Abstract
Mixed-initiative planning systems attempt to integrate human and AI planners so that the synthesis results in high quality plans. In the AI community, the dominant model of planning is search. In state-space planning, search consists of backward and forward chaining through the effects and preconditions of operator representations. Although search is an acceptable mechanism to use in performing automated planning, we present an alternative model to present to the user at the interface of a mixed-initiative planning system. That is we propose to model planning as a goal manipulation task. Here planning involves moving goals through a hyperspace in order to reach equilibrium between available resources and the constraints of a dynamic environment. The users can establish and “steer” goals through a visual representation of the planning domain. They can associate resources with particular goals and shift goals along various dimensions in response to changing conditions as well as change the structure of previous plans. Users need not know details of the underlying technology, even when search is used within. Here we empirically examine user performance under both alternatives and see that many users do better with the alternative model.

Introduction
The idea to present planning as a goal manipulation process rather than a search process has much appeal, at least intuitively. Goals have long been recognized as important to a full understanding of both human and machine problem-solving abilities (Newell and Simon 1963; 1972; Schank 1982; Schank and Abelson 1977). A goal provides a focus for inference and learning, and it makes explicit the objectives of a system, either human or machine (Ram and Leake 1995). By having explicit representation of goals, a planner can more easily reason not only about the domain of planning but also the direction of planning. Furthermore by including a means for explicitly representing goals at the interface of a computer problem-solving system, users are encouraged to express their specific intentions thereby forcing users to keep their “eyes on the prize.” In this paper, we view goals somewhat differently than do most cognitive or engineering approaches to intelligence. Goals are mutable. They will change appropriately with user direction according to the current context; they will change inappropriately when left to the vagaries of a dynamic environment.

Overwhelming combinatorics face fully autonomous planners attempting to solve complex problems. A mixed-initiative approach inserts into the planning process an active human user whose knowledge is outside the transitive closure of more coarse-grain abstract domain representations used by planning systems. However to perform such an insertion of human decision makers, it is not sufficient to simply allow a user to perform or override any decision the planner itself can make. Planning is represented internally by most planning systems as a search process. Operators having preconditions, post conditions, and variable bindings represent actions. Such operators can change the world through their effects. Planning therefore consists of search from an initial state to a goal state by means of operator and variable binding choices. But except for highly trained individuals, search is a reasonably difficult concept to grasp fully.

As an indication of the difficulties, consider how many operator variable binding choices exist for a particular decision point in the search process. If N objects of type OBJECT exist and a state has two arguments of this type, then the user must select from N^2 choices. In general, for a predicate with j arguments, each type of which has cardinality card(arg) instances, the maximum number of candi-
date choices can be as much as \(\prod_{0 \leq i < j} \text{card}(\text{arg}_i) \). Thus a large number of choices exist in general, and the preponderance of similar choices may overwhelm a user.

In this paper instead of presenting the planning process to a user as a search through the effects and preconditions of operator representations, we hypothesize that the metaphor of goal manipulation will prove a more accessible means for humans to consider planning and therefore will result in better planning performance. Section 2 describes the concept of goal transformations upon which a mixed-initiative planner can be implemented. Section 3 introduces the GTrans planning interface to the PRODIGY planning and learning architecture. We compare and contrast this with PRODIGY’s standard GUI. Section 4 explains how a user can plan for goal change by introducing the Bridges Problem. Section 5 summarizes a very small empirical study performed to compare the two different planning interfaces. Here the performance of users given a goal manipulation metaphor generally exceeds that of users presented with the search metaphor. However we also note that expert users lose some flexibility under the goal manipulation model that otherwise allows them to perform better under search in some circumstances. Section 6 provides pointers into the literature for related research, and Section 7 closes the paper with a brief discussion and directions for future research.

Goal Transformations

We start with the observation that goals often become obsolete given inherent uncertainties in a resource-limited world and a changing circumstance. For example the goal to have a package delivered may be abandoned because the recipient is no longer at the package address. Instead a goal to return the package to the sender may be substituted. Only under the closed world assumption can goals be defined as static input states to be achieved. Moreover, goals are often vague and ill-defined in the early stages of planning and require refinement throughout the planning process. Goals are not necessarily atomic, rather they may be semi-achievable.

For instance Williamson (1996) examined time constraints on goals. A goal may not be achieved by a certain date, but may be achieved slightly later at a specific cost. In his conception, planning consists of maximizing a value function on goals. As Williamson further notes, a conjunctive goal is composed of multiple goals that all need to be satisfied. So satisfying some instead of all is better that satisfying none at all. We also prefer planners that do not simply fail under resource poor circumstances. Instead planners should not only be able to revise their plans when resources are limited, but they should also be capable of revising their goals in order to achieve solutions that are acceptable. To address these problems we have created a theory of goal change formally represented as transformations.

A goal transformation represents a goal shift or change. Conceptually it is a change of position for the goal along a set of dimensions defined by some abstraction hyperspace (Cox 2000). The hyperspace is associated with two hierarchies. First the theory requires a standard conceptual type-hierarchy within which instances are categorized. Such hierarchies arise in classical planning formalisms. They are used to organize arguments to goal predicates and to place constraints on operator variables.

Goal transformation theory also requires a unique second hierarchy. In normal circumstances the domain engineer creates arbitrary predicates when designing operator definitions. We require that these predicates be explicitly represented in a separate predicate abstraction hierarchy that allows goals to be designated along a varying level of specificity. For example consider a military domain. The domain-specific goal predicate is-ineffective takes an aggregate force unit as an argument (e.g., (is-ineffective enemy-brigade1)). This predicate may have two children in the goal hierarchy such as is-isolated and is-destroyed. The achievement of either will then achieve the more general goal. Furthermore if the predicate is-destroyed had been chosen to achieve in-effective, the discovery of non-combatants in the battle area may necessitate a change to is-isolated in order to avoid unnecessary casualties. Note also that to defer this decision, the goal movement may be to the more general is-ineffective predicate instead. Then when the opportunity warrants and further information exists, the goal can be re-expressed. In any case, movement of goals along a dimension may be upward, downward or laterally to siblings.

Goal movement may also be performed by a change of arguments where the arguments exist as objects of or members of the standard object type-hierarchy. The goal represented as the type-generalized predicate (inside-truck Truck1 PACKAGE) is more general than the ground literal (inside-truck Truck1 PackageA). The former goal is to have some package inside a specific truck (thus existentially quantified), whereas the latter is to have a particular package inside the truck. Furthermore both of these are more specific than (inside-truck TRUCK PACKAGE). Yet movement is not fully ordered, because (inside-truck Truck1 PackageA) is neither more or less general than (inside-truck TRUCK PackageA).

A further way goals can change is to modify an argument representing a value rather than an instance. For example the domain of chess may use the predicate outcome that takes an argument from the ordered set of values (checkmate, draw, lose). Chess players often opt for a draw according to the game’s progress. Thus to achieve the out-

\[1 \text{A type generalized predicate (p TYPE) is equivalent to the existentially quantified expression } \exists x (TYPE(x) \land p(x)) \]
come of draw rather than checkmate represents a change of a player’s goal given a deteriorating situation in the game.

Generally planning is to achieve a desired state by managing the world, the resources, and the intended outcomes one wishes. Although a change in the world is delivered by acting upon it, the selection of actions is but one choice a planning agent has at its disposal. The choice of goal states to include in a problem representation, the selection of a current goal to pursue, and the commitment of resources to each goal are as equally important as the action selections themselves. Thus planning is a context-dependent task of discovering, managing, and refining what one actually wants.

The GTrans Mixed-Initiative Planner

To directly support the goal manipulation model, we implemented a mixed-initiative interface to a planning system through which the user manipulates goals, the arguments to the goals, and other properties. The interface hides many of the planning algorithms and knowledge structures from the user and instead emphasizes the goal-manipulation process with a menu-driven and direct manipulation mechanism. The system, called GTrans (Cox 2000; Zhang 2002; Zhang, Cox, and Immaneni 2002), presents a direct manipulation interface to the user that consists of a graphical map with drag and drop capability for objects superimposed upon the map surface. GTrans helps the user create and maintain a problem file that is internally represented as follows. A planning problem consists of an initial state (a set of objects and a set of relations between these objects) and a goal state (set of goals to achieve). The general sequence is (1) to create a planning problem, (2) invoke the underlying planner to generate a plan, and then until satisfied given planning feedback either (3a) change the goals or other aspects of the problem and request a plan or (3b) request a different plan for the same problem.

To support step 3a above, GTrans supports three general classes of goal transformations at this time.

1. Goal type transformation
2. Goal argument transformation
3. Valence transformation

A goal type transformation enables the planner to manually transform a goal by moving the predicate of the goal along an abstraction hierarchy defined in the domain knowledge. The goal argument transformation involves an upward movement through an abstraction hierarchy on one or more goal arguments. A valence transformation is performed by toggling between a positive or negative truth value of the

2. The GTrans home page is www.cs.wright.edu/~mcox/GTrans.

3. Prodigy4.0 has the ability to iterate the planning process for a given problem generating a different solution depending upon the :multi-sols keyword parameter (Carbonell, et al. 1992). GTrans incorporated this into the interface. See Zhang (2002)
goal (i.e., whether to achieve the predicate or its negation).

The overall GTrans family of systems incorporates a number of versions including a multi-user collaborative planning system. This system configuration includes multiple networked copies for each user and a joint planning interaction mode along with information sharing capabilities. Another version integrates the mixed-initiative (human-directed) system with a multiagent (artificial agent) planning system called COMAS (Edwin 2001; Edwin and Cox 2001). COMAS (CoOrdination in MultiAgent Systems) also uses goal transformations for planning. Here we focus on a single-user version that interacts with one underlying planner.

The GTrans User Interface Version 2.1 (Zhang 2002) is the implementation that hides the planning algorithms and representations from the human user by focusing on the goal manipulation process (see Figure 1). It provides the user with a mechanism to directly manipulate the set of objects, initial state of the planning world, as well as the objectives of the planning problem. The user is able to define the objectives or goals and to assign particular resources to achieve the goals. When the underlying planner fails to generate a plan because of insufficient resources or because the planning world changes, the user can asynchronously modify the goals and send them back to the planner for another round of planning, thus steering the planning process. Although Figure 1 depicts the interface, discussion of the content of this window will follow in the next section.

The user interface is implemented in Java Version 1.2. The overall architecture includes two principle components: (1) Prodigy/Agent (written in Allegro Common Lisp) and (2) the user-interface single-agent component. The interface presents a graphical map display and a set of pull-down cascading menus to the human planner. The human can create objects, define initial states, set or transform goals, create problems, and solve problems. The Prodigy/Agent system\(^4\) (Cox, et al. 2001; Elahi 2003) allows the underlying PRODIGY planner to communicate with the interface through a KQML protocol. The two programs use sockets to pass KQML performatives.

PRODIGY (Carbonell, et al. 1992; Veloso, et al. 1995) is a domain-independent, nonlinear, state-space planner implemented at Carnegie Mellon University. It searches for a sequence of actions that transform the environment from an initial state into a final state containing the goal state. Like all state-space planners, its problem specification includes a set of objects existing in the planning environment, the initial state of the environment, and the goal state that needs to be achieved by the plan. Prodigy/Agent consists of a wrapper program and the PRODIGY planner. The wrapper program serves as a software interface between the PRODIGY planner and external agents.

PRODIGY has a standard user-interface that comes with the CMU system (see Figure 2). The Prodigy 4.0 User Interface 2.0 (Cox and Veloso 1997) provides access to the underlying data structures such as the search tree, the goal-subgoal graph (left canvas in Figure 2), and the emerging plan (right canvas in Figure 2). It also includes various pull-down menus and buttons to control planning and interface parame-

\(^4\)The Prodigy/Agent home is www.cs.wright.edu/~mcox/Prodigy-Agent/
ters, planning mode, and other facets. The interface displays the progress of the planning process in terms of search. Cox and Veloso claimed that the interface provides a mechanism that improves user-performance with the system, but this is a weak claim, because the previous interface was simply a LISP interpreter. Here we will compare the standard PRODIGY interface to the alternative GTrans interface.

When it loads a domain, the GTrans User Interface obtains the domain information from Prodigy/Agent through four types of requests. In response to an obj-request, Prodigy/Agent sends back to GTrans User Interface the types of objects that exist in the domain. To support goal classification information PRODIGY reads each operator from a domain file and sends to GTrans a list of positive effects from each operator. The effects are represented as (predicate arg1-type arg2-type... argN-type). GTrans then can associate objects defined on the map with goals relevant to each. A tree-goal-request asks for all of the goal hierarchies in the domain. And a state-request requests all the possible initial states in the domain.

Unlike domain information that remains static for a given domain, problem information (including object information, state information and goal information) may change over time as the planning world changes. The communication of problem information between the Planning User Interface and Prodigy/Agent occurs after the human planner creates a set of objects, specifies the initial state, sets the goal state, and gets ready to run the problem. After receiving the request to search for a plan as well as the problem information, Prodigy/Agent runs the PRODIGY planner and sends the resultant plan, if any, back to the requesting Planning User Interface. In case of failure in generating a plan, Prodigy/Agent simply sends back a failure message indicating no plan can achieve the goal state of the problem.

Planning for Goal Change

Here we introduce a problem that illustrates the trade-offs between resource allocation decisions in a military air campaign planning domain. The “Bridges Problem” is simply to make rivers impassable by destroying all bridges across them. This task universally quantifies the variable <crossing> with the relation (enables-movement-over <crossing> river) and requires a separate air unit for each crossing in order to achieve the goal. We simplify the problem by assuming that an air resource can destroy one bridge and damage an arbitrary number of others. Therefore if a new crossing is discovered or an old resource becomes unavailable, the constraints of the problem change thereby forcing dynamic replanning. When a goal state is composed of conjunctive goals for multiple rivers, an interesting trade-off exists for the user. To maximize the goal satisfaction, the optimal user will allocate resources to rivers with fewer crossings (Edwin and Cox 2001).

The Bridges Problem is an instance of a class of problems with the following form

\[(\forall x \exists y)[\text{goal}(x) \land \text{subgoal}(y, x) \land \exists \alpha \left((\text{resource}(r) \land p(r, y)) \lor \alpha'(y) \right)] \]

where \(p(y) = \alpha(p(r, y)) \) and \(0 \leq \alpha \leq 1 \).

The problem is to maximize the value of the quantified expression above. That is for all goals, \(x \), and forall subgoals of \(x, y \), the problem is to maximize the value of the conjunction of disjunctions \(p(r, y) \lor \alpha'(y) \) using some resources \(r \) where the value of the predicate \(p' \) is some fraction between 0 and 1 of the value of \(p \). In the case of the Bridges Problem, the goals are to make impassable rivers \(x \) by the predicate is-destroyed applied to bridges \(y \) over the rivers or by the predicate is-damaged where a damaged bridge is considered 50% destroyed \((\alpha = 0.5)\). Thus given enough resources and the goal to make a river impassable, it is enough to destroy all bridges across it. Without sufficient resources, a plan to destroy most bridges and damaging the rest results in maximally restricting the movement across it.

Figure 1 in the previous section illustrates a scenario with four air units (resources) and two rivers, the first with three bridges and the second with two. The user should allocate two resource units to the two-bridge river and two to the three-bridge one. By doing so the goal to make the first river impassable is achieved fully, whereas the second goal is more fully satisfied than if the reverse allocation was performed. Note that this determines a change to the second goal rather than the first. By transforming the goal (outcome-impassable river2) to (outcome-restricts-movement river2) the planner is able to achieve success.

GTrans provides a unique facility to transform or steer goals in such situations. When the user receives feedback from the underlying Prodigy/Agent planner (either a successful plan that may not be acceptable by the user, a failure to generate any plan, or an apparent problem due to the planner taking too long), the user can asynchronously modify the goals and send them back to the planner for another round of planning. The user does this by graphically manipulating the goals by selecting the “Change Goals” choice on the Planning pull-down menu.

5. For example an air unit may break down during planning. In this paper we will not include a dynamic environment that changes. Rather we concentrate on planning under limited resources and leave environmental change for further study. Dynamic changes are discussed elsewhere.

6. An example analog in the logistics domain is to use truck resources to deliver most priority packages in all towns to their destinations in the morning and the remaining packages in the afternoon. We implemented the logistics domain along with an emergency management domain. Zhang (2002) reports results from a skill transfer experiment from the military domain described here to the logistics domain.
Figure 1 shows two dialogue boxes that allow the user to change the goal of making river1 (R1) impassable by destroying all bridges across it. By highlighting the goal the users wishes to change and then clicking on the “Change” button from the “Current Goals” pop-up menu, the goal can be modified by any of the general classes of transformations mentioned earlier. Because the goal type transformation moves the goal predicate itself down a level of abstraction, the goal changes to achieving the state of outcome-restricts movement rather than the state of outcome-impassability.

Figure 2 above illustrates the standard PRODIGY interface with the same problem as that in Figure 1. Instead of manipulating a representation of the goals, the user manages the problem in terms of the search technology that underlies PRODIGY. The figure shows the user with a choice of variable bindings that determines which air unit will be used against BRIDGE1. In the goal manipulation model the user effects change directly to a representation of the goal. In the search model the change is represented by a PRODIGY inference rule. This rule is called lower-outcome-expectations and is visible in the goal-subgoal graph of Figure 2. It asserts that, if the goal to restrict movement over river1 is achieved, then the goal to have the river impassable is also achieved. The user must select this rule from among operator choices during planning. Having made this change in the step prior to the step shown in the figure, the user must now decide which air unit to use for damaging river2 by specifying a binding for variable <AIR-FORCE> in Figure 2.

Evaluation

Cox and Veloso (1997) made the claim that the Prodigy 4.0 User Interface 2.0 was an effective interface for mixed-initiative planning because of three characteristics. Firstly the interface allows both generative and case-based planning and as such is better suited to human cognitive constraints, because case-based reasoning represents and utilizes experience in the form of cases. Secondly the interface displays the planning process as well as the plan itself. This process is a runtime animation of the PRODIGY planning algorithm as shown in the goal-subgoal graph. Thirdly the interface has the potential to support both experts and novices in the planning technology. However these purported characteristics were never substantiated empirically.

This study examines the first and third characteristics, although we do not test the user performance under the case-based mode in PRODIGY (i.e., Prodigy/Analogy. See Veloso, 1994). As noted by Cox and Veloso, however, the interface was primarily designed for the expert technologist. Some suggestions were made as to how the interface might be improved for novices. But instead of minor changes to the existing interface, we argue here that a completely new approach is needed as incorporated in the GTrans Interface. Indeed, we expect that the goal-subgoal graph is of little help to the naive user who does not understand the search process. Instead it may actually interfere with decisions.

Design

An experiment was performed with human subjects to compare and contrast the cognitive models each interface implements. The experiment is designed to evaluate the differences of the two models under differing amount of task complexity using both expert and novices. This experiment uses 18 variations on the Bridges Problem in the military domain as test problems. In these problems, insufficient resources exist with which to solve the problem completely. Choices can be made, however, so that a solution is produced that achieves a partial goal satisfaction represented as a ratio of the subject’s partial solution to the optimal partial solution. Given the objective of the experiment, we identify three independent variables or factors and one dependent variable as follows.

The cognitive model of planning. This variable is either the search model and the goal manipulation model. Seven subjects were assigned to the search model whereas six subjects were assigned to the goal manipulation model. The model is determined by which interface is presented to the subject from which to perform the experiment. The search model is presented by the Prodigy 4.0 User Interface 2.0, whereas the goal model is presented by the GTrans User Interface.

The subject expertise. The conjecture of Cox and Veloso (1997) is that the effect of the interface on user performance may be dependent on the user's expertise level. Subjects were categorized as either experts or novices. We define experts as those subjects who have some knowledge of AI planning, while novices are those without AI planning knowledge. If a participant has taken CS409/CS609 (Principles of Artificial Intelligence), CS712 (Multiagent Systems and Mixed-Initiative Planning) or CS714 (Machine Learning) and acquired some knowledge of AI planning (specifically of PRODIGY) before the experiment, he or she is categorized as an expert. Otherwise, he or she is considered as a novice. Through a random assignment, the 6 expert subjects were divided 4 to the goal manipulation model and 2 to the search model; the novice subjects were divided 2 to the goal model and 5 to search.

The problem complexity. We also predict that the effect of the planning model on the user performance partially depends on the difficulty level of a given problem. Because we normally consider a problem with a longer solution to be more complex than another problem with a shorter solution, the complexity of the problem is defined to be proportional to the number of steps in the optimal plan for that problem. Out of the 18 problems administered to subjects, the first six are easy problems, the second six are medium, and the third six are hard. Although we divided complexity categories...
solely based on solution length, most easy problems have fewer goals to solve than do harder problems. The averages are 2.33 goals per easy problem, 2.5 for medium, and 3.5 for hard. Furthermore problems labelled easier require fewer changes to their goals to generate a solution. Easy problems average 86.95 in terms of the percentage of goal satisfaction an optimal plan can achieve. Medium problems average 85.06, and hard problems average 84.80.

The measured dependent variable is as follows. The goal satisfaction ratio is the ratio of the actual goal satisfaction achieved by the participant's plan to the goal satisfaction achieved by an optimal plan. In all problems, the percent achievement for an optimal plan is less than 100 due to resource constraints. If the subject generates the optimal plan, however, the goal satisfaction ratio will be 1. As such this measure represents the quality of the subjects’ planning process.

Procedure

We developed a training package that helps the participants to familiarize the planning domain and the mixed-initiative planning interfaces. The training package consists of a brief introduction to the experiment, a set of rules for the military domain, and four training problems with various complexities in the military domain accompanied with step-by-step instructions and explanations (see the appendices of Zhang 2002, for full training details and the raw subject data). Each training problem consists of a number of steps. For each step a screen shot is displayed on the left side, and the instructions together with the explanations are given in text format on the right side.

Each subject is randomly assigned to either the search condition or the goal manipulation condition. Next, subjects are administered the training package. Guided by the detailed instructions and explanations, subjects solve the training problems under either the search model or the goal manipulation model. Subjects are allowed to go through the training package only once. This normally lasts 30 minutes. Subjects then start to solve eighteen test problems with various complexities in the military domain until they succeed or fail. If the subject succeeds and obtains a plan for a problem, the plan together with the problem information (including object information, state information, and goal information) is saved on the disk; the goal satisfaction ratio achieved by the plan is also calculated and recorded. If the subject fails by getting into an infinite loop, the experimenter will terminate the current problem for the subject so that the subject can start on the next problem. The goal satisfaction ratio he or she achieves for the current problem is recorded as zero. After each problem, a goal satisfaction calculator computes the goal satisfaction achieved by the subject. Then the experimenter gives the subject the feedback on the maximum goal satisfaction as well as the actual goal satisfaction achieved by the subject.

Note that all subjects collaborate with Prodigy/Agent to generate a solution regardless of the interface, so the experiment is a test of mixed-initiative performance. Under the goal model, the user examines state conditions and manipulates the goals. The subject then invokes Prodigy/Agent for a plan. Under the search model, the user examines similar conditions (and the visual scene map) plus the goal subgoal graph and then chooses from alternatives presented by Prodigy/Agent at each decision point where alternatives exist. If only one choice exists at any decision point, Prodigy/Agent makes the decision and continues until a search choice exists for the subject. In all cases the search tree depth-bound for Prodigy/Agent is set to 200.

Results

The graph of Figure 3 shows the mean of the goal satisfaction ratio under the goal manipulation model and the search model. When presented with the goal manipulation model, subjects achieve over 95 percent goal satisfaction on average. When presented with the search model, subjects achieve about 80 percent goal satisfaction on average.

![Figure 3. Goal satisfaction as a function of cognitive model](image)

![Figure 4. Goal satisfaction as function of problem complexity](image)
Search Model

await a larger scale investigation planned for 2005.

that significantly effects performance. Further conclusions

a user cannot modify parameters such a search depth-bound

lation model omits a representation of the search algorithm,

the standard interface provides more information pertaining

on identical problems. For users that understand search well,

outperform other experts using the goal manipulation model

analysis. Some experts using the search model were able to

planning tasks. However we do not wish to overstate the

itions about the nature of human cognition involved with

problem complexity. As can be observed from the graph, when the goal

manipulation model is presented to the user, the goal satis-

faction ratio generally remains the same with increasing problem complexity; but when the search model is presented

to the user, the goal satisfaction ratio decreases as the prob-

lem complexity increases. It is possible that the effect of the planning model on the user performance depends on the

problem complexity.

The next step of our analysis is to examine the possible interaction effects between the planning model and the user

expertise level. Figure 5 shows the average goal satisfaction ratio for each combination of the planning model and the user expertise level. It is apparent that experts perform better

than novices under both planning models.

These results are as yet preliminary because of the small number of subjects examined in this pilot study, and as such,

are mainly suggestive. However they do support the idea that the kind of metaphor presented to a human user does affect

planning performance, and the study does reinforce our intu-

tions about the nature of human cognition involved with planning tasks. However we do not wish to overstate the analysis. Some experts using the search model were able to

outperform other experts using the goal manipulation model on identical problems. For users that understand search well, the standard interface provides more information pertaining to system performance. Moreover because the goal manipulation model omits a representation of the search algorithm, a user cannot modify parameters such a search depth-bound that significantly effects performance. Further conclusions await a larger scale investigation planned for 2005.

Figure 5. Goal satisfaction as a function of expertise

Given that the cognitive model itself is an important fac-

tor as concluded in previous analysis, we next examine the possible relationships among three independent variables:

planning model, problem complexity, and subject expertise. Figure 4 plots the average goal satisfaction ratio for each combination of the planning model and the problem com-

plexity. As can be observed from the graph, when the goal

manipulation model is presented to the user, the goal satis-

faction ratio generally remains the same with increasing problem complexity; but when the search model is presented

to the user, the goal satisfaction ratio decreases as the prob-

lem complexity increases. It is possible that the effect of the planning model on the user performance depends on the

problem complexity.

We are not the first to criticize the search-driven approach to planning. Ferguson and Allen (1998) have long described

planning as essentially a dialogue process between agents, both human and synthetic. More recently Myers describes

planning as a hybrid goal-directed and data-driven sketching process by humans (Myers, Jarvis, Tyson, and Wolverton 2003; see also Forbus, Usher, and Chapman 2003). Indeed

most in the mixed-initiative planning community (see Aha 2002; Burstein 1994; Tecuci 2003) stress the need for human-in-the-loop control of planning.

A number of researchers are recognizing additional deficien-
cies with traditional planning applications developed by the AI community. Chien, Hill, Wang, Estlin, Fayyad, Fayyad and

Mortenson (1996) make the claim that because of tractability problems with large real-world planning problems, full auto-
mation is not realistic. Consequently plans must be under-

standable and easy to modify by users. They further argue that the pragmatics of planning environments require support tools to support the life-cycle of plans. Thus planning aids such as those that support knowledge acquisition and plan verification are required. Finally, they and others (e.g., Pollack and Hory 1999) argue that there is more to planning than just plan generation. Plan management consists of replanning in the face of exogenous change, considering the goals of other agents, and managing constraints such as time, plan quality, and flexibility.

Moreover, many other researcher have performed exper-

iments with human users to assess mixed-initiative systems of various sorts (e.g., Sycara and Lewi, in press; Thompson, Goker, and Langley 2004). Furthermore, others have
designed and evaluated mixed-initiative planners that repre-
sent the resource assignment part of the problem differently than we do (see Becker and Smith 2000 for example). Yet our theory and implementation explicitly represent the aspects of planning that focus on goal change. Constraint relaxation and optimization techniques represent such change implicitly.

Finally, Das (Das, Kar, and Parilla 1996; Das, and

Naglieri 2001) reports psychological data from human sub-

jects and factor analysis to support his theory that human

planning can be classified into three distinct types. At the

lowest level is what he calls operations planning that

chooses actions to carry out immediate goals. As plan gen-

eration this level is most similar to the model of planning as

search, although he does not claim that search processes

implements the cognitive mechanism underneath. At the

highest level is activity planning. This is a general orienta-
tion for broad life themes such as planning for retirement.

Between the two is a kind of planning Das calls action plan-
ing. This level is more abstract than operations planning

and includes plan management and environment monitoring. This theory is consistent with our view of planning as a pro-
cess that manages goals, assigns resources to goals, and adjusts goal priorities over time and as the environment changes.

Alternatively search is still the dominant model from which to study planning behavior. For example Ratterman, Spector, Graffman, Levin, and Harward (2001) examine human planning abilities and ask whether artificial intelligence algorithms using search are accurate descriptions of human planning processes. In particular they differentiate between partial and total-order planning as alternative models of the planning process. Given their data, they argue that partial-order planning corresponds to planning in normal adults and older children. They also argue that full-order planning exemplifies young children and adults with prefrontal cortex damage. However our results start to call into question their basic assumption that some kind of search model constitutes the most effective representation and that the main question is only which search model covers the data best. Actual human planning processes may be much more complex, perhaps more in line with the theory of Das and associates.

Conclusion

In the experiment presented here, subjects are indirectly learning the Bridges Problem evaluation function specified by Edwin and Cox (2001) and implemented in the COMAS system. This function automatically calculates the optimal resource allocation policy for planning problems given resource limited environments. What is unique is that this resource allocation task can be conceptualized as a goal change task instead. The problem for the subjects in the goal manipulation model is to decide which goal most needs changing rather than to decide which resources are directly allocated to which subgoal. The underlying planner will manage these details for the subject. In the search model, however, the user is confronted with a more direct and overly detailed allocation decision. See Figure 2 for an example of the allocation choice presented to the user under the search model.

The results from the experiment suggest that an effect exists on human planning performance and efficiency of performance due to the GTrans interface in contrast to the standard PRODIGY interface. We argue that these effects are due to the cognitive model of planning presented to the user. Because both software systems present a mixed-initiative interface to the same Prodigy/Agent planner underneath, the effects are not due to the autonomous planner itself. We claim that the metaphor of planning as goal manipulation is easier to understand than is search.

In summary this paper has contrasted two models of planning as a conflict of metaphors, but as mentioned above, the models are not mutually exclusive. Search is still an important computational technique that can be used efficiently in mixed-initiative systems as illustrated in this paper. However, we argue that search is not an appropriate model to present to the user, especially a naive one. A stronger view is that human planning processes themselves are not strictly search but rather composed of process levels in which goal manipulation is a prime process. Certainly, however, more evidence is necessary to clarify the exact nature and composition of human cognitive planning abilities.

Acknowledgements

This research is supported by the Dayton Area Graduate Studies Institute and Air Force Research Laboratories under grant number HE-WSU-99-09 and by the Air Force Office of Scientific Research (AFOSR) under grant number F49620-99-1-0244. We thank Andrew Richardson for his assistance in collecting subject data. Much credit is also due to suggestions by anonymous reviewers at both this and an earlier workshop.

References

Elahi, M. M. 2003. *A distributed planning approach using multiagent goal transformations*. Masters dissertation, Wright State University, Computer Science and Engineering Department, Dayton, OH.

