
Optimal Rectangle Packing: Initial Results

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

Given a set of rectangles with fixed orientations, we want to
find an enclosing rectangle of minimum area that contains
them all with no overlap. Many simple scheduling tasks can
be modelled by this NP-complete problem. We use an any-
time branch-and-bound algorithm to solve the problem op-
timally. Our main contributions are a lower-bound on the
amount of wasted space in a partial solution, based on a re-
laxation of the problem to one-dimensional bin packing, and
a dominance condition that allows us to ignore many par-
tial solutions. For our experiments, we choose a class of in-
creasingly difficult square-packing problems as a simple and
easily-specified benchmark. The square-packing problem of
size N is to find the smallest rectangle that contains the 1x1,
2x2, etc. up to NxN square. We find optimal solutions to
these problems up to size N=22. For comparison, we also
find the best slicing solutions, a popular approximation al-
gorithm. Our approach is rather general, and many of our
techniques can be applied to packing non-rectangular shapes
in non-rectangular enclosing regions, and higher-dimensional
packing problems as well.

Introduction and Overview
Consider the following very simple scheduling problem: We
have a set of independent jobs, each of which requires a cer-
tain number of workers for a certain amount of time. We as-
sume that the jobs are indivisible, meaning they can’t be bro-
ken down into smaller subtasks. If they can be decomposed,
we break them down into their indivisible components, and
then consider the components as jobs. All workers work the
same hours, and are paid for their whole shift, whether they
are busy or idle. We can adjust the number of workers, and
the total amount of time. We’d like to minimize the total
labor cost to complete all the jobs, which is proportional to
the number of workers times the number of hours they are
at work. Alternatively, we may want to complete all jobs as
quickly as possible, using as many workers as necessary. As
another alternative, we may want to minimize the number of
workers, and complete all the jobs as soon as possible given
that number of workers. A closely related problem is how to
schedule a set of tasks that require a certain resource level,
such as electric power on a spacecraft, for a given amount

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of time, so that all tasks are completed as soon as possible
without exceeding a maximum resource capacity.

We can model these problems as rectangle-packing prob-
lems. Each job is represented by a rectangle, where one
dimension is the number of workers needed, and the other
is the amount of time required. The total number of work-
ers is the height of an enclosing rectangle, and the length
of time is the width. All the job rectangles must be packed
into the enclosing rectangle, with no overlap. Minimizing
the total labor cost amounts to finding the enclosing rect-
angle of minimum area that contains all the job rectangles.
To minimize the number of workers, we want an enclosing
rectangle of minimum width, whose height is the maximum
number of workers needed for any job. Similarly, to mini-
mize the amount of time, we want an enclosing rectangle of
minimum height, whose width is the amount of time needed
for the longest job.

Of course, in reality there will be other constraints on the
jobs, such as precedence constraints between jobs. Such
constraints can be easily added to our solution algorithm, re-
sulting in the pruning of partial solutions that don’t satisify
the constraints. This pruning will make it easier to deter-
mine that a particular enclosing rectangle can’t contain all
the job rectangles, but potentially more difficult to find a
feasible solution within a particular enclosing rectangle. For
simplicity, we consider the unconstrained case here, which
is a subproblem of the more general case.

Rectangle packing has other applications as well. In the
design of VLSI chips, circuit blocks such as processors,
memory, and I/O drivers must be assigned to physical re-
gions of the chip. Another application is cutting a set of
rectangles out of a single piece of stock material. A re-
lated problem is loading a set of rectangular objects onto a
cargo pallet. An important difference between the schedul-
ing problem described above and these other applications
is that in the scheduling problem the orientation of the job
rectangles is fixed, since workers and time are often not in-
terchangeable. In VLSI design or cutting-stock problems,
however, we can rotate our rectangles by ninety degrees. In
this paper, we consider the fixed-orientation problem, and
only briefly discuss the extension to unoriented rectangles.

We focus here on optimal solutions, but develop an any-
time algorithm. In other words, our algorithm finds an ap-
proximate solution immediately, and as it continues to run it

ICAPS 2003 287

From: ICAPS-03 Proceedings. Copyright © 2003, AAAI (www.aaai.org). All rights reserved.

finds better solutions, until it eventually finds and verifies an
optimal solution. This eliminates solution quality as a vari-
able in comparisons with other work. Furthermore, finding
optimal solutions allows us to characterize the quality of ap-
proximate solutions. For example, we evaluate the quality
of slicing solutions in our experiments.

We first show that rectangle-packing problem is NP-
complete, and then briefly consider related work. We then
consider how to pack a set of rectangles into an enclosing
rectangle of fixed dimensions, using a branch-and-bound al-
gorithm. In particular, we introduce a lower-bound on the
amount of wasted space in a partial solution, based on a
relaxation of the problem to one-dimensional bin packing.
We also introduce a dominance condition that allows us to
prune parts of the search space. We then show how to ef-
ficiently search the two-dimensional space of different en-
closing rectangles to find one with the smallest area that will
contain all the given rectangles. To test our algorithm, we we
find the enclosing rectangle of smallest area that will con-
tain a 1x1, 2x2, 3x3, etc., up to n × n square. We choose
the special case of square packing because we can specify
a set of increasingly difficult problem instances with just a
single parameter n, making it easier for other researchers to
compare their results to ours. Our algorithms, however, do
not take advantage of the fact that our rectangles are squares,
with one minor exception. We present optimal solutions for
all problems up to size n = 22, and also the best of a class
of approximate solutions. Finally, we conclude with further
ideas to improve the performance of our algorithms and gen-
eralize our techniques.

Rectangle Packing is NP-Complete
The specific decision problem we consider in this section is
given a set of rectangles with fixed orientation, and a specific
enclosing rectangle, can all the given rectangles fit within the
boundaries of the enclosing rectangle without any overlap?
We show that this problem is NP-complete, by showing that
the problem is in NP, and that it is NP-hard.

It is clear that this problem can be solved in non-
deterministic polynomial time. Given an assignment of the
rectangles to positions within the enclosing rectangle, it is
easy to check in polynomial time that no rectangle extends
beyond the boundary of the enclosing rectangle, and that no
two rectangles overlap.

To show that rectangle packing is NP-hard, we demon-
strate that bin packing can be reduced in polynomial time to
rectangle packing. In other words, if rectangle packing can
be solved in polynomial time, then so can bin packing. An
instance of the bin-packing decision problem consists of a
set of numbers, along with a fixed set of bins, each with the
same fixed capacity. The problem is to assign each number
to one of the bins, so that the sum of the numbers in each
bin does not exceed the bin capacity. Bin packing is NP-
complete (Garey & Johnson 1979).

Given an instance of bin packing, we can generate a corre-
sponding instance of rectangle packing as follows. For each
number in the bin-packing problem, we generate a rectangle
of unit height whose width is the value of the number. Thus
each number generates a strip of that width and unit height.

We also generate an enclosing rectangle whose height is the
number of bins, and whose width is the capacity of the bins.
Thus each bin corresponds to a horizontal strip of the enclos-
ing rectangle. In the resulting rectangle-packing problem,
each strip must be assigned to a row (bin) of the enclosing
rectangle, such that the sum of the widths (numbers) of the
strips assigned to each row (bin) doesn’t exceed the width
(bin capacity) of the enclosing rectangle. Note that the strips
are oriented and cannot be rotated. Thus, this rectangle-
packing problem is equivalent to the original bin-packing
problem. If we can solve any rectangle-packing problem in
polynomial time, then we can solve any bin-packing prob-
lem in polynomial time. Thus, rectangle packing is NP-hard,
and since it is also in NP, it is NP-complete.

Related Work
There is a large literature on rectangle packing, but very little
is directly related to this work. We reviewed about several
dozen papers in the area. The vast majority of them deal
only with approximate solutions, because they use stochas-
tic algorithms such as simulated annealing or genetic algo-
rithms, or deterministic greedy algorithms, or a representa-
tion that doesn’t include all possible solutions. For example,
slicing solutions (Otten 1982), described later, are a popular
approximation, but most optimal solutions are not slicing
solutions. Much of the literature on approximate solutions
concerns analyses of the solution quality of these solutions.

There are several complete representations, however, in-
cluding sequence pairs, BSG structures, and O-trees. The
number of sequence pairs (Murata et al. 1995) is O(n!2), for
n rectangles, which is over 1036 for n = 20. The number of
BSG-structures (Nakatake et al. 1996) is O(n2!/(n2 −n)!),
which is over 1051 for n = 20. The number of O-trees (Guo,
Cheng, & Yoshimura 1999) is O(n!22n−2/n1.5), which is
over 1027 for n = 20. An exhaustive search of any of these
representations is obviously impractical.

One paper that finds optimal solutions to rectangle-
packing problems (Onodera, Taniguchi, & Tamaru 1991)
was only able to optimally solve six-rectangle problems.

(Aggoun & Beldiceanu 1993) extended the CHIP con-
straint logic programming system to solve rectangle-packing
problems. (Hentenryck 1994) similarly showed how to use
the constraint language CC(FD) to solve such problems.
Both solved two square-packing problems, each with a set
of 21 or 24 different-size squares, and an enclosing square
of 112x112 or 175x175, respectively. In both problems the
total area of the squares equals the area of the enclosing
square, so there can be no empty space in any solution.

This latter property makes these problems easy to solve.
To test this, we implemented a simple program that tries to
fill each empty 1x1 cell of the enclosing region in turn, from
top to bottom and left to right. For a given empty cell, it
tries the candidate squares in order from largest to small-
est. As soon as we reach an empty cell that cannot be occu-
pied by any remaining square, the algorithm backtracks, try-
ing the next smaller square for that empty cell. This simple
program took about 50 milliseconds to solve the 21-square
problem, and about 600 milliseconds to solve the 24-square
problem, on a 440 MHz SUN Ultra 10. By comparison,

288 ICAPS 2003

the programs of Aggoun and Beldiceanu, and of Van Hen-
tenryck, took about a minute to solve these problems on a
Sun/4 IPC, which runs at about 25 MHz. While compar-
isons across such diverse machines are not very reliable, we
achieved a speedup of over a factor of 100, on a machine that
is less than 18 times faster. We cite these results not to claim
that our approach is superior on these problems, but rather to
suggest that these exact packing problems are easy to solve
compared to packing problems that leave empty space.

Unfortunately, our simple program doesn’t perform very
well on problems whose solutions include empty space, mo-
tivating the more complex techniques described in this pa-
per, such as lower-bounds on wasted-space, and empty-strip
dominance conditions. These ideas are not mentioned in any
of the papers we found on this problem.

Packing a Given Rectangle
The first problem we consider is given an enclosing rectan-
gle of fixed dimensions, can we pack a given set of rect-
angles with fixed orientation into it? The width of the en-
closing rectangle must be at least as large as the maximum
width of any rectangle, and the height of the enclosing rect-
angle must be at least as large as the maximum height of any
rectangle. Furthermore, the area of the enclosing rectangle
must equal or exceed the total area of the given rectangles.

Rectangle Packing as a CSP
This can be modelled as a binary constraint-satisfaction
problem. There is a variable for each rectangle, whose legal
values are the positions that rectangle could occupy without
exceeding the boundaries of the enclosing rectangle. There
is a binary constraint between each pair of rectangles that
they cannot overlap. This suggests a backtracking algorithm.

When a solution will contain empty space, we found that
filling the empty cells in order is less effective than plac-
ing the rectangles in decreasing order of size. The reason is
that any partial solution may admit many arrangements of
the smaller rectangles, all to no avail if there is no legal po-
sition for the next largest unplaced rectangle. One natural
definition of the size of a rectangle is its area. An alternative
is to define the size of a rectangle as its maximum dimen-
sion. The latter definition may be better, since placing a long
skinny rectangle is likely to be more constraining on subse-
quent placements than placing a square of the same area. For
square-packing, these two definitions are equivalent. We ar-
bitrarily order the positions in the enclosing rectangle from
top to bottom and from left to right.

To check for overlap between rectangles, we maintain a
two-dimensional binary matrix the size of the enclosing rect-
angle, with occupied cells set to one. When placing a new
rectangle, we only need to check if the cells on the bound-
ary of the new rectangle are occupied. The reason is that by
placing the rectangles in decreasing order of their maximum
dimension, or in decreasing order of their area, a previously-
placed rectangle cannot be completely contained within a
new rectangle. Once a rectangle is placed, all the cells it
occupies are set to one. This allows testing a position for
a rectangle in time linear in its maximum dimension, and
placing a rectangle in time proportional to its area.

Since the enclosing rectangle is symmetric, we only need
consider solutions where the center of the first rectangle is
in the upper left-hand quadrant of the enclosing rectangle.
Any other solution can be mapped to such a solution by flip-
ping the rectangle along one or both axes. This reduces the
overall computation by about a factor of four.

Wasted-Space Pruning
As rectangles are placed in an enclosing rectangle, the re-
maining empty space gets chopped up into small irregular
regions. Many of these regions cannot accommodate any of
the remaining rectangles, and must remain empty. When the
area of this wasted space, plus the sum of the areas of all the
rectangles, exceeds the area of the enclosing rectangle, the
current partial solution cannot be completed, and the search
can backtrack. This is the main idea of wasted-space prun-
ing. The difficulty is how to efficiently compute the amount
of wasted space in a partial solution.

Our wasted-space calculation is based on a relaxation of
rectangle packing to one-dimensional bin packing, using
the same mapping we used in the NP-completeness proof.
Given a rectangle-packing problem with a fixed enclosing
rectangle, we can simplify the problem by slicing each rect-
angle into horizontal strips one unit high, each of which is
characterized by its width, and allowing the strips from a
given rectangle to be separated. The resulting problem is to
assign each strip to one of the rows of the enclosing rectan-
gle, so that the sum of the lengths of the strips assigned to
each row does not exceed the width of the row. This is a bin-
packing problem, where the strip lengths are the numbers to
be packed, the rows of the enclosing rectangle are the bins,
and the capacity of the bins is the width of the enclosing
rectangle. The rectangle-packing problem is solvable only
if the corresponding bin-packing problem has a solution, but
the converse is not necessarily true.

This relaxation can also be applied to a partially-solved
rectangle-packing problem. In that case, the numbers are the
lengths of the horizontal strips of the rectangles that remain
to be placed. The bins are determined by slicing the enclos-
ing rectangle into horizontal strips one unit high, and then
removing the occupied segments of each strip. Each result-
ing contiguous strip of empty space becomes a bin whose
capacity is the length of the strip. In this case we may have
more bins than rows of the enclosing rectangle.

We can obtain a different bin-packing relaxation of our
rectangle-packing problem by applying the same technique,
but slicing the rectangles, and the enclosing rectangle, into
vertical strips instead of horizontal strips.

This relaxation of rectangle packing allows us to apply
techniques from the better-known bin-packing problem to
prune infeasible rectangle-packing problems, and partial so-
lutions thereof. For example, a simple linear-time lower-
bound on the amount of wasted space in a bin-packing prob-
lem can also be applied to rectangle packing. This lower
bound was first described by (Martello & Toth 1990), but
we give a different formulation of it below (Korf 2001).

Consider, for example, a bin-packing relaxation of a
partially-solved rectangle-packing problem. Assume we
have empty rows or bins of length 1,2,2,3,4,7, and strips of

ICAPS 2003 289

length 2,3,4,4,5. No strip can fit in the row with capacity 1,
so that row will remain empty, and one unit of space will be
wasted. There are two rows of length 2, but only one strip
of length 2, so without loss of generality we can place this
strip into one of these rows, and the other row must remain
empty, wasting two more units of space. There is one row
of length 3, and one strip of length 3, so we can place this
strip in this row, without wasting any more space. There is
one row of length 4, but two strips of length 4. Thus, we
place one of these strips in this row, and the other is carried
forward to be placed in a longer row.

The next longer row is 7 units long, and there are two
candidate strips to place here, the leftover strip of length 4,
and a strip of length 5. In fact, only one of these strips can
be placed in this row, but to avoid branching and make our
wasted-space computation efficient, we reason as follows:
The total length of remaining strips that could possibly fit in
the row of length 7 is 4 + 5 = 9. Since we only have one
such row, at most 7 units of these strips can fit in this row,
leaving at least 2 units left over. Thus, there is no additional
waste, and 2 units are carried over. This leaves us with a
lower bound of 3 units of wasted space for this subproblem.

The sum of the lengths of the strips is 18, and the sum of
the lengths of the empty rows is 19. Thus, at first this prob-
lem appears feasible. However, when we add the 3 units of
wasted space to the total length of the strips, the sum (21)
exceeds the total capacity of the empty rows (19), mean-
ing that the problem is not solvable. Since the bin-packing
relaxation is not solvable, neither is the original rectangle-
packing problem, and we can abandon this partial solution.

In general, the estimated wasted-space is calculated as
follows. We first construct two vectors, one for the empty
rows and one for the strips remaining to be packed. For each
length, the row vector contains the total empty area that oc-
curs in rows of the given length, which is the product of
the length and the number of such empty row segments. For
rows of length 1,2,2,3,4,7, this vector would be 1,4,3,4,0,0,7.
Similarly, the strip vector contains the total strip area that oc-
curs in strips of the given length, which is the product of that
length and the number of strips of that length. For strips of
length 2,3,4,4,5, this vector would be 0,2,3,8,5.

We then scan these vectors in increasing order of length,
maintaining two variables: the accumulated wasted area so
far, and the strip area carried over from smaller strips, both
of which are initially zero. For each length, there are three
possible cases: 1) if the empty row area of that length ex-
ceeds the sum of the carryover area and the strip area of that
length, then we add the amount of excess to the wasted space
so far, and reset the carryover to zero; 2) if the empty row
area of that length plus the carryover equals the strip area of
that length, we leave the wasted space unchanged, and reset
the carryover to zero; 3) if the empty row area of that length
plus the carryover exceeds the strip area of that length, then
we set the carryover to the amount of excess, and leave the
wasted space unchanged.

We calculate the wasted space for the horizontal strip re-
laxation of the current partial solution, and for the vertical
strip relaxation, and take the maximum of the two. The max-
imum wasted space is then added to the total area of all the

1

1

2

2

3

3
5

5

A B

Figure 1: Example of Illegal Position (A) for 5x5 Square

rectangles, and if this sum exceeds the area of the enclosing
rectangle, we prune this partial solution and backtrack.

Empty-Strip Dominance
The first rectangle will be placed first in the upper left-hand
corner of the enclosing rectangle. Its next position will be
one unit to the right. This leaves an empty strip one unit wide
to the left of the rectangle. While this strip may be counted
as wasted space, if the area of the enclosing rectangle is large
relative to that of the rectangles to be packed, this partial
solution may not be pruned based on the wasted space. In
this section we show that partial solutions that leave narrow
empty strips to the left of or above rectangle placements are
often dominated by solutions that don’t leave such strips,
and hence can be pruned from consideration.

Consider a problem where the rectangles to be placed
are the set of squares of size 1x1, 2x2, 3x3 up to n × n,
and the partial solution shown in Figure 1A, where the 5x5
square is three units below the top of the enclosing rectan-
gle. The only squares that could possibly occupy any of the
3x5 empty region directly above this square are the 3x3, 2x2,
and 1x1. Furthermore, they can always be packed entirely
within this region. Given a solution to such a problem which
includes the configuration in Figure 1A, we could slide the
5x5 square up against the top boundary, and move the 3x3,
2x2, and 1x1 squares into the 3x5 rectangle created below
the 5x5 square, as shown in Figure 1B, without affecting the
rest of the solution. Therefore, if Figure 1A is part of a valid
solution, then Figure 1B would be part of a solution com-
pleted in the same way. Since we always place a rectangle
first in the topmost and leftmost position it can occupy, and
we place the squares in decreasing order of size, we would
find the solution that contains Figure 1B before that which
contains Figure 1A. Thus, we don’t need to consider the par-
tial solution in Figure 1A. By similar reasoning, we don’t
allow the 5x5 square to be placed three cells from the left
edge of the enclosing rectangle.

If the 5x5 square were placed two cells from the top edge,

290 ICAPS 2003

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
A ∞ ∞ ∞ 3 4 4 4 4 5 5 5 6 6 6 6 6 6 7 7 7 7 8 8

Table 1: Minimum Allowable Width or Height of Empty Strips for Our Square-Packing Problem

the only squares that could occupy any of the resulting 2x5
empty rectangle would be the 2x2 and 1x1, both of which
fit within this region. Thus, we don’t place the 5x5 square
two cells from the top or left edges, nor one cell away for
the same reasons. There is nothing special about the top or
left edges of the enclosing rectangle in this argument, and
the same reasoning applies to placing the 5x5 square below
or to the right of a solid wall formed by previously-placed
rectangles, as long as there are no gaps in the wall.

The general case of this dominance condition is as fol-
lows: Consider a candidate position for a rectangle of width
w. Assume there is an empty region immediately above the
candidate position of width w and height h. This region may
be bordered above by the top edge of the enclosing rectan-
gle, or by a solid wall of already placed rectangles. It doesn’t
matter what is immediately to the left or the right of this
empty region. Now consider all rectangles of height less
than or equal to h, that follow the candidate rectangle in the
placement order. These are the only rectangles that could
possibly occupy any of this empty region. If all such rectan-
gles can be placed entirely within this w by h empty region
without overlap, then we don’t allow the original rectangle
to placed in this candidate position.

An analogous rule applies to empty regions to the left of
rectangles of height h. If all rectangles of width less than or
equal to w, that follow the candidate rectangle in the place-
ment order, fit entirely within an empty region of height h
and width w, then we don’t allow a rectangle of height h to
be placed with such an empty region immediately to its left.

The heights of allowable empty strips above rectangle
placements depend on the width of the rectangle to be
placed, the other rectangles in the problem, and the order
of rectangle placement. Similarly, the widths of allowable
empty strips to the left of candidate placements depend on
the height of the rectangle to be placed, the other rectangles,
and their placement order. These dominance conditions can
be expressed as two binary matrices. One specifies for each
rectangle width, the heights of empty space that may be al-
lowed above the rectangle. The other matrix specifies for
each rectangle height, the widths of empty space that may be
allowed to the left of the rectangle. These matrices are pre-
computed once for each set of rectangles to be packed, but
are independent of the dimensions of the enclosing rectan-
gles. Precomputing these matrices involves solving a small
rectangle-packing problem for each entry.

We can approximate each of these matrices by a vector.
One vector gives the minimum height of empty space al-
lowed above a rectangle of a given width, and the other gives
the minimum width of empty space allowed to the left of a
rectangle of a given height. For the special case of square
packing, these two vectors are the same. Table 1 shows such
a vector for the problem of packing squares of size 1x1,
2x2, 3x3, up to 23x23. The top line gives the size N of

the square being placed, and the bottom line gives the corre-
sponding minimum width or height A of a legal empty strip.
In this case, this vector can be used to solve all the different
size problems in this class. The vector indicates that for this
class of problems, the 1x1, 2x2, and 3x3 rectangles must be
placed adjacent to the boundary or another rectangle along
their top and left edges.

This vector approximation isn’t perfect, however, in that
it allows some empty strips that should be disallowed. For
example, consider placing the 4x4 square 5 units below the
top edge of the enclosing rectangle. This leaves an empty
region 5 units high and 4 units wide directly above it. The
squares remaining to be placed at this point are the 1x1, 2x2,
and 3x3. All these will fit entirely within this 5x4 empty
region, so we shouldn’t allow the 4x4 square to be placed
5 units from the top or the left edge. In practice, however,
allowing these placements doesn’t affect efficiency much,
because there is rarely so much empty space left when such
small rectangles are placed. Furthermore, precomputing the
status of these large empty regions can be expensive, since
they involve solving larger packing problems.

Searching the Space of Rectangles
So far, we have focussed on packing an enclosing rectangle
of particular dimensions. We now consider how to search the
space of such rectangles to find one of minimum area. Since
a rectangle has two dimensions, the space of such rectangles
is quadratic, but here we show how to examine only a linear
number of enclosing rectangles in the worst case.

Any enclosing rectangle must be at least as tall as the
tallest rectangle to be packed, and at least as wide as the
widest rectangle. We set the height h of the first enclos-
ing rectangle to the maximum height of any rectangle to
be packed, and place this rectangle against the left edge
of this enclosing rectangle, without loss of generality. We
then greedily place each succeeding rectangle, in order of
decreasing height, in the leftmost position available in the
enclosing rectangle, and in the uppermost position among
those. We continue until all rectangles are placed, resulting
in an enclosing rectangle of a particular width w. We store
the area of this rectangle as the best so far. Figure 2 shows
such a packing for the set of squares of size 1x1 up to 5x5,
which also happens to be optimal in this case.

We then search the space of enclosing rectangles by incre-
mentally increasing the height h, and decreasing the width
w, as follows. If we successfully packed the last enclosing
rectangle, we decrease the width w by one unit. If we failed
to pack the last enclosing rectangle, we increase h by one
unit. If the area of a candidate enclosing rectangle is less
than the total area of all the rectangles to be packed, the en-
closing rectangle is infeasible, and we increase the height h
by one unit. If the area of the candidate enclosing rectangle
is greater than that of the best enclosing rectangle so far, we

ICAPS 2003 291

5
4

2
1

3

Figure 2: First Rectangle to Contain 5 Squares

skip it, but treat it as a success, and decrease the width w
by one unit. We continue until the width w equals the maxi-
mum width of any rectangle to be packed, at which point we
return the best rectangle packing we found.

For example, consider the case of packing the set of
squares of size 1x1, 2x2, up to 6x6. The sum of the areas
of these squares is 36 + 25 + 16 + 9 + 4 + 1 = 91. We start
with height h = 6, the maximum height of these squares,
and greedily fill a rectangle of this height. The width of
this rectangle is w = 18, because none of the 6x6, 5x5,
4x4. or 3x3 squares can be placed on top of each other,
and 6 + 5 + 4 + 3 = 18. The area of this rectangle is
6 × 18 = 108. We then decrease w to 17, and try to pack
this 6×17 rectangle, which fails for the reason given above.
Thus, we increase h to 7. The resulting 7× 17 rectangle has
an area of 119, which is greater than our best area so far of
108, so we decrease w to 16. Since 7 × 16 = 112 > 108,
we decrease w further to 15. Since 7 × 15 = 105 < 108,
we test this rectangle, successfully pack the six squares in
it, and reduce our best area so far to 105. We then re-
duce w to 14, and try unsuccessfully to pack this 7 × 14
enclosing rectangle. Next, we increase h to 8, but since
8 × 14 = 112 > 105, we decrease w to 13, and try unsuc-
cessfully to pack this 8 × 13 rectangle. We then increase h
to 9. Since 9 × 14 = 126 > 105, 9 × 13 = 117 > 105,
and 9 × 12 = 108 > 105, we reduce w to 11. Since
11 × 9 = 99 < 105, we test this rectangle, and success-
fully pack all six squares, reducing our best area so far to
99. We then decrease w to 10, but 9 × 10 = 90 is less than
91, the sum of the area of all the squares, so we increase h
to 10. Since 10 × 10 = 100 > 99, we decrease w to 9.

In general, this would continue until w = 6, but for the
special case of square packing, we can quit when w < h,
since rotating the enclosing rectangle ninety degrees has no
effect on the problem. Thus, the 9 × 11 rectangle is the
optimal solution in this case.

Minimizing One Dimension

A related problem is to find the enclosing rectangle of small-
est area that minimizes one dimension, while containing all
the enclosed rectangles. For example, in a scheduling prob-
lem we may want to finish all the jobs as soon as possi-
ble, while using the fewest number of workers or machines
needed to minimize the total time. This is an easier prob-
lem. The minimum width of an enclosing rectangle is the
maximum width of all the rectangles to be contained. Sim-

ilarly, the minimum height of an enclosing rectangle is the
maximum height of all the rectangles to be contained. To
minimize one dimension, we set that dimension to its mini-
mum value, and compute a solution using the approximation
algorithm described above. We then iteratively decrease the
other dimension by one unit at a time, until all the enclosed
rectangles no longer fit in the resulting rectangle. At that
point, the last successful packing is the best solution.

Slicing Solutions
As mentioned previously, a popular approximation tech-
nique for rectangle packing is to only consider slicing so-
lutions. In a slicing solution, the enclosing rectangle can be
divided by a straight horizontal or vertical cut that doesn’t
intersect any of the enclosed rectangles, also known as a
guillotine cut, such that both of the resulting pieces are also
slicing solutions. For example, Figure 2 is a slicing solution,
but Figure 3 is not, since every straight cut through the en-
closing rectangle intersects at least one square. In general,
the optimal solution may not be a slicing solution, but slicing
solutions are easier to represent and compute.

To compare the quality of slicing solutions to optimal
solutions, we wrote a program to find slicing solutions of
minimum area. It uses the same algorithm described above
for searching the space of rectangles. Given an enclosing
rectangle of fixed dimensions, and a set of rectangles to be
packed, it tries all vertical cuts of the rectangle, from the
width of the narrowest rectangle, up to cutting it in half,
due to symmetry. Similarly, it tries all possible horizontal
cuts, from the height of the shortest rectangle, to the halfway
cut. For each cut, it tries to partition the rectangles into two
groups so that the sum of the enclosed rectangle areas in
each group is less than or equal to the areas of the two re-
sulting enclosing rectangles. For each such successful parti-
tion, it recursively searches for a slicing solution to the two
resulting subproblems. If the first cut is vertical, the first re-
cursive cut of the left rectangle must be horizontal, to avoid
the redundant work of performing these two cuts in the op-
posite order. Similarly, if the first cut is horizontal, the first
recursive cut of the top rectangle must be vertical.

Experiments
Square Packing as a Benchmark
To test our algorithms, we need a class of problem instances.
Ideally, they should be easy to specify, and provide a range
of difficulty. Furthermore, the simpler and more compelling
the instances are, the more likely it will be that other re-
searchers will choose to solve the same instances, allowing
comparisons between different approaches to the problem.

To achieve these goals, we chose the special case of pack-
ing squares, and in particular the set of squares of size 1x1,
2x2, etc. up to n × n(Gardner 1979). The task is to find a
rectangle of minimum area that will contain all the squares
with no overlap. Each problem instance is specified by a
single parameter, the size of the largest square, with larger
values representing more difficult problems.

While the special case of square packing allows further
optimizations, to maintain generality we implemented our

292 ICAPS 2003

N Optimal Waste Slicing Backtracking Wasted-Space Pruning Empty-Strip Elimination
Nodes Time Nodes Time Nodes Time

1 1 × 1 0% 1 × 1 1 00:00:00 1 00:00:00 1 00:00:00
2 2 × 3 16.67% 2 × 3 2 00:00:00 2 00:00:00 2 00:00:00
3 3 × 5 6.67% 3 × 5 3 00:00:00 3 00:00:00 3 00:00:00
4 5 × 7 14.29% 5 × 7 8 00:00:00 8 00:00:00 8 00:00:00
5 5 × 12 8.33% 5 × 12 5 00:00:00 5 00:00:00 5 00:00:00
6 9 × 11 8.08% 9 × 11 18 00:00:00 18 00:00:00 18 00:00:00
7 7 × 22 9.09% 7 × 22 97 00:00:00 49 00:00:00 45 00:00:00
7 11 × 14 9.09% 11 × 14 97 00:00:00 49 00:00:00 45 00:00:00
8 14 × 15 2.86% 15 × 15 486 00:00:00 158 00:00:00 131 00:00:00
9 15 × 20 5.00% 13 × 24 6563 00:00:00 297 00:00:00 297 00:00:00
10 15 × 27 4.94% 15 × 27 88991 00:00:01 7670 00:00:00 4874 00:00:00
11 19 × 27 1.36% 18 × 30 104549 00:00:01 1409 00:00:00 1247 00:00:00
12 23 × 29 2.55% 23 × 30 1217944 00:00:21 88892 00:00:01 23563 00:00:00
13 22 × 38 2.03% 21 × 41 11271324 00:03:59 174043 00:00:03 78149 00:00:01
14 23 × 45 1.93% 21 × 51 176532001 01:12:37 223291 00:00:06 137020 00:00:03
15 23 × 55 1.98% 23 × 57 3542491451 27:02:25 2296061 00:01:04 1463883 00:00:44
16 27 × 56 1.06% 36 × 44 18564982335 175:42:12 2906028 00:01:35 1615957 00:00:53
16 28 × 54 1.06% 36 × 44 18564982335 175:42:12 2906028 00:01:35 1615957 00:00:53
17 39 × 46 0.50% 39 × 48 108708173 00:56:55 19141929 00:10:57
18 31 × 69 1.40% 31 × 71 126353554 01:27:35 68185079 00:51:15
19 47 × 53 0.84% 35 × 74 1547660870 21:43:17 744810082 11:02:07
20 34 × 85 0.69% 46 × 65 2041570032 25:11:12 723623798 10:43:20
21 38 × 85 0.99% 33 × 104 6459138738 112:20:00
22 39 × 98 0.71% 57 × 69 28241475202 555:36:15

Table 2: Experimental Results

algorithms for the general rectangle-packing problem, and
simply ran it on squares. The one exception is that when at-
tempting to add a square to a partial solution, we only check
the corner cells of the square, rather then the entire bound-
ary. This is valid because we place the squares in decreas-
ing order of size, and if a square overlaps a larger square, it
must overlap in one of the corner positions. This optimiza-
tion doesn’t affect the number of nodes generated, has only
a small impact on the running time, and is easily modified to
the more general case.

Experimental Results
We found all optimal packings of these problems up to size
n = 22, as well as the best slicing solutions. Table 2 shows
the dimensions of the minimum-area rectangle(s) that con-
tain each set of squares, along with the percentage of area
that is wasted or left over. It also gives the slicing solution
of minimum area. There are two optimal packings for n = 7
and n = 16, and hence two table entries for each. Figure 3
shows the optimal packing for the case of n = 22. The re-
maining packings are available on request.

For each problem instance, we give the number of nodes
generated and the running times for three different versions
of our optimal solver, in hours, minutes, and seconds on a
440 Mhz Sun Ultra10 workstation. The first set of values
are for the simple backtracking algorithm without wasted-
space pruning or the elimination of empty strips. This is the
performance we would expect of a CSP solver applied to
this problem, since enhancements such as backjumping, for-

ward checking, and arc consistency don’t help when packing
squares in decreasing order of size. The second set of val-
ues give the corresponding data with the addition of wasted-
space pruning. The third set is for wasted-space pruning
plus the elimination of empty strips, either bounded by the
edges of the enclosing rectangle, or by previously-placed
rectangles. This column represents our best results to date.
Wasted-space pruning provides a huge improvement that in-
creases with problem size, reducing the running time by a
factor of over 6600 for n = 16. Furthermore, the ratio of the
running time of the simple backtracking algorithm to that
with wasted-space pruning increases with increasing prob-
lem size, strongly suggesting that wasted-space pruning im-
proves the asymptotic time complexity of the simple back-
tracking algorithm. Eliminating empty strips provides an ad-
ditional speedup of about a factor of two. The combination
of the two techniques reduces the running time for n = 16
from over a week to less than a minute, a speedup factor of
almost 12,000. The blank entries represent problem sizes on
which it wasn’t practical to run the weaker programs.

In general, the search for slicing solutions is more effi-
cient, but the solutions are not as good. For example, the
best slicing solution for n = 22 wastes 3.51% of the area,
compared to .71% for the optimal solution.

Generality and Further Work
This is work in progress, and presents a number of direc-
tions for future work, including developing more efficient
algorithms, and generalizing the techniques.

ICAPS 2003 293

22
17

16
1211

10 9 7 13
5

21 18

20 19

14 15
8

6
4
3

2

1

Figure 3: Optimal Packing of Squares up to 22x22

Performance Improvements

The relaxation of rectangle packing to bin packing allows us
to use techniques developed for bin packing on this prob-
lem. One obvious possibility is before trying to pack any
given enclosing rectangle, try to solve the two bin-packing
relaxations, one in the vertical dimension and the other in the
horizontal dimension. If either of these problems cannot be
solved, then the corresponding rectangle-packing problem
is not solvable either. (Korf 2001) presents a state-of-the-art
optimal bin-packing algorithm.

Another possibility is to constrain the bin-packing relax-
ations by prohibiting strips that came from the same rect-
angle from being packed in the same bin (row or column).
This results in a new type of bin-packing problem with con-
straints on which elements can be packed in the same bins.
We could try to solve these two problems, one in each di-
mension, before trying to pack a given enclosing rectangle.

Observations of the partial solutions generated by our pro-
gram yield additional ideas for improvements. For example,
when the empty space becomes divided into disconnected
components, the program doesn’t realize that changes in one
component can’t affect the possible packings in the other
components. In particular, after packing rectangles in one of
the components, the algorithm tries to pack additional rect-
angles in the other component. If this fails, the algorithm
will backtrack and move a rectangle in the first component,
and then try all over again to pack the same rectangles in the
other component. This is obviously futile. What is needed
is a two-level search, once the empty space has been divided
into disconnected components. The top-level search parti-
tions the rectangles among the connected components, based
on the areas of the rectangles and the areas of empty space
components. A lower-level search then tests the feasibility
of these assignments, based on the actual geometry of the
empty spaces. If a set of rectangles won’t fit in a particular
component, then a different partition must be tried, rather
than retrying the same assignment after making a change to
another component.

Generalizing the Techniques

A natural question is to what extend these techniques can
be generalized to a broader class of problems. An obvious
generalization is to three or more dimensions. For the two-
dimensional problem, one dimension represents time, and
the other dimension represents a resource such as workers.
The task of scheduling jobs that require two different re-
sources, such as workers and machines for example, can be
modelled by a three-dimensional box-packing problem.

The relaxation of three-dimensional box packing to bin
packing involves cutting the boxes into square rods of dif-
ferent lengths with a 1x1 cross-section. This can be done
in each of the three dimensions. The empty-space strips be-
come empty-space planes, but the dominance condition is
the same. The number of enclosing boxes that may need to
be considered will be quadratic rather than linear, however.
For each different height of enclosing box, we could use the
linear technique described above to determine the length and
width of the minimum-volume enclosing box.

294 ICAPS 2003

The bin-packing relaxation also generalizes in a straight-
forward way to packing non-rectangular elements into non-
rectangular enclosing regions. A non-rectangular element
might arise from a task that required a certain number of
workers for a certain period of time, and then a different
number of workers for another period of time, for example.
A non-rectangular enclosing region would occur if a fac-
tory had different shifts with different numbers of workers
on hand at different times. Since the bin-packing relaxation
involves slicing the rectangles to be packed and the enclos-
ing rectangle into unit strips, it doesn’t require that either
of these be rectangles. Of course, the empty-strip domi-
nance condition and the space of enclosing rectangles be-
come much more complex in this case.

Finally, if our rectangles don’t have fixed orientation, such
as in a VLSI design or a cutting-stock problem, the size of a
retangle in each dimension can be replaced by the minimum
dimension of the rectangle for purposes of the bin-packing
relaxation, but probably at a significant loss of efficiency.

Conclusions and Contributions

Rectangle packing is a simple abstraction of many schedul-
ing problems. We present an algorithm to find an enclosing
rectangle of minimum area that contains a given set of en-
closed rectangles. It can also be used to minimize one di-
mension of the enclosing rectangle if the other dimension is
fixed. Our algorithm is an anytime algorithm, meaning that
for large problems it immediately finds an approximate solu-
tion, and continues to find better solutions as long as time is
available, until it finds and then verifies an optimal solution.
The space requirement of the algorithm is negligible, con-
sisting primarily of the two-dimensional grid whose size is
that of the largest enclosing rectangle considered. We tested
our algorithm on the problem of packing a set of squares of
size 1x1, 2x2, up to n×n into a rectangle of minimum area,
and have optimally solved problems up to size n = 22 to
date. Surprisingly, very little work has been done on finding
optimal solutions to rectangle-packing problems, and as far
as we know, no other packing algorithms can find optimal
solutions to such modest-size problems in practice.

We believe that this work makes several contributions.
The first is to identify one-dimensional bin-packing as a re-
laxation of the rectangle-packing problem. This leads di-
rectly to an efficient wasted-space lower-bound computation
that appears to improve the asymptotic complexity of a sim-
ple backtracking algorithm. We could exploit this relaxation
in other ways as well, such as testing an enclosing rectan-
gle for solutions to the corresponding bin-packing problems
before trying to pack the rectangles. Another contribution
is to identify a dominance condition based on empty strips.
This dominance condition speeds up the backtracking algo-
rithm with the wasted-space lower bound by about a factor
of two. The combination of the two techniques improved
performance by a factor of over 12,000 on the problem of
size n = 16, from over a week to less than a minute. An
additional contribution is to show how only a linear number
of enclosing rectangles need be considered, in the quadratic
space of possible enclosing rectangles. Finally, we believe

that our class of square-packing test cases represent a sim-
ple, elegant set of rectangle-packing problems of increas-
ing difficulty, and propose this as a benchmark for other re-
searchers to test their algorithms on, allowing comparison of
results from different approaches.

Acknowledgements
This research was supported by NASA and JPL through con-
tract No. 1229784, and by NSF grant No. EIA-0113313.
Thanks to Victoria Cortessis and Alex Fukunaga for their
comments on an earlier draft of this manuscript.

References
Aggoun, A., and Beldiceanu, N. 1993. Extending chip
in order to solve complex scheduling and placement prob-
lems. Mathematical Computer Modelling 17(7):57–73.
Gardner, M. 1979. Mathematical games. Scientific Ameri-
can 241:18–22.
Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
San Francisco: W.H. Freeman.
Guo, P.; Cheng, C.; and Yoshimura, T. 1999. An o-tree
representation of non-slicing floorplan and its applications.
In Proceedings of the ACM Design Automation Conference
(DAC99), 268–273.
Hentenryck, P. V. 1994. Scheduling and packing in the con-
straint language cc(fd). In Zweban, M., and Fox, M., eds.,
Intelligent Scheduling. San Francisco: Morgan-Kaufmann.
Korf, R. 2001. A new algorithm for optimal bin packing. In
Proceedings of the National Conference on Artificial Intel-
ligence (AAAI-02), 731–736. Edmonton, Alberta, Canada:
AAAI Press.
Martello, S., and Toth, P. 1990. Lower bounds and re-
duction procedures for the bin packing problem. Discrete
Applied Mathematics 28:59–70.
Murata, H.; Fujiyoshi, K.; Nakatake, S.; and Kajitani, Y.
1995. Rectangle-base module placement. In Proceedings
of the International Conference on Computer-Aided De-
sign (ICCAD95), 472–479.
Nakatake, S.; Fujiyoshi, K.; Murata, H.; and Kajitani, Y.
1996. Module placement on bsg-structure and ic layout ap-
plications. In Proceedings of the International Conference
on Computer-Aided Design (ICCAD96), 484–491.
Onodera, H.; Taniguchi, Y.; and Tamaru, K. 1991.
Branch-and-bound placement for building-block layout. In
Proceedings of the ACM Design Automation Conference
(DAC91), 433–439.
Otten, R. 1982. Automatic floorplan design. In Proceed-
ings of the ACM Design Automation Conference (DAC82),
261–267.

ICAPS 2003 295

