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Abstract 
The crisis in science education and the need for in-
novative computer-based learning environments has 
prompted us to develop a multi-agent system, 
Betty’s Brain that implements the learning by 
teaching paradigm. The design and implementation 
of the system based on cognitive science and 
education research in constructivist, inquiry-based 
learning, involves an intelligent software agent, 
Betty, that students teach using concept map repre-
sentations with a visual interface. Betty is intelli-
gent not because she learns on her own, but because 
she can apply qualitative-reasoning techniques to 
answer questions that are directly related to what 
she has been taught. The results of an extensive 
study in a fifth grade classroom of a Nashville pub-
lic school has demonstrated impressive results in 
terms of improved motivation and learning gains. 
Reflection on the results has prompted us to de-
velop a new version of this system that focuses on 
formative assessment and the teaching of self-
regulated strategies to improve students’ learning, 
and promote better understanding and transfer. 

1  Introduction 
A research review by Ponder and Kelly [1] determined 

that the science education crisis in U. S. schools has been 
present for over four decades. Billions of dollars have 
been invested in research and reforms to resolve this crisis 
but several problems remain.  Science curricula still need 
to work on increasing student literacy, encourage concep-
tual understanding, motivate students, and develop con-
crete problem solving skills [1, 2]. Clearly, the need for 
high level of science literacy is critical given the technol-
ogy push of contemporary society and the complexity of 
modern life.   

Unfortunately, current school curricula tend to em-
phasize memorization, which provides students with 
limited opportunities and little motivation to develop 
“usable knowledge”. The ability to apply knowledge to 
solve real-world tasks cannot be equated to remember-
ing a mere list of disconnected facts. Studies of exper-
tise have shown that knowledge needs to be connected 
and organized around important concepts, and should 

support transfer to other contexts. Other studies have 
established that improved learning and understanding 
happens when the students take control of their own 
learning, and develop metacognitive strategies to as-
sess what they know, and acquire more knowledge, 
when they need to. Thus the learning process must help 
students build new knowledge from existing knowl-
edge (constructivist learning), guide them to discover 
learning opportunities while problem solving (explora-
tory learning), and help them to define learning goals 
and monitor their progress in achieving them (meta-
cognitive strategies). 

A recent National Research Council study has out-
lined factors that define the effectiveness of learning 
environments [2]. Effective environments must be: (i) 
learner-centered, i.e., focus on relating subject matter 
to students' prior experiences, understanding, and pre-
ferred style of learning, (ii) knowledge-centered, i.e., 
include the knowledge and skills necessary to gain 
problem solving expertise, (iii) assessment-centered, 
which emphasizes that learners receive feedback both 
during (formative assessment) and after (summative 
assessment) the teaching process to help them stay on 
track in terms of meeting their learning goals, and (iv) 
community-centered, which recognizes that learning 
can occur outside of classroom environments and en-
courages learning by collaboration. 

Advances in computer technology have led to the 
proliferation of efforts in building computer-based 
learning environments. Most of the efforts to date, may 
be grouped into two primary categories: (i) Intelligent 
Tutoring Systems (ITS) [3] and (ii) Cognitive Tools 
[4]. Though they have achieved a fair degree of suc-
cess, each, on its own, fails to meet all the necessary 
requirements of good learning environments. ITS sys-
tems are constructivist because they focus on learning 
by problem solving, but their primary focus is mostly 
on modeling the student, and tailoring feedback to ad-
dress the student’s immediate needs. As a result stu-
dents do not have opportunities to study the global 
structure of a domain, and to learn by exploration. 
Cognitive tools on the other hand, have focused more 
on open-ended exploratory activities, but they have 
often failed to help students conditionalize their 
knowledge to problem solving tasks.  Their lack of 
focused feedback has often resulted in students getting 
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stuck at plateaus of performance. In past work, we 
have developed Intelligent Learning Environments 
(e.g., AdventurePlayer [5]) that combine exploratory 
and constructivist learning with coaching feedback [6] 
to help students progress, when they reach plateaus of 
performance. 

To advance computer-based learning systems, we 
began to investigate additional features, such as moti-
vation to improve student’s learning. The cognitive 
science and education research literature supports the 
idea that teaching others is a powerful way to learn. 
Bargh and Schul [7] found that people who prepared to 
teach others to take a quiz on a passage learned the 
passage better than those who prepared to take the quiz 
themselves. The literature on tutoring has shown that 
tutors benefit as much from tutoring as their tutees [8, 
9]. Biswas and colleagues [10] report that students pre-
paring to teach made statements about how the respon-
sibility to teach forced them to gain deeper understand-
ing of the materials. Other students focused on the im-
portance of having a clear conceptual organization of 
the materials. Beyond the preparatory activities, teach-
ers provide explanations and demonstrations during 
teaching and receive questions and feedback from stu-
dents. These activities also seem significant from the 
standpoint of their cognitive consequences in improv-
ing learning and understanding. For example, we might 
expect that teachers’ knowledge structures would be-
come better organized and differentiated through the 
process of communicating key ideas and relationships 
to students and reflecting on students’ questions and 
feedback. A second directed study with an older ver-
sion of Betty’s Brain showed that students who taught 
Betty had a deeper understanding of the domain, and 
could express their ideas better than those who studied 
the same material and wrote a summary [24]. 

Reflection on these studies and others led us to de-
sign an environment that lets students explicitly teach a 
software agent, called Betty’s Brain. Once taught, the 
agent reasons with its knowledge and answers ques-
tions. Students observe the effects of their teaching by 
analyzing these responses. Other agents work in tan-
dem to assist in the student’s own discovery learning. 
We should clarify that our agent does not conform to 
the traditional intelligent agent architecture, i.e., it does 
not possess machine learning algorithms that enable it 
to learn from examples, explanations, or by induction. 

 It is to be noted that our Teachable Agents (TA) en-
vironment have important characteristics that are often 
not available in tutoring environments. For example, 
students must accept the responsibility of teaching in a 
way that improves their tutees performance, deal with 
questions asked by their tutee, and be able to assess 
their own understanding of material by looking at how 
their tutee solves problems and answers questions. 
These kinds of activities should facilitate an approach 
to lifelong learning that is valuable and ultimately 
measurable. 

2 Background 
Repenning and Sumner [27] have developed visual 

programming environments that reduce the overhead of 
learning to program agents. Smith et al. [11] Cocoa 
program (previously KidSim) allows young users to 
program their agents by example. Once created, they 
become alive in the environment and act according to 
its pre-programmed behavior. Other work, such as the 
Persona project [12] has focused on sophisticated user 
interactions, communication and social skills.  

Research on helping agents to learn, has focused on 
agents that can learn from examples, advice, and ex-
planations ([[13], [14]). In Huffman and Laird's system 
[13], agents learn tasks through tutorial instructions in 
natural language. Users have some domain knowledge 
which they refine by looking at the agents behaviors. 
Lieberman and Maulsby [15] focus on teaching “in-
structible agents” by example and by providing advice. 
Agents learn by observing user actions, sometimes by 
being told what is relevant, and sometimes by identify-
ing relevant information, applying it, and learning 
through mistake correction.  

Michie et al. [16] developed the Math Concept 
Learning System for solving linear equations. Users 
supplied the strategies for solving problems by entering 
examples, and the system learned via an inductive ma-
chine-learning algorithm, ID3 [17]. Obayashi et al.’s 
study [18] reported significant learning gains in sub-
jects using their learning-by-teaching system compared 
to a traditional Computer-assisted Instructor (CAI). 
Chan & Chou’s [19] study concluded that learning by 
teaching is better than studying alone.  

These studies basically employed an approach where 
a traditional ITS or CAI framework was employed, but 
the roles of the human and the computer program were 
reversed. In ITS, students are the recipients of knowl-
edge and the locus of control is mainly with the student 
modeling component and the pedagogical agent. On the 
other hand, in the learning by teaching environments, 
students taught, and probably learnt from the experi-
ence. Learning was more indirect, and not likely to 
show immediate gains. The studies conducted were not 
sufficiently rigorous or long term to demonstrate that 
this approach might provide deeper understanding and 
transfer in more complex domains. Therefore, we de-
cided to take a new approach to designing a learning by 
teaching environment that would support constructivist 
learning, and also one that would include feedback to 
promote better self-regulation and develop understand-
ing. Unlike previous studies on learning by teaching, 
we took on the challenge of teaching students who 
were novices in the domain, and also novice teachers. 

3 Betty’s Brain: A Learning-by-Teaching E
vironment  

n-

As discussed, we have built an environment where 
students explicitly teach and directly receive feedback  

110    IAAI 2003   



Figure 1.  Betty’s Brain Interface    
about their teaching through interactions with a com-
puter agent, named Betty’s Brain. The system has been 
used to teach middle school students about interde-
pendence and balance among entities that exist in a 
river ecosystem.  

A learning by teaching system requires a representa-
tion scheme for students to create their knowledge 
structures as a part of the teaching process. Since the 
primary users are middle-school students solving com-
plex problems, this representation has to be intuitive 
but sufficiently expressive to help these students cre-
ate, organize, and analyze their problem solving ideas. 
A widely accepted technique for constructing 
knowledge is the concept map [20]. Concept maps pro-
vide a mechanism for structuring and organizing 
knowledge into hierarchies, and allow the analysis of 
phenomena in the form of cause-effect relations [21, 
22]. This makes them amenable to modeling scientific 
domains, in particular dynamic systems. Moreover, an 
intelligent software agent based on concept maps can 
employ reasoning and explanation mechanisms that 
students can easily relate to. Thus the concept map 
provides an excellent representation that serves as the 
interface between the student and the teachable agent. 

Fig 1 illustrates the interface of Betty’s Brain. Students 
use a graphical drag and drop interface to create and mod-
ify their concept maps in the top pane of the window. 
Students can query Betty using the Ask button, and she 
provides an explanation for how she derives her answers 
by depicting the derivation process using multiple modali-
ties: text, animation, and speech. The visual display of the 
face with animation in the lower left is one way in which 

the user interface attempts to provide 
engagement for the user, and motivate students 
by increasing the social interaction with the 
system [23].  
  The system is implemented as a generic 
agent architecture illustrated in Fig 2. The 
primary component of the agent is its decision 
maker that incorporates the qualitative 
reasoning mechanisms for generating answers 
to queries from the concept map structure, and 
schemes that implement strategies that govern 
the dialog process with the user. The executive 
controls the dialog mechanisms, and Betty’s 
speech and animation engines. These are pri-
marily used to explain how Betty derives her 
answer to a question. In the sections below, we 
describe the software’s three modes of 
Operation: TEACH, QUERY and QUIZ. The 
system also has a second agent, the mentor 
agent, who provides feedback to Betty after 
she takes a quiz. 

3.1 TEACH Betty  
Students teach Betty by means of a concept map 

interface. Fig 1 displays an example of a concept map that 
represents what the student has taught Betty.  This map is 
not a complete representation of all the knowledge in the 
domain, but merely an example. The labeled boxes corre-
spond to concepts (the labels are concept names), and the 
labeled links correspond to relations. Students can use 
three kinds of links, (i) causal, (ii) hierarchical, and (iii) 
descriptive. Students use descriptive links to embed notes 
or interesting characteristics of an object in their concept 
map (e.g., “Fish live by Rocks”). Hierarchical links let 
students establish class structures to organize domain 
knowledge (e.g., “Fish is a type of Animal”).  

A causal link specifies an active relationship on how a 
change in the originating concept affects the destination 
concept. Two examples of this type of relation are “Fish 
eat Plants” and “Photosynthesis produces Oxygen”. The 
causal relations are further qualified by increase (‘++’) 
and decrease (‘--’) labels. For example, “eat” implies a 
decrease relation, and “produce” an increase. Therefore, 
an introduction of more fish into the ecosystem causes a 
decrease in the number of plants, but an increase in the 
number of plants causes an increase in oxygen. 

3.2 QUERY Betty 
Students can query Betty about what they have 

taught her. The query mode consists of two mecha-
nisms: (i) a reasoning mechanism, and (ii) an explana-
tion mechanism. The reasoning mechanism enables 
Betty to analyze the knowledge that the student has 
taught her to answer questions. The explanation 
mechanism enables Betty to produce a detailed expla-
nation of how she generated her answer. The system 
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provides templates using which students can query 
Betty, e.g., What will happen to Concept A when we 
increase/decrease Concept B? 

User Interface

•User Actions
•Learning Strategies

Memory

Decision Maker

•Qualitative Reasoning
•Metacognitive Strategy
•Discussion on Quiz

•User Actions: Concept Map, Resources, Quiz
•Mentor’s Actions and Statements

Percept

Executive
Dialog Mechanisms
•Question Answering
•Explanation
•AnimationBetty

 
 
We briefly explain the reasoning and the explanation 

mechanisms for this type of question. The reasoning 
mechanism is based on a simple chaining procedure to 
deduce the relationship between a set of connected con-
cepts. To derive the effect of a change (either an increase 
or a decrease) in concept A on Concept B, Betty performs 
the following steps: 

• Starting from Concept A, propagate the effect of its 
change through all outgoing casual links by pair-
wise propagation (i.e., follow the link from Entity A 
to all its effects) using the relations described in 
Table 1. 

• At each concept, if the number of incoming casual 
links is more than one, the forward propagation 
stops until all incoming links are resolved.  To de-
rive the result from two incoming links, use Table 
2. A “?” in Table 2 implies an inconclusive change 
(attributed to the ambiguity of qualitative arithme-
tic). If the number of incoming links is three or 
more: 

• Count the number of changes that fall into the six 
categories: large, normal, and small decreases and 
small, normal, and large increases. Combine the 
corresponding (i.e., small, medium, and large) 
changes; always subtract the smaller number from 
the larger. For example, if there is one small de-
crease and two small increase incoming arcs, the re-
sult is a small increase.  To compute the overall ef-
fect, if the resultant value set has all increases or all 
decreases, select the largest change. Otherwise, start 
at the smallest level of change and combine with 
the next higher level in succession using Table 2.  

To illustrate the reasoning process, assume that the 
teachable agent is asked to answer the effects of an 
addition of Algae on Fish using the partial ecosystem 
concept map from Fig 1. 
Betty starts with the initiating concept and computes 
the result on the end entity by sequential propagation 
along individual paths. For example, 
Algae (+) is a type of (+) Plants (+) generate (++) Pho-
tosynthesis (+) produces (++) Oxygen (+): (Not a final 
result – there are more incoming links into oxygen) 
Algae (+) die to (++) Waste (+) generates (++) 
Bacteria (+) consumes (–) Oxygen (–): All “Algae -> 
Oxygen” effects are now traversed. 
An increase (step 1) and a decrease (step 2) changes in 
Oxygen result in inconclusive change (‘?’) in Oxygen: 
Continue propagation. 
Oxygen (?) helps (+) Fish (?): Wait 
Algae (+) is a type of (+) Plants (+) increase (+) 
Fish (+): All “Algae -> Fish” paths now traversed. 
An increase (step 5) and an inconclusive (step 3) 
change for Fish combine to produce an overall increase 
in Fish. Figure 2: Betty’s Agent Architecture

The answer to this question is that Fish increase when 
we add more Algae. More details can be found in [24]. 
The overall qualitative reasoning mechanism is not 
novel but a simplified implementation of Qualitative 
Process Theory [25]. However, the focus here is on 
observing the effects of teaching and feedback. 
 

 

  
Change in Relation 

 +L + +S −S − −L 
+L +L +L + − −L −L 
+ +L + +S −S − −L 
+S + +S +S −S −S − 
−S − −S −S +S +S + 
− −L − −S +S + +L 

C
ha

ng
e 

in
 E

nt
ity

 

−L −L −L − + +L +L 
Table 1: The pair-wise effects 

 
 +L + +S −S − −L 
+L +L +L +L + +S ? 
+ +L +L + +S ? −S 
+S +L + + ? −S − 
−S + +S ? − − −L 
− +S ? −S − −L −L 
−L ? −S − −L −L −L 

Table 2: Integrating results from two paths 
 

As mentioned earlier, Betty employs animation and 
speech to explain her thinking to the students. A written 
explanation is also available.  The structure of Betty’s 
explanations is closely tied to the reasoning algorithm. To 
avoid information overload, the explanation is broken 
down into segments. If users ask for more explanation, 
Betty works backward, and links the concept back to the 
closest nodes.  Using the example, “What happens to fish 

112    IAAI 2003   



when algae increase?” Betty’s initial response is: “I think 
that when Algae increase, Fish increase.”  Students can 
then ask Betty for a more detailed explanation. Betty’s 
response then takes the form, “To find out what happens 
to Fish when Algae increase, I must first know what hap-
pens to Oxygen and Plants. Both directly affect Fish.” 
“An increase in Algae causes Plants to increase, which 
causes Fish to increase.”  
Through further interaction, Betty reveals the complete 
explanation.  

3.3 QUIZ Betty 
During the quiz phase, the student observes Betty’s re-

sponses to a set of pre-scripted questions. The mentor 
agent informs Betty (and the student) if Betty’s answers 
are right or wrong. The mentor also gives hints to help the 
student debug the concept map. This agent employs a 
simple mechanism for generating feedback using an ex-
pert concept map (built by the classroom teacher) in the 
domain of study. The student’s concept map structure is 
overlaid on the expert’s, and the mentor agent searches 
for a missing concept (first) or relation that is considered 
essential for the right answer, and uses this to generate a 
hint for the student.  A hint is given, if necessary for each 
quiz question.  Currently, the system implements three 
levels of hinting. The first hint points the student to re-
source materials, both on-line and text-based, that relate 
to the concept or link. As the second hint for the same 
question, the expert agent explicitly mentions the name of 
the missing concept or relation. The third hint is very di-
rect. It names a missing concept or tells students how to 
correct a causal relation in their current map. 

4 Experimental Results 
To study the effectiveness of Betty’s Brain we con-

ducted an experiment on 50 high-achieving fifth grade 
students from a science class in an urban public school 
located in a southeastern city. We examined the effects 
of the interactive features of the teachable agent envi-
ronment that emulate the feedback that instructors re-
ceive from students during teaching. All students had 
the opportunity to TEACH their agent, and we manipu-
lated whether students could QUERY Betty and ob-
serve her QUIZ performance following their teaching 
efforts. Crossing these variables created four versions 
of the teachable agent environment: (i) TEACH only 
version (No QUERY or QUIZ), (ii). QUERY version, 
iii). QUIZ version and (iv). FULL version (QUERY & 
QUIZ). 

We hypothesized that having opportunities to query 
and/or quiz Betty would positively, but differentially, 
impact students’ learning.  The query feature helps stu-
dents debug their own thinking and reasoning in the prob-
lem domain. If Betty answers questions in unexpected 
ways, students know that they need to add to or modify 
their concept maps. In addition, and perhaps more impor-

tant, when Betty explains her answers, she makes explicit 
the process of reasoning across links along multiple paths 
in a concept map. Therefore, we might expect that stu-
dents who use the QUERY version of the software would 
create maps containing more inter-linked concepts. With 
respect to the quiz condition, we expected that students 
would become better at identifying important concepts 
and links to include in their maps because they could map 
backward from the quiz questions. We also expected that 
overall they would produce more accurate concept maps 
because they had access to feedback on Betty’s quiz per-
formance.   

The software was used in 3 sessions of one hour 
each.  At the beginning of session 1, students were in-
troduced to features of the software.  They were asked 
to teach Betty about river ecosystems. In between ses-
sions with Betty, students engaged in independent 
study to prepare themselves to teach Betty. Reference 
materials were also available for students to access as 
needed when preparing to teach and when teaching 
Betty. 

The data collected was analyzed using two-way 
Anova. Analysis of the scope of students’ maps and the 
types and accuracy of links contained therein suggest 
several conclusions. It was clear that the students who 
used the query and quiz mechanisms understood causal 
relations better than the students who did not. This was 
reflected in their concept maps, which had a larger 
proportion of causal links than the teach only group.  

Fig 3 shows the ratio of links to concepts in stu-
dents’ maps, a measure of the interconnectedness or 
density of their maps. Overall, QUERY and FULL stu-
dents had significantly denser maps than other stu-
dents. Evidently, having the opportunity to query 
Betty, which made the reasoning process more explicit, 
helped students understand the importance of interrela-
tions among concepts in their maps. Another observa-
tion was that the Quiz students’ maps became increas-
ingly dense over sessions. 
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Figure 3.  Ratio of Links to Concepts in Students’ 
Concepts Maps 

 
Fig 4 shows the number of valid causal links contained 
in students’ maps. Comparisons of the means indicate 
that by Session 3, QUERY students had significantly 
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more valid links in their maps than students in the 
TEACH only group. QUIZ and FULL students were 
intermediate and did not differ much from each other. 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.  Number of Valid Causal Links in  
Students’ Concepts Maps 

 
When coding the validity of the links in students’ 

maps credit was given for correct links comprising the 
quiz questions (i.e., links comprising the teaching ex-
pert’s map), as well as for other relevant links related 
to water ecosystems (determined by our expert raters).  
Although the QUERY group had the most valid links 
(expert and relevant combined), the QUIZ and FULL 
groups had more links from the teaching expert’s map 
than students in the QUERY group. The data indicates 
that students in the quiz conditions were guided by the 
quiz and the teacher agent feedback in determining 
concepts and relations to teach Betty. However, it was 
not clear how much of a global understanding the 
QUIZ only group had of their overall concept maps. 
 
4.1 Discussion  

Results from the study indicate that both the Query 
and Quiz features had beneficial effects on students’ 
learning about ecosystems. Students who had access to 
the Query feature had the most inter-linked maps. The 
Query mechanism appears to be effective in helping 
students develop an understanding of the interrelation-
ships between entities in an ecosystem. Also, the op-
portunities to quiz their agent helped students to de-
crease the number of irrelevant concepts, increased the 
proportion of causal information, and increased the 
number of expert causal links in their maps. The quiz 
feature was effective in helping students decide the 
important domain concepts and types of relationships 
to teach Betty. Students inferred—and reasonably so--
that if a concept or relationship was in the quiz, it was 
important for Betty to know.  

This notwithstanding, our observations of students 
during the study suggest that quiz students may have 
been overly-focused on “getting the quiz questions cor-
rect” rather than “making sure that Betty (and they 
themselves) understood the information.” We believe 
that some of this could be attributed to the nature of the 
suggestions provided by the mentor agent, which led 
students to focus on making local changes to their 
maps, and not paying attention to consequences at the 

level of the (eco)system. Surprisingly, students in the 
QUERY condition produced as many valid relevant 
causal links as the conditions with the quiz feature, and 
without the benefit of quiz feedback. This demonstrates 
the value of explicitly illustrating the reasoning process 
(by having Betty explain her answers) so that students 
understand causal structures.  
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The FULL group did not generate significantly 
higher-quality maps than the QUIZ and the QUERY 
groups. An investigation of the activity logs revealed a 
pattern where students’ primary focus was to get the 
quiz questions correct. After getting Betty to take the 
quiz, they used the teacher agent’s hints to make cor-
rections to their maps, and used the query feature only 
to check if Betty would now answer the questions cor-
rectly. They then quickly returned to the quiz mode to 
see how well Betty performed. In other words, the 
query mechanism was not used to reflect on the reason-
ing mechanisms and to gain a deeper understanding of 
the causal structures. As noted above, the feedback we 
designed for the mentor agent may have inadvertently 
focused students on making local changes to their maps 
instead of reasoning more globally in their maps. 

5 Agent Architecture 
As reported in Davis et al. [26], in exit interviews, 

the students emphasized that they would have liked 
Betty to have been an active participant in the teaching 
phase, i.e., the students wanted Betty to exhibit charac-
teristics of a good student and be a more active learner. 
Studies also indicate that feedback from the system 
(both from the Mentor and Betty) must be improved to 
facilitate better learning. These issues prompted us to 
design a new Multi-Agent Teachable Agents system. 

The Multi-Agent architecture enabled us to         
overcome  drawbacks  of  the  old  system  as well  and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Agent Architecture 
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introduced new features to promote inquiry based self 
regulated learning. From a software design viewpoint 
each agent handles data relevant to its own functional-
ity. Agents subscribe to events generated by the other 
agents. This allows them to intervene with teaching 
opportunities and assist the students’ own discovery 
learning. Besides learning opportunities, these agents 
also test students understanding, and gently guide them 
to improve their knowledge of the domain [9].   

5.1 Betty 
To create an effective learning by teaching environ-

ment, Betty needs to demonstrate qualities of a good 
student. Tutors gain deeper understanding from interac-
tions with tutees [6, 7] that includes answering ques-
tions, explaining material, and discovering misconcep-
tions. Betty’s new communicative “personality” is in-
tended to support such interactions. This personality is 
governed by a set of self-regulation strategies to pro-
mote better learning. For example, after taking a quiz, 
Betty can encourage users by asking if they would like 
to discuss results of the quiz with her, allowing her to 
demonstrate learning strategies through her dialog and 
actions. She can also exhibit behaviors linked to good 
learning practice. Betty may refuse to take the quiz if 
the student repeatedly ignores the mentor agent’s feed-
back. She can also express reservations if the student 
does not look up the resources before attempting to 
make corrections in the concept map. Betty, interacting 
with the tracking agent, (transparent to the user), can 
also react to long periods of inactivity by the user, and 
suggest when they may get help.  

5.2 Mentor Agent 
The mentor is the domain knowledge expert. Cur-

rently this knowledge is encoded as an “expert” con-
cept map (hidden from Betty and the student) and 
structured online resource documents that everyone has 
access to. The mentor is available for help on demand. 
The mentor agent usually directs students to the online 
resources. This document has been updated to empha-
size the processes and cycles that describe domain 
phenomena, as opposed to individual entities that make 
up the domain. The resources have been reformatted in 
hypertext format to enable keyword access. The overall 
structure of the document explicitly reflects the phe-
nomena of balance and interdependence through the 
primary cycles, such as the food chain and the oxygen 
cycle.  

The mentor can also intervene when the student does 
not seem to be making progress. She combines the use 
of a set of metacognitive and pedagogical strategies to 
make decisions on when to help students. Sometimes 
she points students to the resources, at other times she 
may suggest that the student can get better feedback by 
querying Betty.  
 
 

5.3 Pattern-Tracker 
User actions should be linked to learning, teaching 

and self-assessment objectives. The pattern tracker 
uses an automata to determine whether an action or a 
series of actions match a predefined pattern. Other 
agents can subscribe to receive notifications on the 
occurrence of specific patterns. The pattern tracker can 
act independently for detecting simple patterns. For 
complex patterns, it needs to interact with the other 
agents. As an example, when the tracker detects that 
the user has asked Betty to take a Quiz immediately 
after making changes in the concept map, it interacts 
with the other agents to check if this pattern represents 
a local test-modify-retest behavior. Upon detecting 
such a behavior, it publishes this as an event. 

5.4 Interfacer 
The interface agent acts as a middleman between the 

Graphical User Interface (GUI) and the underlying 
structures and reasoning mechanism. The user interacts 
with the interface and the interfacer displays the up-
dated view in the GUI. When the other agents (Betty 
and Mentor) need to interact with the user, they com-
pose a formatted message, which the interfacer dis-
plays to the user. Thus the GUI components can be 
changed with no effect on the underlying mechanism. 

6 Conclusions 
Our studies with Betty’s Brain demonstrate its effec-

tiveness in promoting deep understanding and self-
assessment among students. We have also shown that 
students require very little instruction in using the vari-
ous components of the system. Feedback from the fifth 
grade science class and their teachers indicate that this 
environment was successful in motivating students and 
getting them to spend a lot more time in learning about 
complex domains. More extensive studies are now be-
ing conducted with a focus on studying the effects of 
feedback and self regulated learning in the Multi-agent 
architecture environment.  
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