
LifeCode - A Natural Language Processing System for
Medical Coding and Data Mining

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Daniel T. Heinze Ph.D., Mark L. Morsch, Ronald E. Sheffer, Jr., Michelle A. Jimmink,

Mark A. Jennings, Willam C. Morris Ph.D., Amy E. W. Morsch Ph.D.

A-Life Medical, Inc.
9555 Chesapeake Drive – Suite 101

San Diego, California 92123
dheinze, mmorsch, rsheffer, mjimmink, mjennings, bmorris , amorsch@alifemedical.com

Abstract

LifeCode™ (patent pending) is a Natural Language
Processing and Expert System that extracts demographic
and clinical information from free-text clinical records. The
initial application of LifeCode is for the Emergency
Medicine clinical specialty. An application for Diagnostic
Radiology is now in beta-test. A pilot program for
performing data mining on acute care clinical records has
been completed. The LifeCode NLP engine uses a large
number of specialist readers whose particular outputs are
combined at various levels to form an integrated picture of
the patient’s medical condition(s), course of treatment and
disposition. The LifeCode Expert System performs the
tasks of combining complementary information, deleting
redundant information, assessing the level of medical risk
and level of service represented in the clinical record and
producing an output that is appropriate for input to an
Electronic Medical Record (EMR) system or a billing
system. Because of the critical nature of the tasks, LifeCode
has a unique “self-awareness” feature that enables it to
recognize the limits of its competence and thus ask for
assistance from a human expert when faced with
information that is beyond the bounds of its competence.
The LifeCode NLP and Expert Systems are wrapped as
DCOM servers and reside in various delivery packages
including On-Line Transaction Processing (OLTP), a web-
browser interface and an Automated Speech Recognition
(ASR) interface.

Problem and Task Description

LifeCode™ (patent pending) is a Natural Language
Processing (NLP) system that extracts clinical
information from free-text medical records. In the United
States alone, medicine is a trillion dollar per year business
and generates in excess of seven hundred million clinical
documents in transcribed free-text form. Viewing
medicine as a business, the clinical information in the
free-text records has a necessary application in producing
a bill for services and facility utilization. This is the
realm of medical coding and billing. Another desirable
business application of the information is tracking

physician performance and resource utilization. From the
clinical perspective, the information in the clinical notes
can be used to improve communications between multiple
providers for the same patient, to monitor the efficacy of
alternate courses of treatment and to provide feedback and
alerts relative to the course of care for a particular patient.

Although the Electronic Medical Record (EMR) has
been a major goal in Health Information Management
(HIM) for more than two decades, the success of such
systems has been seriously limited due to the relative
inaccessibility of the information in free-text clinical
documentation. Attempts to change the documentation
habits of physicians have not had significant success
largely due to the increased time and inconvenience
associated with using computer interfaces that require
formatted input. Further, numerous consultations with
practicing physicians have taught us that there is a basic
inability of fully structured systems to represent many of
the nuances that make each case unique.

Other programs for NLP of medical free-text differ
substantially from LifeCode. Medical document retrieval
and classification systems determine only if a particular
subject is discussed within a document (Aronow and
Shmueli, 1996; Aronow, Cooley and Sonderland, 1995;
Aronow, et.al., 1995; Aronow and Feng, 1997; Croft,
Callan and Aronow, 1995; Hirsch and Aronow, 1995;
Lenhert, et. al., 1994; Sonderland, et.al., 1995). Such
approaches do not distinguish typical roles such as agent
(who performed the surgery) or patient (who had the
illness). They do not discern temporal information such
as duration (how long has the patient been ill) or timing
(how frequent are the bouts of pain). They do not discern
negation (the patient was diagnosed not to have the illness
under discussion). The list goes on, but these examples
should be sufficient. Medical word and phrase tagging
systems operate at a much more granular level to apply
tags that disambiguate semantic senses (Sager, et.al.,
1994a; Sager, et.al, 1996). They would discern, for
example, between the verbal use of “burning” (e.g. the

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

flame was burning the patients finger) and the adjectival
use (e.g. the patient had a burning substernal chest pain).
Tagging does not in itself solve issues such as roles,
negation and temporality. Attempts to do medical coding
(assignment of predefined medical codes that identify
diseases, injuries, medical procedures, etc.) typically have
not dealt with the issues of role, negation, timing, etc.
(Larkey and Croft, 1995; Lenert and Tovar, 1993; Yang
and Chute, 1992). Some, however, use very complex
linguistic processing and achieve very high accuracy
(Sager, et.al. 1994b), but such systems require many years
of development and have not been able to move easily
into the commercial marketplace. Systems that use a less
rigorous linguistic approach either in specific medical
specialties such as radiology (Ranum, 1988; Zingmond
and Lenert, 1993) or in general medical texts
(Sneiderman, et. al., 1995; Sneiderman, Rindflesch and
Aronson, 1996) typically lack both the specificity (in
terms of roles, temporality, etc.) and the accuracy (in
terms of precision and recall) to be used in critical tasks
such as medical billing or populating an EMR from free-
text. None of the systems and projects discussed thus far
incorporate the inference and logic capabilities necessary
to refine medical diagnosis and procedure codes per the
extensive medical and legal guidelines, nor do they have
the knowledge required to use coded information for
reporting purposes.

Further, by way of comparison, commercial products
that advertise medical NLP (e.g. HBOC’s Autocoder, or
Medicode’s Encoder Pro) are essentially keyword
recognition systems for searching online versions of
paper reference manuals. They lack NLP competence but
do have some level of knowledge regarding the proper
use and reporting of user selected codes.

Aside from the issues already discussed, a major
drawback of all these systems is that they are unable to
discern the presence of information that is beyond the
scope of their competency. To be useful in a real-world
application, a medical NLP system must be able to
discern when it is able to operate unassisted and when it
needs to seek human intervention in order to maintain the
appropriate quality level. We refer to this ability as “self-
awareness”.

LifeCode provides both linguistic competence and
medical knowledge and logic to:
• Use NLP to extract from a free-text clinical note…

• the patient demographics (name, age, gender,
etc),

• the patient’s chief complaint,
• the history of the present illness (duration,

severity, time of onset, circumstances of medical
relevance, related signs and symptoms, location
of the injury/illness, context of onset, etc.),

• the medical history of the patient and (as
applicable) the patient’s family,

• relevant social history (use of tobacco, alcohol
and drugs, living arrangements, etc.)

• the nature and extent of the physical examination
performed by the physician,

• the nature and extent of old records consulted,
professional consultations and medical tests
performed by the physician,

• the final diagnoses, potentially also including
possible and ruled-out diagnoses,

• the course of treatment including surgical
procedures, drug therapy and monitoring levels,
and

• the disposition of the patient at the end of the
clinical encounter with the physician.

• Use an Expert System to determine from the
extracted information…
• the most specific version of each diagnosis and

procedure,
• the level of documentation of the history and

physical examination,
• the risk to the patient presented by the medical

condition and treatment,
• the complexity of the medical decision making

for the physician,
• the level of service provided by the physician,

and
• the appropriate manner to report the event for

billing purposes based on the type of medical
provider, the place of medical care and the
particular requirements of the insurance carrier.

Application Description

The LifeCode system is organized into two layers, as
seen in Figure 1. The top layer is the executable portion,
implemented largely in C++ together with several finite-
state and context sensitive processors . This top layer
contains two modules, the NLP extraction engine and the
Expert System. As shown in Figure 1, documents flow
into the NLP extraction engine and are transformed into a
collection of discrete data elements. These data elements
are represented in Figure 1 as a poorly aligned group of
shaded and unshaded blocks, signifying the unfinished
nature of the information at this stage. The Expert
System module takes this collection as input and applies
rules that filter, combine, and restructure the data
elements into the data records that are then saved in an
SQL database. The bottom layer represents the system
knowledge base. In an effort to abstract the domain
knowledge away from the source code, the knowledge
bases contains the medical vocabulary; definitions
covering anatomy, microbiology, medications, signs,
symptoms, diagnoses, and procedures; and rules for
medical coding. This data (and more) comprises the

Figure 1. LifeCode Architecture

knowledge base and is written using proprietary
specification languages that are compiled using custom
utility programs into C++ data objects. These data
objects are read in at initialization of the top layer
executable modules. In Figure 1 these data objects are
illustrated by the icons that are shown flowing from the
knowledge base to the NLP engine and Expert System
modules. This design allows system upgrades through
modification of the knowledge bases, without requiring
recompilation of the C++ source code for the NLP engine
or Expert System.

Looking more closely at the executable layer, the NLP
module blends multiple types of text processing
techniques - including morphological reduction, pattern
matching, bottom-up parsing, synonym substitution, and
vector analysis - to recognize, extract, and categorize the
key information in a clinical note. There are four
components that make up the NLP module: document
segmenter, lexical analyzer, phrase parser, and concept
matcher. These components execute in sequence,
accepting the note as ASCII text and producing a list of
discrete data elements that are organized by type with
each assigned a semantic label. The types broadly
categorize the extracted information according to the
main themes of the note. These include procedures,
diagnoses, symptoms, current history, past history,
physical examination, and medications. The semantic
labels assign a meaning to each element that corresponds
to a definition in the system's external knowledge base.

Clinical notes are typically composed of multiple
paragraphs, divided into blocks of text by headings. The
document segmenter identifies and categorizes the text
based on the meaning of the heading that precedes each
block. The meanings of the headings are determined by
comparing, using a flexible pattern-matching scheme,
against a set of possible heading definitions specified in
the knowledge base. This process places each portion of
a note in a broad context as defined by the meaning of an
associated section heading. Examples of section headings
are History of Present Illness, Review of Systems,
Physical Examination, Medical Decision Making, and
Final Diagnosis. As the text is processed by subsequent

modules, this context is preserved and is used later on to
compute the type of each extracted data element. The
output of the document segmenter is a linked list of text
sections, stored in the order they appear in the original
note. As we will discuss later on, knowing the context of
each data element is required in order to reach the level of
precision required of medical coding.

The lexical analyzer module is a series of processors
designed to transform the text into a string of symbols that
are consistent with the vocabulary of the knowledge base
specifications. This functionality includes acronym
expansion and morphological reduction. In the acronym
expansion, each unambiguous acronym in the text is
converted into its full definition. Acronyms considered
ambiguous, having more than one potential meaning, are
either left unchanged, allowing the concept matcher to
resolve conflicts, or an appropriate default definition is
selected. Morphological reduction transforms multiple
morphological variants of a word into a base form. This
is done for words where morphological variation does not
affect the underlying concept being expressed. In
addition to text transformation, scalar values representing
temporal information, vital signs and laboratory test
results such as body temperature and oxygen saturation
are extracted and stored. Cardinal and ordinal numbers
are replaced by tokens that uniquely encode their values.

After all of the tokens have been generated by the
lexical analyzer, the phrase parser performs a bottom-up
syntactic analysis. The parser is highly resilient and
tolerant of the incorrect grammar that characterizes
clinical documents and unknown words. The information
needed for medical coding is expressed primarily in the
noun phrases of a text. The boundaries of a noun phrase
are typically defined by prepositions, verbs or some type
of punctuation. The phrase parser uses these delimiters to
form chunks of text of a size, from two or three words up
to a complete sentence, that roughly corresponds to the
granularity of the definitions within the knowledge base.
Although nouns and noun phrases are the focus, verbs are
not ignored in this process. Verbs can be key terms in the
definitions of medical procedures. Therefore, the phrase
parser preserves verbs and most other modifying words as
it forms chunks of text .

NLP Engine Expert System

Knowledge Base

The concept matcher uses vector analysis to assign
meanings to each phrase. These meanings are represented
as labels and can correspond to one or more chunks of
texts, depending upon the scope of the definition in the
knowledge base. In vector analysis, meanings are
assigned by modeling the knowledge base as a vector
space. Each word is a separate dimension. Every
definition in the knowledge base is represented by a
vector in this vector space. To find the meaning of a
phrase, the concept matcher plots a vector representing
the phrase into the knowledge base vector space to
determine the closest meaning.

The following example illustrates the vector analysis
performed by the concept matcher for a simple ICD-9
dictionary. Consider a dictionary with four ICD-9 codes:

786.50 Chest pain unspecified
786.51 Substernal chest pain
786.52 Chest wall pain
786.59 Musculoskeletal chest pain

These four codes cover the chest pain category within

the ICD-9 coding guidelines. Codes 786.53 through
786.58 are not defined but are available for future
expansion of the guidelines. In these four definitions,
there are six unique words (ignoring case): chest, pain,
unspecified, substernal, wall, and musculoskeletal. For
the purposes of vector analysis, these six unique words
can be treated as six dimensions. Thus, the four
definitions in the example dictionary can be represented
as four unit vectors within a six dimensional space. The
concept matcher assigns meaning to a phrase by
identifying the vector from the dictionary, and thereby the
definition, that most closely matches the vector formed
from the words in the phrase. The closest match is
determined by computing the angular difference between
the vector from the phrase and each vector from the
dictionary. The angular difference is computed using a
simple inverse cosine formula. The vector from the
dictionary with the smallest angular difference, as long as
that difference is below a defined threshold, is the best
match. A threshold is required to ensure that the best
match from the dictionary has significant similarity with
the words in the phrase. Typically this threshold is set
between 0° and 45°. To obtain a perfect match, an
angular difference of 0°, a phrase must contain every
word in a definition, but no more. For the simple ICD-9
dictionary defined above, the phrase ‘chest wall pain’ is a
perfect match for the definition of the ICD-9 code 786.52.

A second evaluation phase after the initial vector
difference computation is used to refine the matches.
This includes using anatomy, medication, and
microbiology concept hierarchies and synonym lists to
improve chances of a match. Also, syntactic heuristics
may be applied. These heuristics join and redistribute
words from two or more consecutive phrases that were

divided by the phrase parser and compute the meaning for
the newly combined phrase. With meanings assigned to
individual chunks of text, the extracted data elements are
formed by collecting all of the semantic labels and
forming a list. The labels are grouped on this list
according to their context in the note.

The Expert System module applies specialty-specific
rules of medical coding, assigning a final set of diagnosis
and procedure codes. The codes are derived from the
semantic labels. In fact in many cases the actual ICD-9
(diagnosis) (Medicode, 1999) or CPT (medical procedure)
(AMA, 1999) codes are used as labels. This module
consists of specialized algorithms and business rules that
have been developed through analysis of published
guidelines and consultation with medical coding experts.
The context is important at this stage because elements
with similar definitions may have different roles in
different contexts. For example, in emergency medicine
the review of systems (a subjective inventory of
symptoms from the patient) and the physical examination
(an objective report of findings made by the physician)
may have similar language and therefore similar concepts.
However, they serve different roles in assigning an
overall level of service code to the encounter. Data
elements from these two contexts cannot be intermingled.
In addition to computing the final codes, the expert
system assesses the quality of the coding, flagging notes
that should be reviewed by a human expert. The criteria
for this assessment are the consistency of the data
extracted, the complexity of the diagnoses and
procedures, and incomplete information.

The entire LifeCode system runs at the core of a
continuously operating (24/7) data center. Our business
operates as a service bureau, receiving electronic notes
via ftp or dial-up connections. The notes are held for a
period of time until payor demographics and addenda
have been received. From there, LifeCode runs on the
documents with the results stored in an SQL database.
The document, medical codes, and payor demographics
are returned to the client electronically, and their staff
reviews the results using a coding review workstation.
The data center operates within a Windows NT
environment on high-end Intel Pentium platforms.

Uses of AI Technology
In the sense that LifeCode is the brain-child of its
inventors and developers, it is in the lineage of cognitive
linguistics. We cannot, however, claim that LifeCode is a
truly cognitive system. “Cognitive linguistics and
cognitive grammar are ‘cognitive’ in the sense that,
insofar as possible, language is seen as drawing on other,
more basic systems of abilities (e.g. perception, attention,
categorization) from which it cannot be dissociated.”
(Langacker, 1999) LifeCode, of course, does not have
“more basic systems of abilities” as listed by Langacker.

It is, however, designed to operate as if it did possess
these basic systems and, more importantly, the
corresponding mental capacities, e.g. the assessment of
duration, ability to shift attention to different narrators
and events, a sense of urgency, etc. In terms of the core
AI components, there is little in LifeCode that has not
been available in NLP work for some time. This includes
such basic functions as lexical, syntactic and semantic
analysis. What makes LifeCode unique is the
organization of basic components in a manner that
reduces each of the functions into a myriad of agents that
work either independently or cooperatively. At this level
of reduction, the lines between lexical, syntactic and
semantic analysis begin to blur. However, for the sake of
illustration, there are nearly three dozen agents that
operate primarily at the lexical and syntactic level. It is,
then, not so much the advances in AI techniques that have
made LifeCode possible, rather it is the particular
reduction that we have applied to the top-level functions
and the system-level organization that has been imposed
to synthesize a domain specific level of natural language
understanding.

At the algorithm or technique level, there are two
noteworthy advances in LifeCode. LifeCode represents
an advance in the sheer amount of knowledge that it is
able to apply to NLP within a reasonable amount of time.
The computationally intensive nature of NLP is well
known. In dealing with a single sentence, LifeCode’s
core engine will reference the linguistic and medical
knowledge bases from several thousand to several million
times. The average number of references is about fifty
thousand per sentence. In addition to techniques such as
caching, LifeCode employs a novel dynamic
programming technique that is , to the best of our
knowledge, on the order of ten times faster than other
algorithms. Typical of dynamic programming techniques
(Bentley, 1996), this algorithm utilizes a large table to
store partial results during the vector analysis. As a result
of this technique, LifeCode (on a 500MHz Pentium PC
running Windows NT) is able to run a knowledge base
with well more than three million entries against a four
hundred word document in ten to twenty seconds.

The second noteworthy technique is LifeCode’s “self-
awareness”. For the medical applications against which
LifeCode is applied, it is unrealistic to think that a
computer could at this time reach a level of understanding
that would enable it to work unsupervised and unaided.
In fact, human professionals frequently find themselves
resorting to reference materials or consulting experts. In
this respect, humans are largely aware of the limits of
their mental abilities and are able to determine when
consultation is required. For our applications, a computer
would not be particularly useful if it did not know when it
was at the limits of its knowledge or abilities. This would
require that a human expert review all of the computer’s
output, thus negating the computer’s usefulness. In one

sense, the ability to know when to ask for help can be
construed as the ability to recognize the difference
between those unknowns that matter and those that do not
matter. To achieve this ability in LifeCode, we have
developed a technique that we call semi-knowledge. That
is, LifeCode has, beyond it’s core knowledge, a very
broad but shallow knowledge of application relevant
aspects of medicine. This semi-knowledge enables
LifeCode to distinguish between relevant and irrelevant
information, and further between medical information that
is within its expertise versus that which is outside its
expertise.

The core LifeCode engine is wrapped in an industrial
strength data center that controls local and remote I/O,
document reformatting, database storage and archival,
version control, QA review, user interfaces and
accounting. Within the medical applications that we have
approached, LifeCode is patent pending as a top-level
business process method. At the NLP system level, it is
patent pending in terms of its organization and approach
to NLP. And, at the algorithm level, the high-speed
dynamic programming and the semi-knowledge
algorithms are patent pending.

Application Use and Payoff
A-Life has over 400 hospitals under contract of which 26
hospitals have been implemented as of the date of writing
(January 2000). A-Life completed a successful testing
program of the first application for the coding of
emergency medicine at two billing company sites in early
1998. Full commercial operations started in July 1998.
A-Life’s solutions for Emergency Medicine and
Radiology are used by billing companies and providers
(hospitals and health centers) to completely automate
daily coding operations for the vast majority of medical
charts. LifeCode codes approximately 70% of documents
with no human intervention. The remaining documents
are coded as completely as possible and categorized as
either requiring additional QA review or as incomplete
charts due to documentation deficiencies. Of the charts
sent for additional QA review, about half are already
coded correctly and completely and require no further
changes. From a statistical standpoint, this seemingly high
review level is needed in order to keep LifeCode’s false-
positive rate below 1% for billable procedures (observed
false-positive rates for human coders in production
settings is 2% to 4%).

The payoffs and benefits for using LifeCode can be
summarized as:
• significant overall reduction in medical coding costs

via enhanced productivity;
• far more accurate, consistent and complete

assignment of codes than is humanly possible;
• more efficient operations by reducing a large labor

force that is difficult to recruit and retain;

• greatly increased uniformity and validity of codes
assigned and data produced;

• elimination of coding inconsistency typically found
with manual processes;

• a major asset in developing in-house compliance
programs;

• reduction of accounts receivable cycle due to faster
turnaround, decreased error rate and fewer payer
rejections;

• an audit trail showing coding logic matched with
coding results, stored for use during a payer audit;

• compliance guaranteed – HCFA-compliant coding
reduces risk of fines for fraud and abuse; and

• a competitive advantage for customers allowing them
to expand their sales.

Other benefits that will accrue in time from the use of
LifeCode are:
• Electronic data availability/retrieval allows for

utilization review, clinical protocol analysis and
process enhancement for billing and claims
submission.

• Instant feedback to physicians on the quality of
documentation thus improving patient care and
optimization of accurate, allowable reimbursement.

Positive operational effects for the users of LifeCode
include:
• By automating the medical coding task, human

coders are able to focus on tasks that require human
expertise such as quality control, review of difficult
documents, and physician education.

• Optimization of existing staff, overall reduction of
staff and reduced costs for hiring and training.

• Reduction of paper flow and reduced storage costs.
• Operational, statistical and clinical reports assist

customers in better managing operations.

Application Development and Deployment

The development of LifeCode began with the founding of
A-Life Medical, Inc. in February 1996. The R&D
department started with two part-time and has grown to
now be seven full-time individuals. The group is
composed of three AI software experts, three linguists (all
computationally oriented), and one knowledge engineer.
Additionally, the company has grown to include medical
specialty experts both as employees and as regular
consultants. The R&D group has also been aided greatly
by our beta-customers. The application infrastructure was
developed by our Information Systems department that
currently consists of six software engineers, two systems
administrators and two installation engineers. Finally, our
marketing staff has contributed in terms of market driven
requirements and expectations. The development time, to
date, from the R&D department has been close to twenty
person-years. The time contributed by other departments

within A-Life and by our beta-customers would easily
exceed that number. The development methodology for
R&D has been iterative thus leading to an organic growth
of the core product. The application infrastructure was
developed with a standard design-build-test approach with
version control. We are now at the point where mature
portions of the core technology are being transferred from
R&D to IS where they will be reimplemented based on
lessons learned in the initial development phase.

During the initial development phase, the two greatest
difficulties were the rapidly changing regulations
governing clinical documentation and the widespread
uncertainty within the medical community as to how to
respond to these changes. Both the changes and the
growing complexity of the regulations (driven primarily
by the Health Care Financing Administration (HCFA) and
secondarily by private insurers) have been both a bane
and a blessing: a bane in that they have made it far more
difficult to produce a product that can deal with the
complexity, and a blessing in that it is increasingly
difficult for humans to deal with the regulations and so
automation has become very appealing in the market
place. It can be expected that this duality, with the
attendant banes and blessings, will exist in any highly
regulated market. The lesson is to be prepared for the
unavoidable drain on capital and time as well as the risk
of being regulated out of business.

A further deployment issue has been market
acceptance. LifeCode is significantly different from
anything else that has been in use in the medical coding
marketplace, and users are predictably skeptical. A
quality product that meets a real need and staying power
are both necessary to penetrate such a market. As of the
time of writing, LifeCode is beginning to enjoy the
rewards of widespread market acceptance. The pathway
to acceptance led through small, enterprising billing
companies such as Applied Medical Systems of Durham,
North Carolina to large, prestigious clients such as
Louisiana State University Health Sciences Center in
Shreveport, Louisiana and MedAmerica in Oakland,
California. But direct sales alone do not make up the
whole story. In the long run, industry partners will make
up the largest part of the business for a specialty product
such as LifeCode. As with the direct sales, these
partnerships began with joint selling agreements with
small medical records companies such as ER Records in
Irving, Texas and range to full OEM relationships with
health information systems and services giants such as
Dictaphone and MedQuist. Even larger partnerships are
in the negotiation stage. It is this diversity of both direct
customers and OEMs that will ensure the acceptance and
success of LifeCode.

Maintenance
After the initial deployment of the LifeCode NLP engine
in a production environment, the maintenance and
subsequent development of the core knowledge bases is
“real world” data driven. A cycle of feedback and
maintenance is an integral part of the system. The first
source of this data is analysis of the free-text, physician-
dictated medical record. The second, and equally
important, source of data is QA and customer use of the
system. LifeCode's “self-awareness” feature routes
certain medical records to human experts who “fix” the
coding of the record. Targeted comparison analyses
allow linguists and software engineers to iteratively
improve the accuracy of the system. Knowledge bases
and software algorithms are continually refined to better
match the language used by the physician and the domain
knowledge elicited from professional medical coders.

As medical specialties are added, knowledge bases are
created and a cycle of maintenance and “natural language
adaptation” is used to adjust to phrasings employed by
physicians in these specialties. Within specialties, coding
knowledge is currently very much in a state of flux and
LifeCode must be regularly updated to reflect the
dynamic nature of this. This includes changes in the
practice of medicine and the effects this has on medical
coding, yearly updates of codes, and major, but less
frequent, changes in coding guidelines. LifeCode's unique
design permits independent editing of source code,
knowledge bases, and the expert coding system.
Linguists, knowledge engineers, and software engineers
with differing areas of expertise may contribute to
improving the system without being limited by their
individually varying knowledge of programming,
linguistics, or the intricacies of coding.

Currently LifeCode does not use learning techniques
because changes in medical codes and policies must be
imparted to the system prior to the existence of any real
world data by which learning could be driven. Also, for
purposes of compliance, it is necessary to have a system
that can be precisely audited in terms of why and how a
particular decision was made. We believe, however, that
in the future, automated learning techniques could be
applied as an aid to dealing with variations in language
use between physicians.

Conclusion
LifeCode advances the state-of-the-art in NLP along
several boundaries. Its architecture brings together a
number of NLP and Expert Systems technologies in a
coherent commercial product. At the algorithm level, it
represents a step forward in terms of high processing
speed with very large linguistic knowledge bases. Also,
its “self-awareness” capability is a necessity for system
output to be used without human intervention on every

decision and is, to our knowledge, unique among NLP
applications. Finally, as a method for doing business,
LifeCode has the potential to significantly influence the
future course of medical records management. Given the
current growth in direct sales and partnerships, the future
for LifeCode is bright. Automation of medical coding
and data mining will soon move from nicety to necessity.

References
AMA. 1999. Current Procedural Terminology: CPT
2000. American Medical Association.

Aronow, D. B., James R. Cooley, J. R., Sonderland, S.
1995. Automated Identification of Episodes of Asthma
Exacerbation for Quality Measurement in a Computer-
Based Medical Record. Technical Report IR-61,
University of Massachusetts at Amherst – Center for
Intelligent Information Retrieval.

Aronow, D. B., Sonderland, S., Ponte, J. M., Feng, F.,
Croft, W. B., Lehnert, W. G. 1995. Automated
Classification of Encounter Notes in a Computer Based
Medical Record. Technical Report IR-67, University of
Massachusetts at Amherst – Center for Intelligent
Information Retrieval.

Aronow, D. B., Shmueli, A. 1996. A PC Classifier of
Clinical Text Documents: Advanced Information
Retrieval Technology Transfer. Proceedings – American
Medical Informatics Association Fall Symposium. 932ff.

Aronow, D. B., Feng, F. 1997. Ad-Hoc Classification of
Electronic Clinical Documents. D-Lib Magazine,
January.

Aronow, D. B., Feng, F., Croft, W. B. 1999. Ad Hoc
Classification of Radiology Reports. Journal of the
American Medical Informatics Association. 6(5): 393-
411.

Bentley, J. 1996. The Impossible Takes a Little Longer.
Unix Review, December, 75-79.

Croft, W. B., Callan, J. P., Aronow, D. B. 1995. Effective
Access to Distributed Heterogeneous Medical Text
Databases. Proceedings – MEDINFO 95. 1719ff.

Hirsch, M., Aronow, D. B. 1995. Suggesting Terms for
Query Expansion in a Medical Information Retrieval
System. Technical Report IR-63, University of
Massachusetts at Amherst – Center for Intelligent
Information Retrieval.

Langacker, R. W. 1999. Explanation in Cognitive
Linguistics and Cognitive Grammar – Seminar hand-out

UCSD Department of Linguistics Conference on The
Nature of Explanation in Linguistic Theory. University
of California at San Diego. December 3-5, 1999.

Larkey, L. S., Croft,W. B. 1995. Automatic Assignment
of ICD9 Codes to Discharge Summaries. Technical
Report IR-64, University of Massachusetts at Amherst –
Center for Intelligent Information Retrieval.

Lenert, L. A., Tovar, M. 1993. Automated Linkage of
Free-text Descriptions of Patients with Practice
Guidelines. Proceedings – Symposium on Computer
Applications in Medical Care. 274-278. New York:
Institute of Electrical and Electronics Engineers.

Lehnert, W., Sonderland, S., Aronow, D. B. , Feng, F.,
Smith, A. 1994. Inductive Text Classification for
Medical Applications. Technical Report TC-32,
University of Massachusetts at Amherst – Center for
Intelligent Information Retrieval.

Medicode. 1999. Physician ICD-9-CM: International
Classification of Diseases, 9 th Revision, Clinical
Modification. Fifth Edition.

Ranum, D. L. 1988. Knowledge Based Understanding of
Radiology Text. Proceedings – Symposium on Computer
Applications in Medical Care. 141-145. New York:
Institute of Electrical and Electronics Engineers.

Sager, N., Lyman, M., Nhan, N. T., Tick, L. J. 1994.
Automatic Encoding into SNOMED III: A Preliminary
Investigation. Proceedings – Symposium on Computer
Applications in Medical Care. 230-234. New York:
Institute of Electrical and Electronics Engineers.

Sager, N., Lyman, M., Bucknall, C. 1994. Natural
Language Processing and the Representation of Clinical
Data. Journal of the American Medical Informatics
Association. 1(2):142-160.

Sager, N., Nhan, N.T., Lyman, M.S., Tick, L.J. 1996.
Medical Language Processing with SGML Display.
Proceedings of the 1996 AMIA Annual Fall Symposium.
547-551. Hanley & Belfus.

Sneiderman, C. A., Rindflesch, T. C., Aronson, A. R.,
Browne, A. C. 1995. Extracting Physical Findings from
Free-Text Patient Records. Proceedings – American
Medical Informatics Association Spring Congress.

Sneiderman, C. A., Rindflesch, T. C., Aronson, A. R.
1996. Finding the Findings: Identification of Findings in
Medical Literature Using Restricted Natural Language
Processing. Proceedings – American Medical Informatics
Association Fall Symposium. 239-243.

Sonderland, S., Aronow, D. B., Fisher, D., Aseltine, J.,
Lehnert, W. 1995. Machine Learning of Text Analysis
Rules for Clinical Records. Technical Report TC-39,
University of Massachusetts at Amherst – Center for
Intelligent Information Retrieval.

Yang, Y., Chute, C.G. 1992. An Application of Least
Squares Fit Mapping To Clinical Classification.
Proceedings – Symposium on Computer Applications in
Medical Care. 460-464. New York: Institute of
Electrical and Electronics Engineers.

Zingmond, D., Lenert, L. A. 1993. Monitoring Free-Text
Data Using Medical Language Processing. Computers
and Biomedical Research. 26:467-481.

