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Abstract

The operation of a human organization requires dozens of ev-
eryday tasks to ensure coherence in organizational activities,
to monitor the status of such activities, to gather information
relevant to the organization, to keep everyone in the organiza-
tion informed, etc. Teams of software agents can aid humans
in accomplishing these tasks, facilitating the organization’s
coherent functioning and rapid response to crises, while re-
ducing the burden on humans. Based on this vision, this paper
reports on Electric Elves, a system that has been operational,
24/7, at our research institute since June 1, 2000.

Tied to individual user workstations, fax machines, voice,
mobile devices such as cell phones and palm pilots, Electric
Elves has assisted us in routine tasks, such as rescheduling
meetings, selecting presenters for research meetings, track-
ing people’s locations, organizing lunch meetings, etc. We
discuss the underlying AI technologies that led to the success
of Electric Elves, including technologies devoted to agent-
human interactions, agent coordination, accessing multiple
heterogeneous information sources, dynamic assignment of
organizational tasks, and deriving information about organi-
zation members. We also report the results of deploying Elec-
tric Elves in our own research organization.

Introduction
Many activities of a human organization are well-suited for
software agents, which can devote significant resources to
perform these tasks, thus reducing the burden on humans.
Indeed, teams of such software agents could assist all orga-
nizations, including disaster response organizations, corpo-
rations, the military, universities and research institutions.

Based on the above vision, we have developed a system
called Electric Elves that applies agent technology in ser-
vice of the day-to-day activities of the Intelligent Systems
Division of USC/ISI. Electric Elves is a system of about
15 agents, including nine proxies for nine people, plus two
different matchmakers, one flight tracker and one scheduler
running continuously for past several months. This paper
discusses the tasks performed by the system, the research
challenges it faced and its use of AI technology in overcom-
ing those challenges.
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One key contribution of this paper is understanding the
challenges faced in deploying agents to support organiza-
tions. In particular, the complexity inherent in human orga-
nizations complicates all of the tasks agents must perform.
First, since agents must interact with humans, issues of ad-
justable autonomy become critical. In particular, agents act-
ing as proxies for people must automatically adjust their own
autonomy, e.g., avoiding critical errors, possibly by letting
people make important decisions while autonomously mak-
ing the more routine decisions. Second, to accomplish their
goals, agents must be provided reliable access to informa-
tion. Third, people have a wide variety of capabilities, inter-
ests, preferences and engage in many different tasks. To en-
able teaming among such people for crisis response or other
organizational tasks, agents acting as their proxies must rep-
resent and reason with such capabilities and interests. We
thus require powerful matchmaking capabilities to match
both interests and capabilities. Fourth, coordination of all
of these different agents, including proxies, is itself a sig-
nificant research challenge. Finally, the entire agent system
must scale-up: (i) it must scale-up in the sense of running
continually 24 hours a day 7 days a week (24/7) for months
at a time; (ii) it must scale-up in the number of agents to
support large-scale human organizations.

The Electric Elves
In the Electric Elves project we have developed technology
and tools for deploying agents into human organizations to
help with organizational tasks. We describe the application
of the Electric Elves to two classes of tasks. First, we de-
scribe the problem of coordinating activities within an indi-
vidual research project. These tasks must be tightly coordi-
nated and a significant amount of information is known in
advance about the participants and their goals and capabili-
ties. Second, in order to demonstrate the capabilities of the
system in a more open environment, we applied the system
to the problem of meeting planning with participants outside
the organization where some of the necessary information
about participants is not known in advance.

Coordinating Project Activities
Our agents help coordinate the everyday activities of a re-
search project: they keep the project running smoothly,
rescheduling meetings when someone is delayed, ordering
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food for meetings or if someone has to work late, and iden-
tifying speakers for research meetings. Each person in the
project is assigned their own personal proxy agent, which
represents that person to the agent system.

Figure 1: A Palm VII
PDA with GPS receiver

A proxy agent keeps track
of a project member’s current
location using several different
information sources, including
their calendar, Global Position
System (GPS) device when out-
side of the building (Fig. 1),
infrared communications within
the building, and computer ac-
tivity. When a proxy agent no-
tices that someone is not attend-
ing a scheduled meeting or that they are too far away to make
it to a scheduled meeting in time, then their agent sends them
a request using a wireless device (i.e., a cell phone or Palm
Pilot) asking if they want to cancel the meeting, delay the
meeting, or have the meeting proceed without them. If a
user responds, their decision is communicated to the other
participants of the scheduled meeting. If they are unable to
respond, the agent must make a decision autonomously.

For weekly project meetings, the agents coordinate the
selection of the presenter and arrange food for the meetings.
Once a week an auction is held where all of the meeting par-
ticipants are asked about their capability and willingness to
present at the next meeting. Then the system compiles the
bids, selects a presenter, and notifies all of the attendees who
will be presenting at the next project meeting. The agents
also arrange food for lunch meetings. They order from a set
of nearby restaurants, select meals that were highly rated by
others, and fax the orders directly to the restaurant with in-
structions for delivery. We have begun relying on our agents
so heavily to order lunch that one local “Subway” restau-
rant owner even remarked: “. . . more and more computers
are getting to order food. . . so we might have to think about
marketing [to them].”

Some of the technical challenges in building this appli-
cation are in determining how much autonomy the agents
should assume on behalf of the user, dynamically building
agent teams, determining how to assign the organizational
tasks (e.g., presentations), and providing access to online
data such as calendars and restaurants.

Organizing External Meetings
To demonstrate how the technology supports less structured
environments, we also applied the Electric Elves to the task
of planning and coordinating ad hoc meetings at confer-
ences and workshops involving individuals across different
organizations. The system identifies people that have simi-
lar research interests, coordinates scheduling a meeting with
those people, locates a suitable restaurant for a meeting that
takes into account dietary constraints, and makes a reserva-
tion using an online reservation service.

To identify individuals with related interests, the agents
use an online bibliography service that provides a list of the
papers written by an individual. When a person is going to a
meeting, their agent can check an online source to locate in-

dividuals going to the same meeting and then build a model
of the research interests of the different participants based
on their publications. Using this information, the user se-
lects the participants for the meeting and the agent sends out
an invitation to each of the potential attendees.

Once the agent has finalized the set of participants for a
meeting, it selects an appropriate place to have the meeting.
It does this by checking for any known dietary restrictions
and uses that information to identify suitable cuisine types.
Next, the agent goes out to an online restaurant reservation
site to find the set of restaurants closest to the given location
and matches up these restaurants with a restaurant review
site to select the high-quality restaurants. The user selects
from a small set of close, highly-recommended restaurants
and the agent then makes a reservation for the meeting using
the online reservation system.

This application highlights two additional technical chal-
lenges: gathering information about people from other orga-
nizations and ensuring the robustness of the interaction with
online sources that change frequently.

Underlying Technologies
In this section we describe how we addressed some of the
technical challenges, namely the issues of interacting with
human users within an organization, providing reliable ac-
cess to organization-related data, dynamic assignment of
organizational tasks, deriving knowledge about the partici-
pants in an organization, and coordination of agent teams.

Agent Interactions with Human Users
Electric Elves agents must often take actions on behalf of the
human users. Specifically, a user’s agent proxy (named “Fri-
day” after Robinson Crusoe’s servant and companion) can
take autonomous actions to coordinate collaborative activi-
ties (e.g., meetings). Friday’s decision making on behalf of
a person naturally leads to the issue of adjustable autonomy.
An agent has the option of acting with full autonomy (e.g.,
delaying a meeting, volunteering the user to give a presenta-
tion, ordering a meal). On the other hand, it may act without
autonomy, instead asking its user what to do. Clearly, the
more decisions that Friday makes autonomously, the more
time and effort it saves its user. Yet, given the high uncer-
tainty in Friday’s knowledge of its user’s state and prefer-
ences, it could potentially make very costly mistakes while
acting autonomously. For example, it may order an expen-
sive dinner when the user is not hungry, or volunteer a busy
user to give a presentation. Thus, each Friday must make in-
telligent decisions about when to consult its user and when
to act autonomously.

Our initial attempt at adjustable autonomy was inspired
by CAP (Mitchell et al. 1994), an agent system for advising
a user on scheduling meetings. As with CAP, each Friday
tried to learn its user preferences using decision trees under
C4.5 (Quinlan 1993). One problem became apparent when
applying this technique in Electric Elves: a user would not
grant autonomy to Friday in making certain decisions, but
s/he would sometimes be unavailable to provide any input at
decision time. Thus, a Friday could end up waiting indefi-
nitely for user input and miscoordinate with its teammates.



We therefore modified the system so that if a user did not re-
spond within a fixed time limit, Friday acted autonomously
based on its learned decision tree. Unfortunately, when we
deployed the system in our research group, it led to some
dramatic failures. For instance, one user’s proxy erroneously
volunteered him to give a presentation. C4.5 had overgener-
alized from a few examples to create an incorrect rule. Al-
though Friday tried asking the user at first, because of the
timeout, it had to eventually follow the incorrect rule and
take the undesirable autonomous action.

It was clear, based on this experience, that the team con-
text in Electric Elves would cause difficulties for existing
adjustable-autonomy techniques (Dorais et al. 1998; Fergu-
son, Allen, & Miller 1996; Mitchell et al. 1994) that fo-
cused on solely individual human-agent interactions. There-
fore, we developed a novel, decision-theoretic planning ap-
proach that used Markov Decision Processes (MDPs) (Put-
erman 1994) to support explicit reasoning about team co-
ordination. The MDPs used in our framework (Scerri, Py-
nadath, & Tambe 2001) provide Friday with a novel three-
step approach to adjustable autonomy: (i) Before transfer-
ring decision-making control, an agent explicitly weighs the
cost of waiting for user input and any potential team misco-
ordination against the likelihood and cost of erroneous au-
tonomous action; (ii) When transferring control, an agent
does not rigidly commit to this decision, but it instead
flexibly reevaluates when its user does not respond, some-
times reversing its decision and taking back autonomy; (iii)
Rather than force a risky decision in situations requiring au-
tonomous action, an agent changes its coordination arrange-
ments by postponing or reordering activities to potentially
buy time to lower decision cost/uncertainty. Since these
coordination decisions and actions incur varying costs and
benefits over time, agents look ahead over the different se-
quences of possible actions and plan a policy that maximizes
team welfare.

We have implemented MDPs that model Friday’s deci-
sions on meeting rescheduling, volunteering its user to give
a presentation, and selecting which user should give a pre-
sentation. For instance, consider one possible policy, gen-
erated from an MDP for the rescheduling of meetings. If
the user has not arrived at the meeting five minutes prior to
its scheduled start, this policy specifies “ask the user what
to do”. If the user does not arrive by the time of the meet-
ing, the policy specifies “wait”, so the agent continues acting
without autonomy. However, if the user still has not arrived
five minutes after the meeting is scheduled to start, then the
policy chooses “delay by 15 minutes”, which the agent then
executes autonomously.

Flexible Assignment of Tasks
The human agents and software agents in our organization
perform a wide variety of tasks that are often interrelated.
Agents often need to delegate a subtask to another agent ca-
pable of performing it (e.g., reserve a meeting room), invoke
another agent to gather and report back necessary informa-
tion (e.g., find the location of a person), or rely on another
agent to execute some task in the real world (e.g., attend a
lunch meeting). Simple agent matchmaking is sufficient in

many multi-agent systems where agents perform one (or at
most a few) kind of task, and their capabilities are designed
by the system developers to fit the interactions anticipated
among the agents. In contrast, our agents are complex and
heterogeneous, and the agents that issue a request cannot be
expected to be aware of what other agents are available and
how they are invoked.

We have developed an agent matchmaker called PHOS-
PHORUS (Gil & Ramachandran 2001), which builds on
previous research on matching problem solving goals and
methods in EXPECT (Swartout & Gil 1995; Gil & Gonzalez
1996). The main features of this approach are: 1) a declara-
tive language to express task descriptions that includes rich
parameter type expressions to qualify task types; 2) task de-
scriptions are fully translated into description logic to de-
termine subsumption relations among tasks; 3) task descrip-
tions are expressed in terms of domain ontologies, which
provide a basis for relating and reasoning about different
tasks and enables reformulation of tasks into subtasks.

Agent capabilities and requests are represented as verb
clauses with typed arguments (as in a case grammar), where
each argument has a name (usually a preposition) and a pa-
rameter. The type of a parameter may be a specific instance,
an abstract concept (marked with spec-of), an instance type
(marked with inst-of), and extensional or intensional sets of
those three types. Here are some examples of capabilities of
some researchers and project assistants:

“agents that can discuss Phosphorus”

((capability (discuss (obj Phosphorus-project)))
(agents (gil surya chalupsky russ)))

“agents that can setup an LCD projector in a meeting room”

((capability (setup (obj (?v is (inst-of lcd-projector)))
(in (?r is (inst-of meeting-room)))))

(agents (itice)))

Requests are formulated in the same language, and can
ask about general types of instances (e.g., what agents can
setup any kind of equipment for giving research presenta-
tions in a meeting room).

Description logic and subsumption reasoning are used to
relate different task descriptions. Both requests and agent
capabilities are translated into Loom (MacGregor 1991).
Loom’s classifier recognizes that the capability to “setup
equipment” will subsume one to “setup LCD projector”, be-
cause according to the domain ontologies equipment sub-
sumes LCD projector.

PHOSPHORUS performs task reformulations when there
are no agents with capabilities that subsume a request. In
that case, it may be possible to fulfill the request by decom-
posing it into subtasks. This allows a more flexible matching
than if one required a single agent to match all capabilities
in the request. PHOSPHORUS supports set reformulations
(breaking down a task on a set into its individual elements)
and covering reformulations (decomposing a task into the
disjoint subclasses of its arguments). For example, no single
agent can discuss the entire Electric Elves project, since no
single researcher is involved in all the aspects of the project.
But PHOSPHORUS can return a set of people who can col-
lectively cover the topic based on the subprojects:



(COVERING -name ARIADNE-PROJECT
-matches KNOBLOCK MINTON LERMAN

-name PHOSPHORUS-PROJECT
-matches GIL SURYA CHALUPSKY RUSS

-name TEAMCORE-PROJECT
-matches

(COVERING
-name ADJUSTABLE-AUTONOMY-PROJECT

-matches TAMBE SCERRI PYNADATH
-name TEAMWORK-PROJECT

-matches TAMBE PYNADATH MODI)
-name ROSETTA-PROJECT

-matches GIL CHALUPSKY)

Many additional challenges lay ahead regarding capabil-
ity representations for people within the organization. For
example, although anyone has the capability to call a taxi for
a visitor (and will do so if necessary), project assistants are
the preferred option. Extensions to the language are needed
to express additional properties of agents, such as reliability,
efficiency, and invocation guidelines.

Reliable Access to Information

Timely access to up-to-date information is crucial to the
successful planning and execution of tasks in the Electric
Elves organization. Agents making decisions on behalf of
human users need to extract information from multiple het-
erogeneous information sources, including organizational
databases (personal schedules, staff lists) and external Web
sites, such as airline schedules, restaurant information, traf-
fic and weather updates, etc. In order to pick a restaurant
for a scheduled lunch meeting, the agents access the Restau-
rant Row site to get the locations of restaurants that meet the
specified criteria, e.g., dietary restrictions. Wrappers enable
Web sources to be queried as if they were databases by other
applications, such as the Electric Elves agents. A critical
part of a wrapper is a set of extraction rules that enable the
wrapper to quickly locate the beginning and end of the data
to be extracted from a Web page in response to some query.

The Ariadne component (Knoblock et al. 2000; 2001) of
Electric Elves learns wrappers from pages in which relevant
data has been labeled by the user. Previous research has fo-
cused on applying machine learning techniques to rapidly
generate wrappers (Muslea, Minton, & Knoblock 2000;
Kushmerick 2000), but few attempts have been made to val-
idate data, detect failures (Kushmerick 1999) or repair wrap-
pers when the source pages change in a way that breaks
the wrapper. Automatically monitoring external information
sources and repairing wrappers when errors are detected is a
critical part of a robust dynamic organization.

We address the problem of wrapper verification by apply-
ing machine learning techniques to learn a set of patterns
that describe the content of the extracted data. Since the in-
formation for a single data field can vary considerably, the
system learns a statistical distribution of patterns. Wrappers
can be verified by comparing newly extracted data to the
learned patterns. When a significant difference is found, we
can launch the wrapper repair process.

The learned patterns represent the structure of data as a
sequence of words and wildcards. Wildcards represent syn-

tactic categories to which words belong—alphabetic, nu-
meric, capitalized, etc.. For example, a set of street ad-
dresses all start with a pattern “ Number Capitalized ”: a
number followed by a capitalized word. The algorithm we
developed (Lerman & Minton 2000) finds all statistically
significant starting and ending patterns in a set of positive
examples of the data field. A pattern is significant if it occurs
more frequently than would be expected by chance if the
tokens were generated randomly and independently of one
another. Our approach is similar to work on grammar induc-
tion (Carrasco & Oncina 1994), but our pattern language is
better suited for capturing the regularities in small data fields
(as opposed to languages). For verification, we learn the pat-
terns from training examples (data extracted by the wrapper
that is known to be correct). Next, the wrapper generates a
set of test examples from pages retrieved using the same or
similar set of queries. If the patterns describe statistically the
same proportion of the test examples as the training exam-
ples, the wrapper is deemed correct; otherwise, it has failed.

The most common causes of wrapper failure are changes
in Web site layout. Even minor changes can break the wrap-
per’s data extraction rules. However, since the content tends
to remain the same, it is often possible to automatically re-
pair the wrapper by learning new extraction rules. We ex-
ploit the learned patterns to find correct examples of data on
the new pages. The Restaurant Row wrapper allows us to re-
trieve several examples of restaurant addresses, and the ver-
ification algorithm learned that some of the examples start
with the pattern “ Number Capitalized ” and end with the
pattern “Avenue”. If Restaurant Row changes to look more
like the Zagat Web site, the wrapper will no longer extract
addresses correctly. In the verification phase we will detect
the failure because the extracted data is not described by the
patterns. However, since restaurant addresses still start with
“ Number Capitalized ” and end with “Avenue”, we should
be able to find addresses on the changed pages. Once the
desired information has been found, these examples and the
new pages are sent to the wrapper generation system to learn
new data extraction rules. We use prior knowledge about the
content of data, as captured by the learned patterns, along
with a priori expectations about the data to identify correct
examples on the changed pages. We can expect the same
data field to appear in roughly the same position and in a
similar context on each page; moreover, we expect at least
some of the data to remain unchanged.

Our approach can be extended to automatically create
wrappers for new information sources using data extracted
from a known source. Thus, once we learn what restaurant
addresses look like, we can use this information to extract
addresses from any yellow pages-type source, and use it to
create a wrapper for this source.

Knowledge from Unstructured Sources
As mentioned above, an agent-assisted organization cru-
cially depends on access to accurate and up-to-date informa-
tion about the humans it supports as well as the environment
in which they operate. Some of this information can be pro-
vided directly from existing databases and online sources,
but other information—people’s expertise, capabilities, in-



terests, etc.—will often not be available explicitly and might
need to be modeled by hand. In a dynamic environment
such as Electric Elves, however, manual modeling is only
feasible for relatively static information. For example, if at
some conference we want to select potential candidates for
a lunch meeting with Yolanda Gil based on mutual research
interests, it is not feasible to manually model relevant knowl-
edge about each person on the conference roster before such
a selection can be made.

To support team-building tasks such as inviting people for
a lunch meeting, finding people potentially interested in a
presentation or research meeting, finding candidates to meet
with a visitor, etc., we developed a matchmaking service
called the Interest Matcher. It can match people based on
their research interests but also take other information into
account such as involvement in research projects, present
and past affiliation, universities attended, etc. To minimize
the need for manual modeling in a dynamic environment, we
combined statistical match techniques from the area of infor-
mation retrieval (IR) with logic-based matching performed
by the PowerLoom knowledge representation (KR) system.
The IR techniques work well with unstructured text sources
available online on the Web, which is the form in which
information is typically available to outside organizations.
PowerLoom facilitates declarative modeling of the decision
process, modeling of missing information, logical inference,
explanation and also customization.

The matchmaker’s knowledge base contains an ontology
of research topic areas and associated relations; rules for-
malizing the matchmaking process; and manually modeled,
relatively static information about staff members, research
projects, etc. To perform a particular matchmaking task, a
requesting agent sends a message containing an appropriate
PowerLoom query to the Interest Matcher. For example, the
following query finds candidates for lunch with Yolanda Gil:

(retrieve all ?x (should-meet ?x Gil))

The should-meet relation and one of its supporting relations
are defined as follows in PowerLoom:

(defrelation should-meet ((?p1 Person) (?p2 Person))
:( (or (interests-overlap ?p1 ?p2)

(institution-in-common ?p1 ?p2)
(school-in-common ?p1 ?p2)))

(defrelation interests-overlap ((?p1 Person) (?p2 Person))
:( (exists (?interest1 ?interest2)

(and (research-interest ?p1 ?interest1)
(research-interest ?p2 ?interest2)
(or (subset-of ?interest1 ?interest2)

(subset-of ?interest2 ?interest1)))))

For more specific purposes, any of the more basic re-
lations comprising should-meet such as interests-overlap
could be queried directly by a client. Using a general pur-
pose KR system as the matching engine provides us with this
flexibility. Note, that for interests-overlap we only require a
subsumption relationship, e.g., interest in planning would
subsume (or overlap with) interest in hierarchical planning.

To deal with incompleteness of the KB, we allow a
requesting agent to introduce new individuals and then

the Interest Matcher automatically infers limited structured
knowledge—their research interests—by analyzing relevant
unstructured text sources on the Web.

The key idea is that people’s research interests are im-
plicitly documented in their publication record. We make
these interests explicit by associating each research topic in
the PowerLoom topic ontology with a statistical representa-
tion of a set of abstracts of research papers representative of
the topic. These topic sets are determined automatically by
querying a bibliography search engine such as Cora or the
NEC ResearchIndex with seed phrases representative of the
topic (access to such Web sources is facilitated by Ariadne
wrappers). We then query the same search engine for pub-
lication abstracts of a particular researcher and then classify
them by computing statistical similarity measures between
the researcher’s publications and the topic sets determined
before. We use a standard IR vector space model to repre-
sent document abstracts and compute similarity by a cosine
measure and by weighting terms based on how well they
signify particular topic classes (Salton & McGill 1983).

Coordination of Component Agents
The diverse agents in Electric Elves must work together to
accomplish the complex tasks of the whole system. For in-
stance, to plan a lunch meeting, the interest matcher finds
a list of potential attendees, the Friday of each potential
attendee decides whether s/he will attend, the capability
matcher identifies dietary restrictions of the confirmed at-
tendees, and the reservation site wrapper identifies possible
restaurants and makes the final reservation. In addition to
low-level communication issues, there is the complicated
problem of getting all these agents to work together as a
team. Each of these agents must execute its part in coor-
dination with the others, so that it performs its tasks at the
correct time and sends the results to the agents who need
them.

However, constructing teams of such agents remains a
difficult challenge. Current approaches to designing agent
teams lack the general-purpose teamwork models that would
enable agents to autonomously reason about the commu-
nication and coordination required. The absence of such
teamwork models makes team construction highly labor-
intensive. Human developers must provide the agents with a
large number of problem-specific coordination and commu-
nication plans that are not reusable. Furthermore, the result-
ing teams often suffer from a lack of robustness and flexibil-
ity. In a real-world domain like Electric Elves, teams face a
variety of uncertainties, such as a member agent’s unantic-
ipated failure in fulfilling responsibilities (e.g., a presenter
is delayed), members’ divergent beliefs, and unexpectedly
noisy communication. It is difficult to anticipate and pre-
plan for all possible coordination failures.

In Electric Elves, the agents coordinate using Teamcore,
a domain-independent, decentralized, teamwork-based inte-
gration architecture (Pynadath et al. 1999). Teamcore uses
STEAM, a general-purpose teamwork model (Tambe 1997)
and provides core teamwork capabilities to agents by wrap-
ping them with Teamcore proxies (separate from the Friday
agents that are user proxies). By interfacing with Team-



core proxies, existing agents can rapidly assemble them-
selves into a team to solve a given problem. The Teamcore
proxies form a distributed team-readiness layer that provides
the following social capabilities: (i) coherent commitment
and termination of joint goals, (ii) team reorganization in re-
sponse to member failure, (iii) selective communication, (iv)
incorporation of heterogeneous agents, and (v) automatic
generation of tasking and monitoring requests. Although
other agent-integration architectures such as OAA (Mar-
tin, Cheyer, & Moran 1999) and RETSINA (Sycara et al.
1996) provide capability (iv), Teamcore’s use of an explicit,
domain-independent teamwork model allows it to support
all five required social capabilities.

Each and every agent in the Electric Elves organization
(Fridays, matchers, wrappers) has an associated Teamcore
proxy that records its membership in various teams and ac-
tive commitments made to these teams. Given an abstract
specification of the organization and its plans, the Teamcore
proxies automatically execute the necessary coordination
tasks. They form joint commitments to team plans such as
holding meetings, hosting and meeting with visitors, arrang-
ing lunch, etc. Teamcore proxies also communicate amongst
themselves to ensure coherent and robust plan execution.
The Teamcore proxies automatically substitute for missing
roles (e.g., if the presenter is absent from the meeting) and
inform each other of critical factors affecting a team plan.
Finally, they communicate with their corresponding agents
to monitor the agents’ ability to fulfill commitments (e.g.,
asking Friday to monitor its user’s attendance of a meeting)
and to inform the agents of changes to those commitments
(e.g., notifying Friday of a meeting rescheduling).

Electric Elves Architecture
Electric Elves is a complex and heterogeneous system span-
ning a wide variety of component technologies and lan-
guages, communication protocols as well as operating sys-
tem platforms. Figure 2 shows the components of the current
version of Electric Elves. Teamcore agents are written in
Python and Soar (which is written in C), Ariadne wrappers
are written in C++, the PHOSPHORUS capability matcher
is written in Common-Lisp and the PowerLoom interest
matcher is written in STELLA (Chalupsky & MacGregor
1999) which translates into Java. The agents are distributed
across SunOS 5.7, Windows NT, Windows 2000 and Linux
platforms, and use TCP/IP, HTTP and the Lockheed KQML
API to handle specialized communication needs.

Tying all these different pieces together in a robust and
coherent manner constitutes a significant engineering chal-
lenge. Initially we looked for an implementation of KQML,
but there was none available that supported all the languages
and platforms we required. To solve this integration prob-
lem, we are using the DARPA supported CoABS Grid tech-
nology developed by Global InfoTek, Inc. and ISX Corpo-
ration1. The CoABS Grid is a Java-based communication
infrastructure built on top of Sun’s Jini networking technol-
ogy. It provides message and service-based communication
mechanisms, agent registration, lookup and discovery ser-

1http://coabs.globalinfotek.com/coabs public/coabs pdf/gridvision.pdf

vices, as well as message logging, security and visualization
facilities. Since it is is written in Java, it runs on a wide vari-
ety of OS platforms, and it is also relatively easy to connect
with non-Java technology. Grid proxy components connect
non-Java technology to the Grid.

We primarily use the CoABS Grid as a uniform trans-
port mechanism. The content of Grid messages are in
KQML format and could potentially be communicated via
alternative means. Not all Electric Elves message traffic
goes across the Grid. For example, the Teamcore agents
communicate via their own protocol (the Lockheed KQML
API) and only use the Grid to communicate with non-
Teamcore agents such as the capability and interest match-
ers. Similarly, the information retrieval engine communi-
cates with Ariadne wrappers directly via HTTP instead of
going through the Grid.

Related Work
Several agent-based systems have been developed that sup-
port specific tasks within an organization, such as meeting
scheduling (Dent et al. 1992) and visitor hosting (Kautz et
al. 1994; Sycara & Zeng 1994). In contrast to these systems,
we believe that our approach integrates a range of technolo-
gies that can support a variety of tasks within the organi-
zation. Agent architectures have been applied to organiza-
tional tasks (Sycara et al. 1996; Martin, Cheyer, & Moran
1999; Lesser et al. 1999), but none of them include tech-
nology for team work, adjustable autonomy, and dynamic
collection of information from external sources.

To our knowledge, Electric Elves represents the first
agent-based system that is used for routine tasks within a
human organization. Several other areas of research have
looked at complementary aspects of the problems that we
aim to address. Research on architectures and systems for
Computer-Supported Cooperative Work include a variety
of information management and communication technolo-
gies that facilitate collaboration within human organizations
(Greenberg 1991; Malone et al. 1997). In contrast with our
work, they do not have agents associated with people that
have some degree of autonomy and can make decisions on
a human’s behalf. Our work is also complementary and can
be extended with ongoing research on ubiquitous comput-
ing and intelligent buildings (Lesser et al. 1999). These
projects are embedding sensor networks and agents to con-
trol and improve our everyday physical environments. This
kind of infrastructure would make it easier for Electric Elves
to locate and contact people as well as to direct the environ-
mental control agents in support of organizational tasks.

Current Status
The Electric Elves system has been in use within our re-
search group at ISI since June 1, 2000; and operating con-
tinuously 24 hours a day, 7 days a week (with interruptions
for bug fixes and enhancements). Usually, nine agent prox-
ies are working for nine users, with one proxy each for a ca-
pability matcher and an interest matcher. The proxies com-
municate with their users using a variety of devices: work-
station display, voice, mobile phones, and palm pilots. They
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Figure 2: Electric Elves System Architecture

Figure 3: Number of daily coordination messages ex-
changed by proxies over a seven-month period.

also communicate with restaurants by sending faxes.
Figure 3 plots the number of daily messages exchanged by

the proxies for seven months (June 1, 2000 to December 31,
2000). The size of the daily counts demonstrates the large
amount of coordination actions necessary in managing all of
the activities such as meeting rescheduling. The high vari-
ability is due to the variance in the number of daily activities,
e.g., weekends and long breaks such as the Christmas break,
usually have very little activity. Furthermore, with continu-
ally increasing system stability, the amount of housekeeping
activity necessary has reduced automatically.

Several observations show the effectiveness of Electric
Elves. First, over the past several months, few emails have
been exchanged among our group members indicating to
each other that they may get delayed to meetings. Instead,
Friday agents automatically address such delays. Also the
overhead of waiting for delayed members in meeting rooms
has been reduced. Overall, 1128 meetings have been mon-
itored, out of which 285 have been rescheduled, 230 auto-
matically and 55 by hand. Both autonomous rescheduling
and human intervention were useful in Elves.

Furthermore, whereas in the past, one of our group mem-
bers would need to circulate emails trying to recruit a pre-
senter for research meetings and making announcements,
this overhead has almost completely vanished—weekly auc-
tions automatically select the presenters at our research
meetings. These auctions are automatically opened when
the system receives notification of any meeting requiring a
presentation. Auction decisions may be made without re-
quiring a full set of bids; in fact, in one case, only 4 out of
9 possible bids were received. The rest of the group sim-
ply did not bid before the winner was announced. Most of
the time, the winner was automatically selected. However,
on two occasions (July 6 and Sept 19) exceptional circum-
stances (e.g., a visitor) required human intervention, which
our proxy team easily accommodates.

Discussion
As described in this paper we have successfully deployed the
Electric Elves in our own real-world organization. These
agents interact directly with humans both within the or-
ganization and outside the organization communicating by
email, wireless messaging, and faxes. Our agents go beyond
simply automating tasks that were previously performed by
humans. Because hardware and processing power is cheap,
our agents can perform a level of monitoring that would
be impractical for human assistants, ensuring that activi-
ties within an organization run smoothly and that events are
planned and coordinated to maximize the productivity of the
individuals of an organization.

In the process of building the applications described in
this paper we addressed an number of key technology prob-
lems that arise in any agent-based system applied to hu-
man organizations. In particular we described how to use
Markov Decision Processes to determine the appropriate de-
gree of autonomy for the agents, how to use knowledged-
based matchmaking to assign tasks within an organization,
how to apply machine learning techniques to ensure robust



access to the data sources, how to combine knowledge-based
and statistical matchmaking techniques to derive knowledge
about the participants both within and outside an organiza-
tion, and how to apply multi-agent teamwork coordination
to dynamically assemble teams.
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