
A Campus-wide University Examination Timetabling Application

Andrew Lim, Ang Juay Chin, Ho Wee Kit, Oon Wee Chong

School of Computing,
National University of Singapore, Singapore

{alim, angjc, howeekit, oonwc}@comp.nus.edu.sg

Abstract
The authors of this paper were tasked to create an
automated campus-wide timetabling system, for both
course and examination timetable scheduling, for the
National University of Singapore. This paper explains
the development and design of the exam-scheduling
portion of the University Timetable Scheduler
(UTTS) software. The preliminary results of the
application of the AC3 algorithm on this problem are
also shown, and indicate the tremendous potential
benefits of such a system.

Introduction

Beginning in the 1993/1994 academic year, the National
University of Singapore (NUS) introduced a modular
academic course structure to give students greater control
over the content of their course of study. This new
structure has overall been a welcome change, but the
students have largely been restricted to choosing courses
within their own faculty. NUS is now following up by
introducing cross-faculty modules, which are subjects that
can be taken by students from various faculties. It is the
intention of NUS to eventually offer program comprising
of up to 30% cross-faculty modules. More information on
the National University of Singapore and its course
structure can be found at the NUS Website1.

The introduction of cross-faculty modules greatly increases
the difficulty in scheduling both the course and
examination timetables. In particular, examination
timetable scheduling (handled by the administration
department for the entire university) is made much more
difficult as cross-faculty modules must be placed in an
available timeslot for students from several faculties. In
view of this, NUS has tasked the authors of this paper to
create an automated course and examination timetable
scheduler, with the working title of University Timetable
Scheduler (UTTS).

1 http://www.nus.edu.sg

Copyright © 2000, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Aspects of the course-scheduling portion of UTTS are
described in a separate paper (Lim et al. 2000a). This paper
describes the development of the exam-scheduling portion.
We will first give an account the way examination
timetabling is done currently in NUS. We then describe the
system design of UTTS, bearing in mind the possible
conversion to a Client/Server application in the future.
Finally, we will describe the current status of our program,
with the results and statistics of our preliminary testing.

The Current System

At present, the University’s policy is to schedule all
examinations before student enrolment. Hence, it is the
duty of all students to make sure that they choose courses
with examinations that do not clash. Obviously, this is
undesirable as it unnecessarily restricts the students’
choices. It is therefore an aim of any timetable to have as
few such potential clashes as possible.

The University’s examination timetable scheduling is
currently handled by the Administration department, which
must organize and schedule all the examinations in a
particular semester for each and every faculty. We
interviewed the timetabling officer from the
Administration department to find out their current
timetabling process.

At the moment, this difficult process is still being done by
hand. The process of creating the resultant timetable is as
follows:

1. Each faculty puts forward a request for a certain
number of days, timeslots and seats to the
Administration Department.

2. The timetabling officer assigns each faculty a

certain number of days, timeslots and seats. The
number for each faculty is based on a combination
of the requested number, enrolment figures,
availability of resources and previous experience.
History has shown that there are never enough
resources to accommodate the wishes of all the
faculties. The timetabling officer also reserves a
number of “spare” slots for emergencies.

From: IAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

3. Each faculty then attempts to create a feasible

examination timetable using the resources they
have been assigned. Some faculties further break
down these resources to departmental level, and
produce a collated timetable of all the
departments.

4. Inevitably, some faculties will find that the

resources allocated to them are insufficient to
create a feasible timetable. They then contact the
Administration department to request for more
resources. Depending on need and availability, the
timetabling officer would then allocate more
resources to the requesting faculty from the pool
of “spare” slots.

5. This cycle of request/allocation continues until all

the examinations have been scheduled
satisfactorily.

In practice, this procedure has many disadvantages:

1. The initial allocation of days and slots is likely to
be sub-optimal. This is because it is difficult to
judge the effect of changes in student enrolment
and registration.

2. Human nature and expediency dictates that the

initial request for resources would be a value
somewhat greater than what is strictly required.
This is understandable, as the individual faculties
would like some room to maneuver in case of
unforeseen emergencies.

3. Due to the above points, the process is extremely

time-consuming. The cycles of request and
allocation (coupled with episodes of negotiation
an compromise) can take several weeks to
resolve.

4. The process is also error-prone, due to the large

amount of data to consider. The act of verification
is difficult, and there has been a case of a conflict
that was overlooked until a very late stage, and its
correction was awkward and troublesome.

The automated examination timetable scheduler aims to
eliminate these problems. In particular, the UTTS Exam
Scheduler would take as its most important inputs the set
of examinations and candidates, and the set of constraints
from each faculty. Hence the adequacy of resources could
be more accurately determined, along with the task of their
allocation. Furthermore, if the system proves successful,
we can then experiment with scheduling the examinations
only after student registration.

Functions of the Automated System

When we started work on the UTTS Examination
Scheduler, we strove to achieve the following aims:

• To create an examination timetable that schedules
all examinations, invigilators, registrar staff and
required equipment. The most important criterion
is that two examinations taken by the same
student should not be scheduled at the same time.
The preferences of invigilators and registrar staff
are relatively less important than the ability of a
candidate to sit for his registered examination.
Equipment required for an examination can be
treated simply as an attribute for the examination,
and should have little or no effect on the actual
timetable scheduling.

• To drastically reduce the time taken to schedule

the examination timetable, while at the same time
satisfying (as much as possible) the constraints
imposed by the user. Aside from the obvious
benefits of saved time, an automated timetable
scheduler that can produce a timetable in minutes
rather than days or weeks opens up possibilities of
simulating policy changes.

• To minimize the total number of days taken for

the entire examination period. The total number of
days occupied is used to judge the “goodness” of
a timetable solution.

• To reduce the number of examinations held at the

IMM Building, which would result in a definite
monetary saving (see the Problem Domain section
below).

• To produce a candidates’ seating plan. This is the

least important aim, as it is just a tool of
convenience for the users. To the scheduling
engine, where a particular student sits within an
examination venue is irrelevant.

Problem Domain

In order to test our eventual system, we obtained student
registration data from the NUS Computer Center for both
semesters of the academic years 1997/1998 and 1998/1999,
as well as for the first semester of academic year
1999/2000. The data that was obtained from the Computer
Center consisted of a set of text files, each containing the
list of student-examination tuples. We converted the text
files into Microsoft Access™ files, which enabled us to
make use of SQL queries for the data.

As an example of our problem domain, we present the

statistics for Semester I of the 1998/1999 academic year.
This consists of 21607 students, each taking one or more of
1561 papers. Some relevant facts include:

• The number of candidates sitting for an
examination ranges from as few as 1 (152 papers)
and as many as 1283 (Mathematics A, EG1401).

• Each examination requires a number of

invigilators to be present, of which at least one
must be a Chief Invigilator.

• Most examinations also require one or more

members of the Registrar’s Office to be present.

• Some of the examinations are labeled “open-
book” examinations, meaning that the candidates
are allowed to bring reference materials into the
examination venue. The remaining are considered
“closed-book”, where no reference materials are
allowed.

These examinations are scheduled to the following venues:

Alias Venue Capacity
IMM IMM Exhibition Hall 1600

GYM Gymnasium 312

MPH1 Multi-Purpose Sports Hall 1 750

MPH2 Multi-Purpose Sports Hall 2 850

CH Competition Hall 396

Table 1: List of Examination Venues

The IMM Building is a commercial building that is not
owned by NUS. The venues in the IMM Building must be
rented by the University for the purpose of holding the
examinations.

Using the current manual system, the timetable that was
produced started from 27 October 1998 to 28 November
1999, comprising 47 sessions.

System Design

The UTTS system design is based on the 3-Tier
architecture that is commonly used when building
Client/Server applications. It keeps distinct the GUI, object
oriented and data storage portions of our program. By
separating the system into 3 tiers, they can be worked on
independently (Reese, 1997).

UTTS is divided into the following 3 tiers. The View tier
involves the graphical user interface. The Application tier
is composed of the modules in an object-oriented paradigm

that manipulate the objects in the system. This includes the
scheduling engine, the printing modules and the report
generator. Finally, the Persistence layer consists of the
actual database access. Figure 1 shows the UTTS system
design.

View Layer

Application
Layer

Persistence
Layer

View 1 View nView 2

Application Manager

Persistence Manager

Microsoft Access

Scheduling
Engine

Print
Manager

Report
Generator

DB

Figure 1: UTTS System Architecture

When deciding on our system design, we had to balance
the factors of program speed and memory use. One naïve
implementation would be to load all data into the main
memory during program load time. However, this would
take up an unnecessary amount of memory, since it is
unlikely that all the information stored in the databases
would be required. The starting load time would also
increase. In our design, we read information into memory
on an “as-needed” basis. We keep a MasterList in the
persistent layer that retains the list of objects read from the
database, and the actions performed on them. This
MasterList is also useful for undoing actions. For
example, when the user requests for information on a
particular student, the information flow is as follows:

1. The GUI requests for the student information
from the application server layer by calling
server.getStudent(studentIndex).

2. The application server layer uses the persistence
manager class to retrieve this information, calling
persistent.get(studentIndex).

3. The persistence manager class first checks if the
wanted student can be found in the
MasterList. If it can, the correct student object
is returned straight from the MasterList. If
not, it asks the student class to load the required
student object.

4. The student class delegates its studentPeer class
to retrieve the appropriate information from the
database. The student object is then returned to
the GUI, and that student object is updated to the
MasterList.

In this way, both database access and memory usage are
minimized.

Scheduling Engine

The Examination Timetabling Problem is both a constraint
satisfaction problem (CSP) as well as an optimization
problem. In the exam-timetabling problem, we are
typically given a set of both hard and soft constraints. Two
hard constraints that must be satisfied are:

• No student is required to be present for two or
more examinations in the same time slot.

• There number of seats at a venue is sufficient to
accommodate all the students scheduled to take an
examination there.

In addition, we would also like to handle the following
constraints if possible (soft constraints):

• Staff S is required to invigilate at least x sessions
and at most y sessions.

• Separate all open and closed-book examinations.
• Separate all examinations with different duration.
• Spread all examinations of a student over the

examination period as much as possible.
• Any 2 papers of a student should be placed

minimally x sessions or y days apart.
• Paper A be placed x days away from Paper B
• Paper A to be held before Paper B
• Paper A and Paper B to be held simultaneously
• Paper A and Paper B are not to be held

simultaneously
• Paper A to be held as early/late as possible in the

examination period
• Paper A is to be held in session s
• Paper A is to be held on/before/after date d
• Paper A is to be held within period (d1, d2)
• Paper A must not be held during period (d1, d2)
• Paper A is to be held in week n.
• Paper A is to be held at venue v.
• Paper A is to be held at a venue belonging to

venue group g.

The user can assert any or all of the above soft constraints.
Our objective in any case is to generate a conflict-free
timetable, which minimizes the number of time slots used.
In consideration of the nature of our problem and the
variety of constraints that we have to handle, we have
combined our main scheduling algorithm together with a
consistency algorithm.

For our first attempt, the main scheduling algorithm used is
based on a weighted sum of three measures. Each paper
has a weight computed as follows:

• Measure 1 is based on the number of candidates
taking this paper

• Measure 2 is based on the constraint degree of this
paper (i.e., the number of other papers affected by
the scheduling of this paper)

• Measure 3 is based on the number of slots that
cannot be used for scheduling this paper, due to
one or more constraint conflicts

PaperWeight = αMeasure1 + βMeasure2 + γMeasure3
where α + β + γ = 1

With this weighted scheme, the main algorithm can be
described as follows:

1. Let Q be a Priority Queue of papers sorted by
PaperWeight

2. While Q is not empty
Dequeue paper p in Q
Find the first available time slot for paper p
If the time slot is found then

Assign paper p to the found time slot
Else

Return Failure
3. Return Success

We model our problem as a CSP and derive a constraint
graph. Each paper corresponds to a vertex of the constraint
graph with its associated domain. Each constraint relation
P(X, Y) corresponds to the two arcs (X, Y) and (Y, X) in
the graph.

We apply the arc consistency algorithm, AC-3 (Mackworth
1977), to perform domain reduction at the start of the
scheduling algorithm, as well as during each assignment of
a paper to a time slot. The AC-3 algorithm basically makes
the entire graph arc-consistent by considering a set of
potentially inconsistent arcs. While the queue is not empty,
an arc is removed from the queue and considered. If it is
not consistent, its domain is revised and made consistent.
As a result, all other consistent arcs that could have
become inconsistent are inserted back into the queue.

Exam Data Information 1998/99 semester 1 1998/99 semester 2
No. of Candidates 21607 21591

No. of Candidates_Paper 101197 93693
No. of Time Conflicts 23751 24424
Max Degree of Time Conflicts 277 285
Connectivity of Constraint Graph 1.95% 2.05%

Comparison Papers # Slots Time(s) Papers # Slots Time(s)
Manual System 1282 47 - 1248 48 -
UTTS (M1=0.1, M2=0.8, M3=0.1) 1561 30 381 1545 29 368

Table 2: UTTS test results

One advantage of performing domain reduction using
AC-3 is that we can handle the various constraints easily.
In addition, with the use of AC-3, our main scheduling
algorithm requires a minimum effort in finding the first
available slot for each paper. We could also determine the
number of slots that are being eliminated for a given
paper (as used in Measure 3) easily.

When using AC-3, we need to perform an arc-consistency
check whenever a paper is assigned a slot. However, this
overhead is relatively cheap compared to naïve
implementation of computing the availability of the all
time slots for every unscheduled paper. Thus, making use
of AC-3 helps to improve the efficiency of our scheduling
algorithm.

Test Results

The data we acquired from the computer center contained
some anomalies of students taking an illogical number of
examinations. In particular, there were instances of
students taking more than 20 papers in the semester. We
suspect that this is due to the inclusion of non-examinable
and/or exempted papers in the database. As there was no
convenient way to remove these cases, they remained in
our test data.

Another discrepancy between our test data is the number
of examinations to be scheduled. Our test data includes
non-examinable subjects, which as previously stated
cannot be conveniently extracted. Furthermore, some
examinations in the manual timetable were scheduled in
small classrooms and laboratories, and these alternative
sites are not used in our simulation. Hence, our results are
based on more papers, to be scheduled in fewer venues,
and may be worse than in an actual implementation.

Table 2 shows the results of running the UTTS program
on our sets of test data, and also compares the actual
timetables that were created by the manual process and

the timetables generated by our program. In these results,
we have only taken into account the 2 hard constraints.

As can be seen, despite having to schedule more papers in
a smaller capacity, our heuristic produced much better
results than the actual manual system. For Semester I of
the 1998/1999 academic year, UTTS produced a timetable
that makes use of a mere 30 slots, compared to 47 for the
manual system. Similarly, 29 slots were used compared to
48 for Semester II of the same academic year. These
results were obtained in around 6 minutes per test case.

Since our tests only take into account the 2 hard
constraints, we cannot view these results as ironclad.
Nonetheless, it is obvious that our automated system can
potentially result in a timetable with a shorter duration
than the traditional manual system.

Our tests were performed on a Pentium-500 PC with
128MB RAM. The system was coded in JDK 1.1 and JFC
1.03 using IBM VisualAge™ for Java.

Future Directions

The development of an automated examination-
timetabling program is a large project, and there will be
several cycles of development, testing, user feedback and
implementation to be done before the final product is
deployed. The major aspects include the handling of more
constraints, the advancement to the Client/Server
architecture, and better scheduling algorithms. Efforts
have already been made in the direction of improved
scheduling algorithms by the UTTS team (Lim and Fu,
2000).

UTTS is an ongoing project, with improvements and
refinements to be made as the program undergoes actual
use.

Conclusion

This paper details the development process and
techniques of an automated examination-timetabling
program. We show our system design based on the 3-tier
architecture, which is appropriate for our purposes. We
also show the results of implementing the AC-3 algorithm
on our constraint-propagation scheduling engine, and note
that the results are at least comparable to those achieved
by the current manual system, and in a much shorter time,
when implemented on the basic hard constraint set.

We believe that our system shows the great potential
benefits of automating the examination-timetabling task
in a large university like NUS.

References

The National University of Singapore Website,
http://www.nus.edu.sg

A. Lim, W. C. Oon, J. C. Ang, W. K Ho, Development of
a Campus-wide University Course Timetabling
Application: Input Issues, forthcoming.

A. Lim, Z. Fu, The Examination Scheduling Problem,
forthcoming.

A. K. Mackworth, Consistency in Networks of Relations,
Artificial Intelligence 8 (1977): 88-119

G. Reese, Database Programming with JDBC and Java,
O’Reilly 1997.

