Infrastructure Components for Large-Scale Information Extraction Systems

William W. Cohen
Center for Automated Learning and Discovery
Carnegie-Mellon University
Pittsburgh PA 15213
william@wcohen.com

Abstract
Large-scale systems for information extraction include many different classifiers and extractors. Experience in building such systems shows that finding an appropriate architecture is both difficult and important: in particular, in systems containing many learned components, it is important to cleanly share information between the components, and to flexibly sequence the actions of the components. In this paper, an architecture for large-scale information extraction systems is described, based on a light-weight, flexible blackboard system for communicating between components, and a declarative control system for automatically sequencing component-level tasks like classification, extraction, and feature computation.

Introduction
In this paper, I will describe what I believe to be a crucial piece of infrastructure for complex, real-world information extraction systems. Specifically, I will describe a light-weight, flexible blackboard system for communicating between extraction and classification components, and show how this information-sharing scheme can be closely integrated with a declarative control system that automatically sequences lower-level components, which perform tasks like classification, extraction, and feature computation.

The claim that such a system is “crucial” is to some degree at odds with the academic literature on learning and information extraction. Most published papers in these areas address a small set of well-defined tasks, such as text classification, named entity extraction, entity-name matching (e.g., Cohen 1998; McCallum, Nigam, & Ungar 2000) and entity association (e.g., Jensen & Cohen 2001; Ray & Craven 2001). In almost all published papers, performance on these problems is considered in isolation, independent of the larger context in which the subtask is performed, and independent of the architecture used to coordinate these subtasks.

However, realistic complete systems for information extraction and question-answering (e.g., Knoblock et al. 1998; Craven et al. 2000; Murphy, Velliste, & Porreca 2001; Buckley et al. 1999; Cohen et al. 1998) typically include many components, often including many types of classifiers and extractors. In many cases, good overall system performance requires these components to interact closely. My experience in building such systems, in industry (Cohen, McCallum, & Quass 2000) and elsewhere (Cohen 1999), has been that architecting large-scale information extraction systems of this sort is quite difficult.

In particular, experience has shown that in systems containing many learned components, it can be surprisingly difficult to cleanly share information between the components, and to properly sequence the actions of the components. There are a number of reasons why this is true.

• Multiple representations. Large-scale extraction systems often use a diverse, heterogeneous set of techniques for classification and extraction. For instance, to extract information about university professors, it might be appropriate to use a character trigram model to determine if a page is in English; to use a hidden Markov model to extract personal names; to use hand-coded regular expressions to extract phone numbers and email addresses; to use an XPath (Clark & DeRose 1999) query to extract PDF and postscript papers; and to use a rote list to extract university names. In many cases, this means that the system will require multiple representations of what is conceptually the same object—for instance, a single web page might have a character-string representation, a token sequence representation, and a DOM representation.

• Expanding sets of objects. Information is shared between components about many different things. While some of these things are known to exist at the start of the computation (e.g., the page at “http://wcohen.com”) it is very common for new things to be “discovered”, or at least hypothesized to exist, during the course of a computation (e.g., “the common referent of the strings ‘William W. Cohen’, and ‘Dr. Cohen’”). Allowing a decentralized, heterogeneous set of components to create things makes sharing information more difficult—for instance, it is not enough to simply add labels to some fixed set of objects.

• Relationships between objects. In addition to stating properties about things (e.g., “page P is in the category “home page””, or “entity name N is a ‘person name’”) it is also necessary for components to exchange information about the relationships between things (e.g., “entity names U and P appear in the same paragraph”, “univer-
An extended example

Of course, none of the difficulties discussed above are insurmountable, if encountered on a small scale—the actions of a small and relatively static collection of extractors and classifiers can be combined with (for instance) a set of simple shell scripts. As systems become more complex and fluid, however, control and communication between components becomes more important.

To illustrate this, I will present a concrete real-world example of a subtask of a real-world information extraction system. In current work, I and colleagues are extending a system called SLIF which extracts biologically important properties from certain images in biomedical publications (Murphy, Velliste, & Porreca 2001; Cohen, Wang, & Murphy 2003). Specifically, SLIF analyzes fluorescence microscopy images of cells, and extracts features relating to the subcellular localization of proteins depicted in these microscope images. The extended system associates these localization features with cell names and protein names from the caption accompanying the image.

To compute biologically meaningful localization features, SLIF needs to know the scale of an image. Usually the scale is indicated by a bar in the image, and a comment in the caption (like “scale bar, 10mm”). One can thus find the scale of an image by locating the scale bar graphic in the image and separately finding the scale bar measurement (e.g., “10mm”) in the caption. Since knowing the scale is a prerequisite of the later, more complex image processing, this scale-finding task must be performed before the localization features are computed.

So far, the control issues can be easily addressed, but complexities arise when we consider other cases. A single figure can contain multiple subimages. These subimages may each have their own scale bar, as on the left of Figure 1; or, scale bars can be shared, as on the right of Figure 1. In this case, we need to split the full image into panels (subimages containing a single microscope image); find all scale bar graphics in the figure; and determine how scale bar graphics are shared, based on some understanding of the relative position of the panels. All this processing must again occur before localization features are computed.

It is also possible that there are different scale bar measurements associated with different scale bars in the same figure. For instance, the caption for the right-hand image of Figure 1 might read “Bars, A-F, 10 mm; G and H, 5 mm”.

To handle this case, we need not only to split the full image into “panels”, but also associated each panel with its panel label (here “A”, “B”, . . . , “H”); further, we must associate
the different scale bar measurements from the caption with the appropriate panel labels. This requires using OCR on the individual panels to find their labels, as well as performing some non-trivial text-processing on the captions (Cohen, Wang, & Murphy 2003). Again, this must occur before localization features are computed.

As it turns out, performing OCR to find panel labels is relatively slow. To reduce processing time, one might elect not to run the scale-finding process unless some panel of the figure actually contains an image for which localization features can be computed. It turns out that the first step of finding localization features for a panel is to run a panel classifier that determines if a panel is a fluorescence microscope image. This classifier is relatively fast, so one can improve run-time performance if one imposes a new control constraint—that the panel classifier be run on each panel after partitioning the figure, but before running OCR.

On the other hand, it might be that having a scale-bar (or a scale in a certain range) is a good indicator of whether or not an image is a fluorescence microscope image. In that case, one might want to perform some of the less expensive steps of scale-finding (e.g., finding scale bar measurements in the caption) in the process of computing features for the panel classifier. This imposes an additional constraint, which now forces the conceptually separate steps of scale-finding and localization-feature computation to be closely intermixed. Some scale-finding must happen relatively early (before classifying panels); and some of must happen late (after performing OCR and parsing captions.)

For the example, it’s hard to say how many of the control “constraints” discussed above need to be enforced. It might be that some of the more complex scale-finding cases are rare, and can be safely ignored; it might be that OCR is not substantially more expensive than the running a panel classifier; or it might be that finding scale bar measurements does not make the panel-classifier more accurate. Only detailed experimentation and benchmarking can determine which control strategies give the best tradeoff in terms of speed and accuracy. However, it is clear from the discussion that in a complex real-world extraction domain, it is important for a system to allow designers to flexibly explore different ways of sequencing the various extraction, classification, and feature-computation components.

Proposed Solution

Outline, requirements, and desiderata

In outline, the proposed solution to these difficulties consists of two pieces. The first piece is a blackboard system that can perform the key tasks of creating identifiers for new “things”, storing and retrieving alternative representations of things, and storing and retrieving assertions about the relationships between things used by the extraction system.

The blackboard system is closely integrated with a control system. The control system takes as input a declarative description of what inputs are needed and what outputs are produced by each lower-level component, together with a list of goal outputs that must be produced by the system. The control system then finds and executes a sequence of calls to the lower-level components that produce the goal outputs.

Reflection suggests a number of important requirements.

The blackboard must be able to store arbitrarily complex subsystem-specific representations of the objects being manipulated: for instance, one should be able to create and/or store multiple representations of a web page easily, as well as storing multiple representations of a web site (say, as a graph of hyperlinks, or as a set of pages). The blackboard must also have clear semantics, be easily implemented, and be accessible from multiple host languages.

It is desirable for the blackboard system to use accepted communication and representation standards, when they are appropriate. Further, since being able to work with many different types of components is important, it is desirable if the blackboard is (at least in part) file-based—by which I mean that files constructed by (or for) off-the-shelf software components can be viewed as part of the blackboard itself. In the event that a computation unexpectedly fails, it is also desirable to be able for programmers to easily browse the state of the blackboard. Finally, it is desirable for the blackboard system to be distributed. Information extraction is often computationally expensive, and it is advantageous to be able to distribute a computation over different machines on the same network.

The control system must be efficient, modular, and restartable. By modular we mean that all control information can be (easily!) segregated into a single subsystem, where it can be monitored, debugged, and changed. By restartable we mean that a failed computation can be restarted from the point at which it failed (up to the level of granularity provided by the lower-level components). Even more importantly, it must be possible to efficiently perform any computation done by a single lower-level component, so that each component can be effectively tuned and tested.

It is also desirable for the control system to be comprehensible to non-logicians, and for it to be feasible to merge declarative and imperative control, for those cases in which declarative control is not appropriate or convenient. For debugging, it should also be possible to determine which component is responsible for adding what blackboard data.

The underlying semantic model

The world modeled by the blackboard consists of three different varieties of entities: external entities, decompositions of entities, and views (or representations) of entities. These entities can also be associated together by relations.

An external entity corresponds to something that has (or is hypothesized to have) existence in the world being modeled. In the extended version of SLIF, these are objects like papers, captions, sentences, figures, and panels. External entities are not directly represented by the blackboard system, but names or identifiers of external entities do exist, and assertions about external entities can be stored.

Every external entity can be associated with any number of views or representations of itself. A view of an entity is a computer-readable description of that entity, at some level of abstraction. For instance, one might have both JPEG and color-histogram views of the same image, or token-sequence views of a computer-readable description of that entity at some level
and parse-tree views of the same document. Every view has
a label, which consists of a name and an extension.

An external entity can also be associated with one or more
decompositions of itself. A decomposition describes a par-
ticular way in which an external entity can be broken up into
parts, and also specifies the resulting parts (which are exter-
nal entities). The parts need not be an exhaustive partition
of the original entity, but they should be of the same type.
In figure processing, for instance, a paper is decomposed
into figures, a figure is decomposed into panels, and a mi-
croscope panel might be decomposed into individual images
of cells. A decomposition also has a label. Decomposition
labels allow objects to be split into subparts in different, po-
tentially overlapping ways; for instance, a PDF document
might be decomposed into pages and also into sentences.

Views and decompositions are also considered to be enti-
ties, but of a different sort than external entities. While exter-
nal entities correspond to things in the "real" world that
the extraction system is trying to model, views and decom-
positions correspond to things inside the blackboard system
itself.

The network of external entities, views, and decomposi-
tions can be visualized as a forest, as shown in Figure 2.
By adding an additional artificial "root" entity to the forest,
one can force it to be a tree. In this tree, called the entity
tree, external entities are parents of associated views and de-
compositions, and decompositions are parents of their "part"
entities.

In information extraction applications, most entities are
naturally subparts of something else. The entity tree defines
a part-subpart relationship, as follows: entity e_1 is a subpart
of entity e_2 iff there is e_1 is a descendant of e_2 in the entity
tree, and if the path from e_2 to e_1 passes through at least one
decomposition entity. Entity e_1 is a direct subpart of e_2 iff
the path from e_2 to e_1 passes through exactly one decom-
sition entity.

In addition to the part/subpart relationship, entities are as-
associated together by extensionally defined relations. A re-
lation is a named set of k-tuples of entities. Following con-
vention, we will use $r(e_1, \ldots, e_k)$ for the tuple $\langle e_1, \ldots, e_k \rangle$
in the relation named r.

The naming scheme and blackboard

In order to manipulate these entities, they must be identi-
fied. A naming scheme is a one-to-one function f_{name} map-
ing entities to strings. It is possible to simply assign unique
identifiers to every entity, as in the figure. However, in our
system, the range of f_{name} is defined by the BNF gram-
mar of Table 1, and f_{name} is defined compositionally ac-
\[
\begin{align*}
\text{Entity} & \rightarrow \text{ExternalEntity} \mid \text{View} \mid \text{Decomp} \\
\text{ExternalEntity} & \rightarrow \text{ENAME} \mid \text{NamedDecomp} \text{ENAME} \\
\text{View} & \rightarrow \text{ExternalEntity-VNAME.EXT} \\
\text{Decomp} & \rightarrow \text{NamedDecomp} \\
\text{NamedDecomp} & \rightarrow \text{ExternalEntity-DNAME/} \\
\text{VNAME} & \rightarrow [A-Za-z0-9-]+ // the name of a view \\
\text{EXT} & \rightarrow [A-Za-z0-9-]+ // the MIME type of a view \\
\text{ENAME} & \rightarrow [A-Za-z0-9-]+ // the name of an entity \\
\text{DNAME} & \rightarrow [A-Za-z0-9-]+ // the name of a decomposition \\
\end{align*} \\
\end{align*} \\
\]
\[
\begin{align*}
\text{Table 1: BNF grammar for the naming scheme for entities.} \\
\end{align*} \\
\]

Notice that as new entities are constructed, it is fairly easy
to assign them names, especially if they are direct subparts
of existing entities. Notice also that the names of views look
much like file names, and all entity names look much like
URIs (Berners-Lee, Fielding, & Masinter 1998).

The blackboard stores assertions about entities: that is,
k-tuples of entities, tagged with the name of a relation. The
primitive operations on the blackboard are to store specific
(ground) assertions, and retrieve all assertions that match a
pattern. A pattern is a relation name, plus a k-tuple of
strings, which might either be entity names, or the special
value "*", which matches every entity name. No more gen-
eral notion of unification or logical variable is supported.

The blackboard also controls access to views. The primi-
tive operations are reading and writing to a view, or equiv-
ally, mapping views to file pointer/descriptor objects.
Since the names of view entities are so close to file names, this can be trivial; however, making the mapping an explicit process allows other nontrivial mappings to be used.

The blackboard is itself stored in a set of views. Specifically, all assertions \(r(e_1, \ldots, e_k) \) are stored in a view of entity \(e_1 \), labeled \(r.FACTS \), where \(e_1 \) is the nearest ancestor of \(e_1 \) that is an external entity. For instance, an assertion about the dimensions of IMG245 in Figure 2 might be stored in the view "p32-figures/fig3-dimension.FACTS". Notice that this means that assertions can be retrieved relatively easily if the value of their first argument is known, providing a simple indexing mechanism.

The view-based storage of the blackboard also means that the contents of the blackboard are contained in many separate subunits. It is convenient if the software components that use these subunits can control access to them. To implement this, define a key for an assertion \(r(e_1, \ldots, e_k) \) to be the pair \((r, e_1')\) from the discussion above. Any component can claim any unclaimed key, giving it "ownership" of the corresponding subunit. Once a key has been claimed, the owning component can restrict write access to this key by other components.

By default, the component that first claims a key is the only component with write access, and all other components have read access only. This encourages having one information "producer" and many "consumers" for each key, which simplifies execution planning and concurrency issues. A natural extension would be to restrict read access as well, which could be used for certain types of information hiding (e.g., to limit visibility of part of the blackboard to a certain set of components).

A consequence of this scheme is that components must identify themselves whenever they access the blackboard. This is desirable for other reasons: for instance, one could find redundant blackboard views that are written but never read. Another possible extension is to allow owning components to close a key, forbidding any further writes to it. This would allow a reasoning system to make a local closed world assumption (Etzioni, Golden, & Weld 1994).

Properties of the naming scheme

In this section, we will make some more precise claims about the nature of the proposed solution. We begin with some definitions.

Definition 1 (Properties of naming schemes) Let \(f_{name} \) be a naming scheme, \(S \) be an operating system, \(P \) be a unary predicate on entities, and \(R \) be a binary function on entities.

- \(f_{name} \) is RDF-compatible if there is a function \(g_{URI} \) such that for every view or decomposition entity \(e, f_{name}(e) = g_{URI}(e) \) is a valid uniform resource identifier (URI).
- \(f_{name} \) is lightweight on \(S \) if there is a function \(g_{file} \) such that (a) for every view entity \(e, f_{name}(e) = g_{file}(e) \) is a valid file name and (b) for every decomposition entity \(e, f_{name}(e) \) is a valid directory name in \(S \).
- \(f_{name} \) is accountable if it is lightweight and \(f_{name}(e) \) is efficiently invertible.

- \(f_{name} \) is faithful for \(P \) (respectively, for \(R \)) if there is a unary function \(g_P(e) \) (respectively, a binary function \(g_R(e_1, e_2) \)) such that \(g_P(f_{name}(e)) = 1 \) if \(P(e) \) is true (respectively, \(g_R(f_{name}(e_1), f_{name}(e_2)) = 1 \) if \(R(e_1, e_2) \) is true).

The desirability of these properties are clear. If \(f_{name} \) is RDF-compatible, then any blackboard assertions can be easily translated into Resource Description Framework (RDF) (Lassila & Swick 1999), which allows a wide variety of operations for transferring, storing, and reasoning with the data. If it is "lightweight", non-external entities (views and decompositions) can be implemented using the host operating systems’ file system. If it is "accountable", then files and directories created by the system can be easily mapped back to the entities they implement. If it is "faithful" for a predicate, then the predicate can be tested simply by looking at the entity names, without recourse to the blackboard.

We omit any proof of the following theorem, which is straightforward.

Theorem 1 Let \(f_{name} \) be the naming scheme of Figure 1. Let \(P_{isView}(e) \) be true iff \(e \) is a view entity, \(P_{isDecomp}(e) \) be true iff \(e \) is a decomposition entity, \(R_{part}(e_1, e_2) \) be true iff \(e_1 \) is a direct subpart of \(e_2 \), and \(R_{part*}(e_1, e_2) \) be true iff \(e_1 \) is a subpart of \(e_2 \).

Then \(f_{name} \) is RDF-compatible, lightweight on POSIX-compliant systems, accountable, and faithful for \(P_{isView}, P_{isDecomp}, R_{part}, \) and \(R_{part*} \).

Extensions to the naming scheme

Some simple extensions of the naming scheme make it more practical; for instance, we also allow relations to contain "constant entities" like "number://98.6" and "string://false", as long as (for RDF-compatibility) these entities are not the first argument of a relation.

Another useful extension is the notion of computed subparts. If the description of how to compute a subpart is compact, then it may be more convenient to include that description in the name of the subpart entity. As an example, consider the application of labeling substrings of a document as training data for a learned extraction system. One would like to generate assertions about substrings (for instance, “this substring is/Isn’t a protein name”) but it is not necessary to actually create any views of the substring. Of course, later processing might require creating views of the substring (for instance, one might wish to save a parsed or tokenized version of a substring) so one would like views of computed entities to still be mappable to file names.

Computed subparts are supported by the following additional grammar rules:

\[
\text{ComDecomp} \rightarrow \text{ComDecomp} \text{NUMBER}(\text{NUMBER})* \\
\text{ComDecomp} \rightarrow \text{ExternalEntity-\text{NAME}.EXT.FNAME/\text{FNAME} \rightarrow [A-Za-z0-9]+ // a "part-of" function}
\]

For example, the substring \(e_{32} \) extending from character position 22 to 33 of the caption of FIG199 might be named by the string "p32-figures/fig4-caption.txt.substring/22,33", and a

\[\text{Of course, other implementations are possible.}\]
The declarative control subsystem

The control subsystem consists of a set of STRIPS-like rules called view builders, together with a simple planner. Each view builder consists of preconditions, postconditions, and an action function. The postconditions specify views that will exist after the actions are successfully executed, and the preconditions specify views that must exist before the actions can be executed. The action function is an imperative function in the host language that takes as an argument two lists of entity names, corresponding to the precondition and postcondition views, and creates the postcondition views.

The pattern language for preconditions and postconditions uses a special path-like syntax based on entity names. Excepting views of the root entity, every view name can be written as “d/s-label.ext” where “d/” is a decomposition entity and “s”, “label”, and “ext” are strings; similarly, any decomposition can be written “d/s-label’”. We call “s” here a subpart stem, and “d/” the subpart container.

Each pre- or postcondition pattern is written like an entity name, except that subpart stems can be replaced with variables (uppercase letters), and subpart containers can be omitted. As an example, the following are all valid pre- and post-condition patterns:

1. Y-caption.txt
2. X-figures/Y-image.jpg
3. X-figures/Y-caption.txt
4. X-figures/Y-panels/Z-scaleBarSize.txt

These patterns are not matched by binding subpart stems to variables; instead, they are matching by binding the external entity names corresponding to these subpart stems to variables. For instance a pair of entities X, Y match pattern 2 if X has a decomposition-entity child labeled “figures”, Y has a view-entity child labeled “image.jpg”, and Y is a direct subpart of X. Each pattern thus compactly specifies a set of constraints on external entities in terms of the entity tree.

As a very simple example, the following is a legal control rule:

```
action: cc -c X-source.c
pre: X-source.c
post: X-object.o
```

The similarity of control rules and rules for the UNIX “make” utility is deliberate: recall that one design goal was comprehensibility to persons without training in planning and logic.

To simplify pattern matching, all variables in the preconditions must occur in the preconditions, except for the special variable “*”, which is implicitly universally quantified.

For convenience, some syntactic shortcuts are allowed in the pattern language. A pattern for a view containing blackboard assertions for relation r can be written “r(e1, e2, . . . , ek)”.

Figure 3 gives some control rules from the extended example of the introduction (with action functions replaced with comments). These rules specify the dependencies involved in a certain scale-finding process. To find the “panelScale” of a panel Y in a figure X, the planner might propose this sequence of actions based on these rules: (1) find all scale bar measurements (e.g. “5 mm”) in the caption of X (2) compute features for the panel classifier, including features based on the stated scale bar size (3) run the panel classifier (4) find the scale bar graphic in the image for Y (5) if Y is a fluorescence microscope image, associate a scale (in mm/pixel) with the panel.

Having the planner find this sequence “on the fly” means that it is not necessary to rewrite control code if ordering constraints change. For instance, if it is indeed necessary to find scale bar graphics that are shared between multiple panels, one might replace rule R1 in Figure 3 with

```
action: find scale bar graphics, perhaps in nearby panels
pre: X-panels/Z-subimage.jpg, X-panels/*-subimage.jpg,
panelPosition(X,Z1,UL,UR,LL,LR),
post: scaleBarGraphic(Z-subimage.jpg, UL, UR, LL, LR)
```
and the planner will automatically choose a new sequence of actions that satisfies these constraints.

Planning technology of this sort is fairly well understood. Except in very trivial cases, planning systems can not be guaranteed to be simultaneously sound, complete and efficient (Bylander 1994; Erol, Nau, & Subrahmanian 1995). In
our limited experience with this approach, however, planning is not a computational bottleneck: for SLIF, the time spent in sequencing actions of the components is dwarfed by the time needed for image processing and text analysis. This is true even though the current planner is a fairly simple one, based on backward chaining with a fixed depth bound to avoid looping.

Implementation Status

The system described above has been completely implemented (including a number of minor extensions not discussed above) and is used as the sole intra-component communication and control scheme for the extended version of SLIF, a non-trivial information extraction system. (The extended version of SLIF is currently based on about 48,000 lines of code in several languages, including Perl, C, Matlab, and Java.) Of these 48,000 lines of code, 580 non-comment source lines of code define the control strategy.

The control system and blackboard are written in Perl5, and consist of about 850 lines of non-comment source code. About 400 lines of these implement the planner. An additional 550 lines of code implement an HTML-based tool allowing developers to interactively browse or query a blackboard, or monitor progress of an extraction process.

An advantage of the extremely lightweight implementation is that it is feasible to re-implement key components in different host languages; for instance, one could easily re-implement the blackboard in C, Matlab, and Java, thus allowing closer co-ordination of components written in multiple languages. It would also be relatively simple to replace the current file-based implementation, for instance with one that keeps more information in memory for faster access.

A final advantage of the architecture is that, since view and decomposition names can be easily mapped to URI’s, it would be straightforward to have the blackboard be distributed over multiple machines; in fact, the entire extraction system could be distributed across the web. This might be useful for a information extraction system developed by a geographically distributed group of researchers.

Concluding Remarks and Related Work

To summarize, I have described and motivated an important piece of infrastructure for complex, real-world information extraction systems. The infrastructure consists of two tightly-coupled subsystems: a RDF-compatible blackboard subsystem, and a declarative control subsystem. This scheme allows extraction, classification, and feature computation components to share information and co-ordinate their actions, even if they use completely different representations for entities—e.g., in the scientific figure processing task used as an extended example of the introduction, coordination is possible between image-processing algorithms and text-processing algorithms that operate on the caption and image associated with a figure, respectively. The scheme is also lightweight and conceptually simple.

A number of architectures for information extraction systems have been proposed in the past. Typically these have grown out of work in natural language processing, and assume a more sequential control model, based on relatively well-understood steps like tokenization, part-of-speech tagging, etc. The general-purpose architecture most similar to ours is probably GATE (Cunningham et al. 2002), which is based on TIPSTER architecture (Grishman 1997). In GATE, intra-component communication is based on document annotations, and control is based around pipeline-like “processing components”. GATE includes tools allowing a user to interactively explore possible pipelines using a precondition/postcondition model of components. Compared to GATE, the architecture proposed here allows for more heterogeneity in representations and more flexibility in control.

Although applying this combination of subsystems to information extraction tasks is (at least to my knowledge) novel, it is acknowledged that few of the subsystems are themselves novel; in fact, most of them are much simpler than have been explored in recent research. As noted above, STRIPS-style planning is very well-understood (Bylander 1994; Erol, Nau, & Subrahmanian 1995), and very sophisticated methods for it exist (e.g., (Weld 1999; Kautz & Selman 1999)); however, simple techniques appear to be adequate for this task. Blackboard architectures for storing and retrieving tuples are also widely used, often in conjunction with distributed models of computation (for a survey, see (Papadopoulos & Arbab 1998)). The blackboard system adopted here is very simple, in part because distributed computation is typically not an issue in information extraction, as the task is highly data-parallel. (However, the “key” mechanism is necessary to ensure that intra-component communications are not blocked when multiple extractions are run in parallel.)

I am not aware of other “naming systems” which formally and explicitly encode relationships between parts and subparts, or between external entities and internal (views and decompositions) of these entities. However, the idea of a naming system is a natural one, and one often used informally in software systems. The syntax for naming proposed here is heavily influenced by existing W3C standards for path-based query languages like XPath and representation schemes like RDF (Lassila & Swick 1999).

Finally, there is a large body of previous work on control architectures of this general sort in the multi-agent literature (for a survey, see (Stone & Veloso 2000)), but apparently little consensus as to what sorts of architectures are best for what sorts of tasks. To my knowledge, the most similar tasks considered in the multi-agent literature are information gathering tasks (e.g., (Menczer 1997; Srinivasan et al. 2002; Chen & Sycara 1998)), in which agents conspire to rank and distribute existing documents. From a technical point of view, this is a rather different task—notably, since subparts are not constructed during a computation, information sharing and control issues are much simpler. In the terminology of this community, this paper is a specific proposal for (and experimental validation of) an multi-agent architecture that is appropriate for information extraction tasks based on many learned components.
References

