e.g. HBOC’s Autocoder, or 
Medicode’s Encoder Pro) are essentially keyword 
recognition systems for searching online versions of  
paper reference manuals.  They lack NLP competence but 
do have some level of knowledge regarding the proper 
use and reporting of user selected codes.  

Aside from the issues already discussed, a major 
drawback of all these systems is that they are unable to 
discern the presence of information that is beyond the 
scope of their competency.  To be useful in a real-world 
application, a medical NLP system must be able to 
discern when it is able to operate unassisted and when it 
needs to seek human intervention in order to maintain the 
appropriate quality level. We refer to this ability as “self-
awareness”.  

LifeCode provides both linguistic competence and 
medical knowledge and logic to:  
• Use NLP to extract from a free-text clinical note…  

• the patient demographics (name, age, gender, 
etc),  

• the patient’s chief complaint, 
• the history of the present illness (duration, 

severity, time of onset, circumstances of medical 
relevance, related signs and symptoms, location 
of the injury/illness, context of onset, etc.),  

• the medical history of the patient and (as 
applicable) the patient’s family,  

• relevant social history (use of tobacco, alcohol 
and drugs, living arrangements, etc.) 

• the nature and extent of the physical examination 
performed by the physician, 

• the nature and extent of old records consulted, 
professional consultations and medical tests 
performed by the physician, 

• the final diagnoses, potentially also including 
possible and ruled-out diagnoses, 

• the course of treatment including surgical 
procedures, drug therapy and monitoring levels, 
and 

• the disposition of the patient at the end of the 
clinical encounter with the physician. 

• Use an Expert System to determine from the 
extracted information… 
• the most specific version of each diagnosis and 

procedure, 
• the level of documentation of the history and 

physical examination, 
• the risk to the patient presented by the medical 

condition and treatment, 
• the complexity of the medical decision making 

for the physician, 
• the level of service provided by the physician, 

and 
• the appropriate manner to report the event for 

billing purposes based on the type of medical 
provider, the place of medical care and the 
particular requirements of the insurance carrier. 

 
Application Description 

The LifeCode system is organized into two layers, as 
seen in Figure 1.  The top layer is the executable portion, 
implemented largely in C++ together with several finite-
state and context sensitive processors .  This top layer 
contains two modules, the NLP extraction engine and the 
Expert System.  As shown in Figure 1, documents flow 
into the NLP extraction engine and are transformed into a 
collection of discrete data elements.  These data elements 
are represented in Figure 1 as a poorly aligned group of 
shaded and unshaded blocks, signifying the unfinished 
nature of the information at this stage.  The Expert 
System module takes this collection as input and applies 
rules that filter, combine, and restructure the data 
elements into the data records that are then saved in an 
SQL database.  The bottom layer represents the system 
knowledge base.  In an effort to abstract the domain 
knowledge away from the source code, the knowledge 
bases contains the medical vocabulary; definitions 
covering anatomy, microbiology, medications, signs, 
symptoms, diagnoses, and procedures; and rules for 
medical coding.  This data (and more) comprises the  

 



 
 
 
 
 
 
 
 
 
 

 
Figure 1. LifeCode Architecture 

 

knowledge base and is written using proprietary 
specification languages that are compiled using custom 
utility programs into C++ data objects.  These data 
objects are read in at initialization of the top layer 
executable modules.  In Figure 1 these data objects are 
illustrated by the icons that are shown flowing from the 
knowledge base to the NLP engine and Expert System 
modules.  This design allows system upgrades through 
modification of the knowledge bases, without requiring 
recompilation of the C++ source code for the NLP engine 
or Expert System. 

Looking more closely at the executable layer, the NLP 
module blends multiple types of text processing 
techniques - including morphological reduction, pattern 
matching, bottom-up parsing, synonym substitution, and 
vector analysis - to recognize, extract, and categorize the 
key information in a clinical note.  There are four 
components that make up the NLP module: document 
segmenter, lexical analyzer, phrase parser, and concept 
matcher.  These components execute in sequence, 
accepting the note as ASCII text and producing a list of 
discrete data elements that are organized by type with 
each assigned a semantic label.  The types broadly 
categorize the extracted information according to the 
main themes of the note.  These include procedures, 
diagnoses, symptoms, current history, past history, 
physical examination, and medications.  The semantic 
labels assign a meaning to each element that corresponds 
to a definition in the system's external knowledge base.  

Clinical notes are typically composed of multiple 
paragraphs, divided into blocks of text by headings.  The 
document segmenter identifies and categorizes the text 
based on the meaning of the heading that precedes each 
block.  The meanings of the headings are determined by 
comparing, using a flexible pattern-matching scheme, 
against a set of possible heading definitions specified in 
the knowledge base.  This process places each portion of 
a note in a broad context as defined by the meaning of an 
associated section heading.  Examples of section headings 
are History of Present Illness, Review of Systems, 
Physical Examination, Medical Decision Making, and 
Final Diagnosis.  As the text is processed by subsequent 

modules, this context is preserved and is used later on to 
compute the type of each extracted data element.  The 
output of the document segmenter is a linked list of text 
sections, stored in the order they appear in the original 
note.  As we will discuss later on, knowing the context of 
each data element is required in order to reach the level of 
precision required of medical coding. 

The lexical analyzer module is a series of processors 
designed to transform the text into a string of symbols that 
are consistent with the vocabulary of the knowledge base 
specifications.  This functionality includes acronym 
expansion and morphological reduction.  In the acronym 
expansion, each unambiguous acronym in the text is 
converted into its full definition.  Acronyms considered 
ambiguous, having more than one potential meaning, are 
either left unchanged, allowing the concept matcher to 
resolve conflicts, or an appropriate default definition is 
selected.  Morphological reduction transforms multiple 
morphological variants of a word into a base form.  This 
is done for words where morphological variation does not 
affect the underlying concept being expressed.   In 
addition to text transformation, scalar values representing 
temporal information, vital signs and laboratory test 
results such as body temperature and oxygen saturation 
are extracted and stored.  Cardinal and ordinal numbers 
are replaced by tokens that uniquely encode their values.   

After all of the tokens have been generated by the 
lexical analyzer, the phrase parser performs a bottom-up 
syntactic analysis.  The parser is highly resilient and 
tolerant of the incorrect grammar that characterizes 
clinical documents and unknown words.  The information 
needed for medical coding is expressed primarily in the 
noun phrases of a text.  The boundaries of a noun phrase 
are typically defined by prepositions, verbs or some type 
of punctuation.  The phrase parser uses these delimiters to 
form chunks of text of a size, from two or three words up 
to a complete sentence, that roughly corresponds to the 
granularity of the definitions within the knowledge base.   
Although nouns and noun phrases are the focus, verbs are 
not ignored in this process.  Verbs can be key terms in the 
definitions of medical procedures.  Therefore, the phrase 
parser preserves verbs and most other modifying words as 
it forms chunks of text . 

NLP Engine Expert System 

Knowledge Base 



The concept matcher uses vector analysis to assign 
meanings to each phrase.  These meanings are represented 
as labels and can correspond to one or more chunks of 
texts, depending upon the scope of the definition in the 
knowledge base. In vector analysis, meanings are 
assigned by modeling the knowledge base as a vector 
space.  Each word is a separate dimension. Every 
definition in the knowledge base is represented by a 
vector in this vector space. To find the meaning of a 
phrase, the concept matcher plots a vector representing 
the phrase into the knowledge base vector space to 
determine the closest meaning.   

The following example illustrates the vector analysis 
performed by the concept matcher for a simple ICD-9 
dictionary.  Consider a dictionary with four ICD-9 codes: 

 
786.50 Chest pain unspecified 
786.51 Substernal chest pain 
786.52 Chest wall pain 
786.59 Musculoskeletal chest pain 
   
These four codes cover the chest pain category within 

the ICD-9 coding guidelines.  Codes 786.53 through 
786.58 are not defined but are available for future 
expansion of the guidelines.  In these four definitions, 
there are six unique words (ignoring case): chest, pain, 
unspecified, substernal, wall, and musculoskeletal.  For 
the purposes of vector analysis, these six unique words 
can be treated as six dimensions.  Thus, the four 
definitions in the example dictionary can be represented 
as four unit vectors within a six dimensional space.  The 
concept matcher assigns meaning to a phrase by 
identifying the vector from the dictionary, and thereby the 
definition, that most closely matches the vector formed 
from the words in the phrase.  The closest match is 
determined by computing the angular difference between 
the vector from the phrase and each vector from the 
dictionary.  The angular difference is computed using a 
simple inverse cosine formula.  The vector from the 
dictionary with the smallest angular difference, as long as 
that difference is below a defined threshold, is the best 
match. A threshold is required to ensure that the best 
match from the dictionary has significant similarity with 
the words in the phrase.  Typically this threshold is set 
between 0° and 45°.  To obtain a perfect match, an 
angular difference of 0°, a phrase must contain every 
word in a definition, but no more.  For the simple ICD-9 
dictionary defined above, the phrase ‘chest wall pain’ is a 
perfect match for the definition of the ICD-9 code 786.52.  

A second evaluation phase after the initial vector 
difference computation is used to refine the matches.  
This includes using anatomy, medication, and 
microbiology concept hierarchies and synonym lists to 
improve chances of a match. Also, syntactic heuristics 
may be applied.   These heuristics join and redistribute 
words from two or more consecutive phrases that were 

divided by the phrase parser and compute the meaning for 
the newly combined phrase.  With meanings assigned to 
individual chunks of text, the extracted data elements are 
formed by collecting all of the semantic labels and 
forming a list.  The labels are grouped on this list 
according to their context in the note. 

The Expert System module applies specialty-specific 
rules of medical coding, assigning a final set of diagnosis 
and procedure codes.  The codes are derived from the 
semantic labels.  In fact in many cases the actual ICD-9 
(diagnosis) (Medicode, 1999) or CPT (medical procedure) 
(AMA, 1999) codes are used as labels.  This module 
consists of specialized algorithms and business rules that 
have been developed through analysis of published 
guidelines and consultation with medical coding experts.  
The context is important at this stage because elements 
with similar definitions may have different roles in 
different contexts.  For example, in emergency medicine 
the review of systems (a subjective inventory of 
symptoms from the patient) and the physical examination 
(an objective report of findings made by the physician) 
may have similar language and therefore similar concepts.  
However, they serve different roles in assigning an 
overall level of service code to the encounter.  Data 
elements from these two contexts cannot be intermingled.  
In addition to computing the final codes, the expert 
system assesses the quality of the coding, flagging notes 
that should be reviewed by a human expert.  The criteria 
for this assessment are the consistency of the data 
extracted, the complexity of the diagnoses and 
procedures, and incomplete information. 

The entire LifeCode system runs at the core of a 
continuously operating (24/7) data center.   Our business 
operates as a service bureau, receiving electronic notes 
via ftp or dial-up connections.  The notes are held for a 
period of time until payor demographics and addenda 
have been received.  From there, LifeCode runs on the 
documents with the results stored in an SQL database.  
The document, medical codes, and payor demographics 
are returned to the client electronically, and their staff 
reviews the results using a coding review workstation.  
The data center operates within a Windows NT 
environment on high-end Intel Pentium platforms. 
 

Uses of AI Technology 
In the sense that LifeCode is the brain-child of its 
inventors and developers, it is in the lineage of cognitive 
linguistics. We cannot, however, claim that LifeCode is a 
truly cognitive system. “Cognitive linguistics and 
cognitive grammar are ‘cognitive’ in the sense that, 
insofar as possible, language is seen as drawing on other, 
more basic systems of abilities (e.g. perception, attention, 
categorization) from which it cannot be dissociated.” 
(Langacker, 1999)  LifeCode, of course, does not have 
“more basic systems of abilities” as listed by Langacker.  



It is, however, designed to operate as if it did possess 
these basic systems and, more importantly, the 
corresponding mental capacities, e.g. the assessment of 
duration, ability to shift attention to different narrators 
and events, a sense of urgency, etc.  In terms of the core 
AI components, there is little in LifeCode that has not 
been available in NLP work for some time.  This includes 
such basic functions as lexical, syntactic and semantic 
analysis.  What makes LifeCode unique is the 
organization of basic components in a manner that 
reduces each of the functions into a myriad of agents that 
work either independently or cooperatively.  At this level 
of reduction, the lines between lexical, syntactic and 
semantic analysis begin to blur.  However, for the sake of 
illustration, there are nearly three dozen agents that 
operate primarily at the lexical and syntactic level.  It is, 
then, not so much the advances in AI techniques that have 
made LifeCode possible, rather it is the particular 
reduction that we have applied to the top-level functions 
and the system-level organization that has been imposed 
to synthesize a domain specific level of natural language 
understanding.   

At the algorithm or technique level, there are two 
noteworthy advances in LifeCode.  LifeCode represents 
an advance in the sheer amount of knowledge that it is 
able to apply to NLP within a reasonable amount of time.  
The computationally intensive nature of NLP is well 
known.  In dealing with a single sentence, LifeCode’s 
core engine will reference the linguistic and medical 
knowledge bases from several thousand to several million 
times.  The average number of references is about fifty 
thousand per sentence.  In addition to techniques such as 
caching, LifeCode employs a novel dynamic 
programming technique that is , to the best of our 
knowledge, on the order of ten times faster than other 
algorithms.  Typical of dynamic programming techniques 
(Bentley, 1996), this algorithm utilizes a large table to 
store partial results during the vector analysis.  As a result 
of this technique, LifeCode (on a 500MHz Pentium PC 
running Windows NT) is able to run a knowledge base 
with well more than three million entries against a four 
hundred word document in ten to twenty seconds. 

The second noteworthy technique is LifeCode’s “self-
awareness”.  For the medical applications against which 
LifeCode is applied, it is unrealistic to think that a 
computer could at this time reach a level of understanding 
that would enable it to work unsupervised and unaided.  
In fact, human professionals frequently find themselves 
resorting to reference materials or consulting experts.  In 
this respect, humans are largely aware of the limits of 
their mental abilities and are able to determine when 
consultation is required.  For our applications, a computer 
would not be particularly useful if it did not know when it 
was at the limits of its knowledge or abilities.  This would 
require that a human expert review all of the computer’s 
output, thus negating the computer’s usefulness.  In one 

sense, the ability to know when to ask for help can be 
construed as the ability to recognize the difference 
between those unknowns that matter and those that do not 
matter.  To achieve this ability in LifeCode, we have 
developed a technique that we call semi-knowledge.  That 
is, LifeCode has, beyond it’s core knowledge, a very 
broad but shallow knowledge of application relevant 
aspects of medicine.  This semi-knowledge enables 
LifeCode to distinguish between relevant and irrelevant 
information, and further between medical information that 
is within its expertise versus that which is outside its 
expertise. 

The core LifeCode engine is wrapped in an industrial 
strength data center that controls local and remote I/O, 
document reformatting, database storage and archival, 
version control, QA review, user interfaces and 
accounting.  Within the medical applications that we have 
approached, LifeCode is patent pending as a top-level 
business process method.  At the NLP system level, it is 
patent pending in terms of its organization and approach 
to NLP.  And, at the algorithm level, the high-speed 
dynamic programming and the semi-knowledge 
algorithms are patent pending.     
 

Application Use and Payoff 
A-Life has over 400 hospitals under contract of which 26 
hospitals have been implemented as of the date of writing 
(January 2000).  A-Life completed a successful testing 
program of the first application for the coding of 
emergency medicine at two billing company sites in early 
1998.  Full commercial operations started in July 1998. 
A-Life’s solutions for Emergency Medicine and 
Radiology are used by billing companies and providers 
(hospitals and health centers) to completely automate 
daily coding operations for the vast majority of medical 
charts.  LifeCode codes approximately 70% of documents 
with no human intervention.  The remaining documents 
are coded as completely as possible and categorized as 
either requiring additional QA review or as incomplete 
charts due to documentation deficiencies. Of the charts 
sent for additional QA review, about half are already 
coded correctly and completely and require no further 
changes. From a statistical standpoint, this seemingly high 
review level is needed in order to keep LifeCode’s false-
positive rate below 1% for billable procedures (observed 
false-positive rates for human coders in production 
settings is 2% to 4%).  

The payoffs and benefits for using LifeCode can be 
summarized as: 
• significant overall reduction in medical coding costs 

via enhanced productivity; 
• far more accurate, consistent and complete 

assignment of codes than is humanly possible;  
• more efficient operations by reducing a large labor 

force that is difficult to recruit and retain;  



• greatly increased uniformity and validity of codes 
assigned and data produced;   

• elimination of coding inconsistency typically found 
with manual processes; 

• a major asset in developing in-house compliance 
programs;  

• reduction of accounts receivable cycle due to faster 
turnaround, decreased error rate and fewer payer 
rejections;  

• an audit trail showing coding logic matched with 
coding results, stored for use during a payer audit;  

• compliance guaranteed – HCFA-compliant coding 
reduces risk of fines for fraud and abuse; and 

• a competitive advantage for customers allowing them 
to expand their sales.  

Other benefits that will accrue in time from the use of 
LifeCode are: 
• Electronic data availability/retrieval allows for 

utilization review, clinical protocol analysis and 
process enhancement for billing and claims 
submission. 

• Instant feedback to physicians on the quality of 
documentation thus improving patient care and 
optimization of accurate, allowable reimbursement. 

Positive operational effects for the users of LifeCode 
include: 
• By automating the medical coding task, human 

coders are able to focus on tasks that require human 
expertise such as quality control, review of difficult 
documents, and physician education.   

• Optimization of existing staff, overall reduction of 
staff and reduced costs for hiring and training. 

• Reduction of paper flow and reduced storage costs. 
• Operational, statistical and clinical reports assist 

customers in better managing operations. 
 

Application Development and Deployment 

The development of LifeCode began with the founding of 
A-Life Medical, Inc. in February 1996.  The R&D 
department started with two part-time and has grown to 
now be seven full-time individuals.  The group is 
composed of three AI software experts, three linguists (all 
computationally oriented), and one knowledge engineer.  
Additionally, the company has grown to include medical 
specialty experts both as employees and as regular 
consultants.  The R&D group has also been aided greatly 
by our beta-customers.  The application infrastructure was 
developed by our Information Systems department that 
currently consists of six software engineers, two systems 
administrators and two installation engineers.  Finally, our 
marketing staff has contributed in terms of market driven 
requirements and expectations.  The development time, to 
date, from the R&D department has been close to twenty 
person-years.  The time contributed by other departments 

within A-Life and by our beta-customers would easily 
exceed that number.  The development methodology for 
R&D has been iterative thus leading to an organic growth 
of the core product.  The application infrastructure was 
developed with a standard design-build-test approach with 
version control.  We are now at the point where mature 
portions of the core technology are being transferred from 
R&D to IS where they will be reimplemented based on 
lessons learned in the initial development phase. 

During the initial development phase, the two greatest 
difficulties were the rapidly changing regulations 
governing clinical documentation and the widespread 
uncertainty within the medical community as to how to 
respond to these changes.  Both the changes and the 
growing complexity of the regulations (driven primarily 
by the Health Care Financing Administration (HCFA) and 
secondarily by private insurers) have been both a bane 
and a blessing: a bane in that they have made it far more 
difficult to produce a product that can deal with the 
complexity, and a blessing in that it is increasingly 
difficult for humans to deal with the regulations and so 
automation has become very appealing in the market 
place.  It can be expected that this duality, with the 
attendant banes and blessings, will exist in any highly 
regulated market.  The lesson is to be prepared for the 
unavoidable drain on capital and time as well as the risk 
of being regulated out of business. 

A further deployment issue has been market 
acceptance.  LifeCode is significantly different from 
anything else that has been in use in the medical coding 
marketplace, and users are predictably skeptical.  A 
quality product that meets a real need and staying power 
are both necessary to penetrate such a market.  As of the 
time of writing, LifeCode is beginning to enjoy the 
rewards of widespread market acceptance.  The pathway 
to acceptance led through small, enterprising billing 
companies such as Applied Medical Systems  of Durham, 
North Carolina to large, prestigious clients such as 
Louisiana State University Health Sciences Center in 
Shreveport, Louisiana and MedAmerica in Oakland, 
California.  But direct sales alone do not make up the 
whole story.  In the long run, industry partners will make 
up the largest part of the business for a specialty product 
such as LifeCode.  As with the direct sales, these 
partnerships began with joint selling agreements with 
small medical records companies such as ER Records in 
Irving, Texas and range to full OEM relationships with 
health information systems and services giants such as 
Dictaphone and MedQuist.  Even larger partnerships are 
in the negotiation stage.  It is this diversity of both direct 
customers and OEMs that will ensure the acceptance and 
success of LifeCode. 
 



Maintenance 
After the initial deployment of the LifeCode NLP engine 
in a production environment, the maintenance and 
subsequent development of the core knowledge bases is 
“real world” data driven. A cycle of feedback and 
maintenance is an integral part of the system. The first 
source of this data is analysis of the free-text, physician-
dictated medical record. The second, and equally 
important, source of data is QA and customer use of the 
system.  LifeCode's “self-awareness” feature routes 
certain medical records to human experts who “fix” the 
coding of the record.  Targeted comparison analyses 
allow linguists and software engineers to iteratively 
improve the accuracy of the system.  Knowledge bases 
and software algorithms are continually refined to better 
match the language used by the physician and the domain 
knowledge elicited from professional medical coders. 

As medical specialties are added, knowledge bases are 
created and a cycle of maintenance and “natural language 
adaptation” is used to adjust to phrasings employed by 
physicians in these specialties. Within specialties, coding 
knowledge is currently very much in a state of flux and 
LifeCode must be regularly updated to reflect the 
dynamic nature of this. This includes changes in the 
practice of medicine and the effects this has on medical 
coding, yearly updates of codes, and major, but less 
frequent, changes in coding guidelines. LifeCode's unique 
design permits independent editing of source code, 
knowledge bases, and the expert coding system. 
Linguists, knowledge engineers, and software engineers 
with differing areas of expertise may contribute to 
improving the system without being limited by their 
individually varying knowledge of programming, 
linguistics, or the intricacies of coding. 

Currently LifeCode does not use learning techniques 
because changes in medical codes and policies must be 
imparted to the system prior to the existence of any real 
world data by which learning could be driven.  Also, for 
purposes of compliance, it is necessary to have a system 
that can be precisely audited in terms of why and how a 
particular decision was made.  We believe, however, that 
in the future, automated learning techniques could be 
applied as an aid to dealing with variations in language 
use between physicians. 
 

Conclusion 
LifeCode advances the state-of-the-art in NLP along 
several boundaries.  Its architecture brings together a 
number of NLP and Expert Systems technologies in a 
coherent commercial product.  At the algorithm level, it 
represents a step forward in terms of high processing 
speed with very large linguistic knowledge bases.  Also, 
its “self-awareness” capability is a necessity for system 
output to be used without human intervention on every 

decision and is, to our knowledge, unique among NLP 
applications.  Finally, as a method for doing business, 
LifeCode has the potential to significantly influence the 
future course of medical records management.  Given the 
current growth in direct sales and partnerships, the future 
for LifeCode is bright.  Automation of medical coding 
and data mining will soon move from nicety to necessity. 
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