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Abstract

Learning in a multiagent environment is com-
plicated by the fact that as other agents learn,
the environment effectively changes. Moreover,
other agents’ actions are often not directly ob-
servable, and the actions taken by the learning
agent can strongly bias which range of behav-
iors are encountered. We define the concept of a
conjectural equilibrium, where all agents’ expec-
tations m-e realized, and each agent responds op-
timally to its expectations. We present a generic
multiagent exchange situation, in which compet-
itive behavior constitutes a conjectural equilib-
rium. We then introduce an agent that executes
a more sophisticated strategic learning strategy,
building a model of the response of other agents.
We find that the system reliably converges to a
conjectural equilibrium, but that the final result
achieved is highly sensitive to initial belief. In
essence, the strategic learner’s actions tend to
fulfill its expectations. Depending on the start-
ing point, the agent may be better or worse off
than had it not attempted to learn a model of
the other agents at all.

Introduction

Machine learning researchers have recently begun to
investigate the special issues that multiagent environ-
ments present to the learning task. Recent workshops
on the topic (Grefenstette & others 1996; Sen 1996).
have helped to frame research problems for the field.
Multiagent environments are distinguished in particu-
lar by the fact that as the agents learn, they change
their responses, thus effectively changing the environ-
ment for all of the other agents. When agents are act-
ing and learning simultaneously, their decisions affect
(and limit) what they subsequently learn.

The changing environment and limited ability to
learn the full range of others’ behavior presents pit-
falls for an individual learning agent. In this paper, we
explore a simple multiagent environment representing
a generic class of exchange interactions. One agent

(called strategic) attempts to learn a model of the oth-
ers’ behavior, while the rest learn a simple reactive
policy. We find the following:

1. The system reliably converges to an expectations
equilibrium, where the strategic agent’s model of the
others is fulfilled, all the rest correctly anticipate the
resulting state, and each agent behaves optimally
given its expectation.

2. Depending on its initial belief, the strategic agent
may be better or worse off than had it simply be-
haved reactively like the others.

The apparent paradox in this situation is that the
learning itself is highly effective: the other agents be-
have exactly as predicted given what the agent itself
does. The paradox is easily resoh’ed by noting that the
learned model does not correctly predict what the re-
sult would be if the agent selected an alternate action.
Nevertheless, it is perhaps surprising how easy it is for
the agent to get trapped in a suboptimal equilibrium,
and that the result is often substantially worse than if
it had not attempted to learn a model at all.

We refer to the above situation as scl f-f~dfilling bias,
because the revisions of belief and action by the agent
reinforce each other so that an equilibrium is reached.
Here bias is defined as in the standard machine learn-
ing literature--the preference for one hypothesis over
another, beyond mere consistency with the examples
(Russell & Norvig 1995). In reinforcement learning,
the initial hypothesis is a source of bias, as is the hy-
pothesis space (in multiagent environments, express-
ible models of the other agents). The combination
of a limited modeling language (in our experiments,
linear demand functions) with an arbitrarily assigned
initial hypothesis strongly influences tile equilibrium
state reached by the multiagent system.

Most work on multiagent learning to date has inves-
tigated some form of reinforcement learning (Tan 1993;
WeiB 1993). The basic idea of reinforcement learning
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is to revise beliefs and policies based on the success or
failure of observed performance. When only policies
are revised, the process can be viewed as hill-climbing
search in policy space.

If the environment is well structured and agents have
some knowledge about this structure, it would seem
advantageous to exploit that knowledge. In a multia-
gent environment, such structure may help in learning
about other agents’ policy functions. In the experi-
ments reported here, our strategic agent knows about
the basic structure of the market system, and it uses
that knowledge to form a model of other agents. Start-
ing from an original model, the agent uses observations
to update the model to increase accuracy. This pro-
cess can be viewed as hill climbing in a space of agent
models.

The technical question is whether this form of learn-
ing with limited information will converge to a correct
model of the environment, and whether the learning
agent will be better off using this model. Our theo-
retical and experimental investigations show that even
when convergence to a "correct" model obtains, im-
provement in result does not always follow.

To our knowledge, the phenomenon of self-fulfilling
bias as defined here has not been well studied in mul-
tiagent learning. Economists studying bidding games
(Samples 1985; Boyle 1985) have noticed that biased
starting bid prices strongly influence final bids. But
these empirical findings have not been incorporated
into a general framework in terms of learning. Ma-
chine learning researchers, on the other hand, directly
address the general relationship of bias and learning,
but not usually in the context of interacting rational
agents.

Conjectural Equilibrium

Self-fulfilling bias arises from lack of information.
When an agent has incomplete knowledge about the
preference space of other agents, its interaction with
them may not reveal their true preferences even over
time.

This situation differs from the traditional game the-
ory framework, where the joint payoff matrix is known
to every agent. Uncertainty can be accommodated in
the standard game-theoretic concept of incomplete in-
formation (Gibbsons 1992), where agents have prob-
abilities over the payoffs of other agents. However, a
state of complete ignorance about other agents’ op-
tions and preferences can be expressed more directly,
albeit abstractly, by omitting any direct consideration
of interagent beliefs.

Consider an n-player game G = (A, [7, S, s). A 
{A1,..., A"}, where Ai is the action space for agent i.

U -~ {U1,..., Un) is the set of agent utility functions.
S -- S1 x ... x ,q" is the state space, where S~ is the
part of state relevant to agent i. A utility function Ui

is a map from the state space to real numbers, U~ :
Si -~ R, ordering states by preference. We divide the
state determination function s, into components, s~ :
A1 × ... x An -~ Si. Each agent knows only its own
utility function, and the actions chosen by each agent
are not directly observable.

Each agent has some belief about the state that
would result from performing its available actions. Let
~i(a) represent the state that agent i believes would re-
sult if it selected action a. Agent i chooses the action
a E Ai it believes will maximize its utility)

We are now ready to define our equilibrium concept.

Definition 1 In game G defined above, a configu-
ration of beliefs (~1,..., ~n) constitutes a conjectural
equilibrium if, .for each agent i,

¢(aq = ¢(aL..., a"),

where ai mazimizes Ui(~i(ai) 

If the game is repeated over time, the agents can
learn from prior observations. Let ai(t) denote the
action chosen by agent i at time t. The state at time
t, tr(t), is determined by the joint action,

 r(t) = S(a a"(t)).

We could incorporate environmental dynamics into
the model by defining state transitions as a function of
joint actions plus the current state. We refrain from
taking this step in order to isolate the task of learning
about other agents from the (essentially single-agent)
problem of learning about the environment. In conse-
quence, our framework defines a repeated game where
agents are myopic, optimizing only with respect to the
next iteration.

The dynamics of the system are wholly relegated to
the evolution of agents’ conjectures. At the time agent
i selects its action ai(t), it has observed the sequence
~(0),~(1),... ,~(t- 1). Its beliefs, ~, therefore, 
be conditioned on those observations, and so we dis-
tingnish beliefs at time t with a subscript, ~. We say
that a learning regime converges if limt_,oo(~l,..., ~)
is a conjectural equilibrium. Our investigation below
shows that some simple learning methods are conver-
gent in a version of the game framework considered
above.

1A more sophisticated version of this model would have
agents form probabilistic conjectures about the effects of
actions, and act to maximize expected utility.
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Note that our notion of conjectural equilibrium is
substantially weaker than Nash equilibrium, as it al-
lows the agent to be wrong about the results of per-
forming alternate actions. Nash equilibria are trivially
conjectural equilibria where the conjectures are consis-
tent with the equilibrium play of other agents. As we
see below, competitive, or Walrasian equilibria are also
conjectural equilibria.

The concept of self-confirming equilibrium (Fuden-
berg & Levine 1993) is another relaxation of Nash equi-
librium which applies to a situation where no agent
ever observes actions of other agents contradicting its
beliefs. Conjectures are on the play of other agents,
and must be correct for all reachable information sets.
This is stronger than conjectural equilibrium in two
respects. First, it applies at each stage of an extensive
form game, rather than for single-stage games or in the
limit of a repeated game. Second, it takes individual
actions of other agents as observable, whereas in our
framework the agents observe only resulting state.

Boutilier (Boutilier 1996) ~so considers a model
where only outcomes are observable, comparing the ef-
fectiveness of alternate learning mechanisms for solving
multiagent coordination problems.

The basic concept of conjectural equilibrium was
first introduced by Hahn, in the context of a market
model (Hahn 1977). Though we also focus on market
interactions, our basic definition applies the concept to
the more general case. Hahn also included a specific
model for conjecture formation in the equilibrium con-
cept, whereas we relegate this process to the learning
regime of participating agents.

Multiagent Market Framework

We study the phenomenon of self-fulfilling bias in the
context of a simple market model of agent interactions.
The market context is generic enough to capture a wide
range of interesting multiagent systems, yet affords an-
alytically simple characterizations of conjectures and
dynamics. Our model is based on the framework of
general equilibrium theory from economics, and our
implementation uses the WALRAS market-oriented pro-
gramming system (Wellman 1993), which is also based
on general equilibrium theory.

General Equilibrium Model

Definition 2 A pure exchange economy, E -

{(Xi, Ui, el) I i = 1,...,n~, consists of n consumer
agents, each defined by:

¯ a consumption set, Xi c_ R’~, representing the bun-
dles of the m goods that are feasible for i,

¯ a utility function, Ui : Xi -~ ~, ordering consump-
tion bundles by preference, and

. an endowment, e~ E R’~, specifying i’s initial allo-
cation of the m goods.

The relative prices of goods govern their exchange.
The price vector, P E R~’, specifies a price for each
good, observable by every consumer. A competitive
consumer takes the price vector as given, and solves
the following optimization problem.

m .axUi(zi) s.t.P, xi S P" ei. (1)

That is, each agent chooses a consumption bundle x~

to maximize its utility, subject to the budget constraint
that the cost of its consumption cannot exceed the
value of its endowment.

A Walrasian, also called competitive equilibrium, is
a vector (P*, (xl,..., xn)) such that

1. at price vector P*, zi solves problem (1) for each
agent i, and

2. the markets clear: Y~--I xl = ~-’]-~=1 el.

It is sometimes more convenient to characterize the
agents’ actions in terms of ezcess demand, the differ-
ence between consumption and endowment,

and to write the market clearing condition as

~-~=l zi = 0. The ezcess demand set for consumer
iis Zi = {zi ~ R~ ] ei + zi ~ Xi}.

A basic result of general equilibrium theory
(Takayama 1985) states that if the utility function 
every agent is quasiconcave and twice differentiable,
then E has a unique competitive equilibrium.2

Observe that any competitive equilibrium can be
viewed as a conjectural equilibrium, for an appropri-
ate interpretation of conjectures. The action space A~

of agent i is its excess demand set, Z~. Let the state
determination function s return the desired consump-
tions if they satisfy the respective budget constraints
with respect to the market prices, and zero otherwise.
Utility function Ui simply evaluates i’s part of the allo-
cation. The agents’ conjectures amount to accurately
predicting the budget constraint, or equivalently, the
prices. In competitive equilibrium, each agent is maxi-
mizing with respect to its perceived budget constraint,
and the resulting allocation is as expected. Thus, the
conditions for conjectural equilibrium are also satisfied.

2It is possible to express somewhat more general suf-
ficient conditions in terms of underlying preference or-
ders, but the direct utility conditions are adequate for our
purposes.
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Iterative Bidding Processes

In the discussion thus far, we have assumed that agents
are given the prices used to solve their optimization
problem. But it is perhaps more realistic for them to
form their own expectations about prices, given their
observations and other knowledge they may have about
the system. Indeed, the dynamics of an exchange econ-
omy can be described by adding a temporal component
to the original optimization problem, rewriting (1) 

maxUi(xi(t)) s.t. /5’(t).:ri(t) </5’(t)- 
=, (t)

where xi(t) denotes i’s demand at time t, and /5/(t)
denotes its conjectured price vector at that time)

A variety of methods have been developed for de-
riving competitive equilibria through repeated agent
interactions. In many of these methods, the agents
do not interact directly, but rather indirectly through
auctions. Agents submit bids, observe the consequent
prices, and adjust their expectations accordingly.

Different ways of forming the expected price /5(t)
characterize different varieties of agents, and can be
considered alternate learning regimes. For example,
the simple competitive agent takes the latest actual
price as its expectation,

/s’(t) = P(t 1) (3)

More sophisticated approaches are of course possible,
and we consider one in detail in the next section.

In the classic method of tatonnement, for example,
auctions announce the respective prices, and agents act
as simple competitors. Depending on whether there
is an excess or surfeit of demand, the auction raises
or lowers the corresponding price. If the aggregate
demand obeys gross substitutability (an increase in the
price of one good raises demand for others, which hence
serve as substitutes), then this method is guaranteed
to converge to a competitive equilibrium (under the
conditions under which it is guaranteed to exist).

The WALRAS algorithm (Cheng & Wellman 1996) 
a variant of tatonnement. In WALRAS, agent i submits
to the auction for good j at time t its solution to (2),
expressed as a function of Pj, assuming that the prices
of goods other than j take their expected values. In
other words, it calculates a demand 1’unction,

(t)).

Sin the standard model, no exchanges are executed
until the system reaches equilibrium. In so-called non-
tatonnement processes, agents can trade at any time, and
so the endowment e is also a function of time.

0

Figure 1: An aggregate excess demand curve for good
j.

The bid they then submit to the auctioneer is their
excess demand for good j,

= -

The auctioneer sums up all the agents’ excess demands
to get an aggregate excess demand function,

i----1

Figure 1 depicts an aggregate demand curve. We
assume that zj (Pj) is downward sloping, the general
case for normal goods. Given such a curve, the auc-
tioneer determines the price P~ such that zj (Pj) = 
and reports this clearing price to the interested agents.

Given the bidding behavior described, with expec-
tations formed as by the simple competitive agent, the
WALRAS algorithm is guaranteed to converge to com-
petitive equilibrium, under the standard conditions
(Cheng & Wellman 1996). Such an equilibrium also
represents a conjectural equilibrium, according to the
definition above. Thus, the simple competitive learn-
ing regime is convergent, with respect to both the
tatonnement and WALRAS price adjustment protocols.

Learning Agents
Agents learn when they modify their conjectures based
on observations. We distinguish alternate learning
regimes by the form of the conjectures produced, and
the policies for revising these conjectures.

Competitive Learning Agents

An agent is competitive if it takes prices as given, ig-
noring its own effect on the clearing process. Formally,
in our learning framework, this means that the con-
jectured prices /5 do not depend on the agents’ own
actions--the excess demands they submit as bids. For
example, the simple competitive agent described above
simply conjectures that the last observed price is cor-
rect. This revision policy is given by equation (3).
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Adaptive competitive agents adjust their expecta-
tions according to the difference between their previous
expectations and the actual observed price

Pi(t) = Pi(t - I) 7(P(t - 1)- ] 5’ (t - I )) . (4)

The learning parameter, 7, dictates the rate at which
the agent modifies its expectations. When 7 = 1, this
policy is identical to the simple competitive agent’s¯
Variations on this adaptation, for example by track-
ing longer history sequences, also make for reasonable
conjecture revision policies¯

Strategic Learning Agents

In designing a more sophisticated learning agent, we
must take into account what information is available
to the agent. In our market model, there are several
relevant features of the system that an agent cannot
directly observe:

¯ the endowments of other agents,

¯ the utility functions of other agents,

¯ the excess demands submitted by other agents, and

¯ the aggregate excess demand.

That is, the agents cannot observe preference, en-
dowment, or the complete demand functions of other
agents. What the agent does observe is the price vec-
tor. It also knows the basic structure of the system--
the bidding process and the generic properties we as-
sume about demand. In particular, it knows the fol-
lowing:

¯ Each local market clears at the price announced by
the auctioneer. That is, the sum of agents’ excess
demands for good j is zero at each time t,

z;Ct) + z Ct) o.

¯ Aggregate excess demand is decreasing in price.

This fragmentary information is not sumcient to re-
construct the private information of other agents. In
fact, it provides no individual information about other
agents at all. The best an agent can do is to learn
about the aggregate action it faces.

Because they know how the auctions work, the
agents realize that they can affect the market price
through their individual demands. A sophisticated
agent, therefore, would take its own action into ac-
count in forming its expectation. Therefore, P’ be-
comes a function of excess demand, zi(t), and then i’s

optimization problem is subject to a nonlinear budget
constraint.

In our experiments with strategic learning, we adopt
a simple model of an agent’s influence on prices.
Specifically, the agent assumes that its effect on price
is linear for each good j,

Pj(t) = + jCt)zjCt). (5)
As in our usual reinforcement-learning approach, the
coefficients are adjusted according to the difference be-
tween the expected price and actual price:

= (6)
’ Pj(t)),+ 1) = j(t) - (z)

where 71 and 72 axe constant coefficients.

Experimental Results

We have run several experiments in WALRAS, imple-
menting exchange economies with various forms of
learning agents. Our main experiments explored the
behavior of a single strategic learning agent (as de-
scribed above), included in a market where the other
agents are simple competitors.

In the experiments, we generate agents with stan-
dard parametrized utility functions. Preference pa-
rameters and endowments are randomly assigned. The
competitive agents have CES (constant elasticity of
substitution) utility function--a common functional
form in general equilibrium modeling. A standard CES
utility function is defined as

UCXl,̄ = ay zj)p.
J

In our experiments, we set p = ~, and aj = 1 for M] j.
The strategic agent has a logarithmic utility func-

tion, U(zl,...,zm) = ~-~jlnzj. This utility function
is a limiting case of the CES form, with p --~ co. The
reason that we impose this special form on the strategic
agent is simply for analytical convenience. The strate-
gic agent’s optimization problem is more complex be-
cause it faces a nonlinear budget constraint (i.e., its
price conjecture is a function of its action), and the
special form substantially simplifies the computation.

In our simulations, the competitive agents form con-
jectures by equation (3). The strategic agent forms
conjectures given by equation (5), and it revises its
conjecture given observations according to equations
(6) and (7), with "/1 = 72 = 1.

Figure 2 presents a series of experimental results
for a particular configuration with three goods and
six agents. Each point represents the result from
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one experiment. The vertical axis represents the util-
ity achieved by the strategic agent when the system
reaches equilibrium. The horizontal axis represents the
strategic agent’s starting value of the 8 coefficient. For
comparison, we also ran this configuration with the
designated agent behaving competitively, i.e., form-
ing expectations independent of its own behavior ac-
cording, to the learning method (3). The utility thus
achieved is represented by the horizontal line in the
graph.

Figure 2: Utility achieved by the strategic learning
agent, as a function of 8(0).

As Figure 2 demonstrates, the strategic agent can
achieve higher or lower payoff than a similar compet-
itive agent. For 8(0) E [0.001,0.004], the agent gets
higher utility by learning the strategic model. Out-
side that region, the agent would be better off behav-
ing competitively. (We also ran experiments for higher
values of 8(0) than shown, and the trend continues.)
Intuitively, the initial estimate of the agent’s effect on
prices moves it toward a demand policy that would
fulfill this expectation.

The utility achieved by the other agents also cru-
cially depends on the initial 8 of the strategic agent,
as shown in Figure 3.

In the figure, the vertical axis represents the average
of utilities achieved by all competitive agents in the
system. (The difference in utility scale is due to the
different functional form. Recall that utility values are
ordinal only within a single agent.) The horizontal line
represents the average of utilities of the same agents
when the strategic agent behaving competitively. We
can see that the smaller the initial 8, the higher the
average utility realized by the competitive agents. We
currently lack an expressible intuition for the cause of
this.

As we increase the number of competitive agents,
the patterns of Figures 2 and 3 still hold. We also
did experiments with multiple strategic agents in the

I., T

I|I| J

¯ o Nt O.OOa O.Na a0o4 ao~ i.ooe i.oo; o ms o.oos ¯ 01

Figure 3: Average utility achieved by the competitive
agents, as a function of the strategic agent’s initial
beta.

system. In all of our experiments, the system reliably
converges to a conjectural equilibrium, although the
particular equilibrium reached depends on the initial
model of the strategic learning agents.4

Theoretical Analysis

Conjecture Functions

Our experimental analysis considered agents whose
conjectures were either constant (competitive) or linear
(strategic) functions of their actions. In this section,
we provide some more general notation for character-
izing the form of an agent’s conjectures.

Definition 3 The conjecture function, C~ : R’~ --~
R~ , specifies the price system, C~ ( zi) , conjectured 
consumer i to result i/ it submits eacess demand zi.

The agent’s conjecture about the resulting state, ii,

is that it will receive its demanded bundle if it satisfies
its budget constraint. The actual resulting state is as
demanded if the aggregate demands are feasible.

Definition 4 The market conjectural equilibrium .for
an ezchange economy is a point (C1,..., Cn) such that
.for all i, ~i(zi) = zi, where

1. z~ = argmaxUi(zi + ei) s.t. Ci(zi) ¯ zi = O, and

Intuitively, Ci(zi) = P, where P is the price vector de-
termined by the market mechanism. However, nothing

4For configurations with only competitive agents
(whether adaptive or simple), the system converges 
the unique competitive equilibrium regardless of initial
expectations.
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in the definition actually requires that all agents con-
jecture the same price, though equivalent price conjec-
tures with overall feasibility is a sufficient condition.

We can now characterize the existence of market
conjectural equilibria in terms of the allowable con-
jecture functions.

Theorem 1 Suppose E has a competitive equilibrium,
and all agents are allowed to form constant conjectures.
Then E has a market conjectural equilibrium.

Proof. Let P* be a competitive equilibrium for E.
Then C~(zi) = P*, i = 1,...,n, is a market conjec-
tural equilibrium. []

Theorem 2 Let E be an exchange economy, with all
utility functions quasiconcave and twice differentiable.
Suppose all agents are allowed to form constant conjec-
tures, and at least one agent is allowed to form linear
conjectures. Then E has an infinite set of market con-
jectural equilibria.

Proof. Let P* be a competitive equilibrium for E.
Without loss of generality, let agent 1 adopt a con-
jecture of the form C~(z~) = aj +/3jz~. Agent 1 is
therefore strategic, with an optimal excess demand ex-
pressible as a function of a and/3.5 Let agents i ~ 1
adopt conjectures of the form i iC~(zj) = Pj. In equilib-
rium, the markets must clear. For all j,

n

+ = 0.
i=2

We also require that agent l’s price conjecture for all
goods j be equivalent to the other agents, aj +/3jz) 
Pj. We define a function

[1.j (a,/3) + I ,=2 ."i (P)
F(P, (a,/3)) 

P.i - a i - ~3jzi ’

and from above have F(P, (a,/3)) = 0 implies conjec-
tural equilibrium. Since a,/3, and P are each m-vectors
with m - 1 degrees of freedom, F represents the map-

ping F : ~m-i x R2(m-l) _+ ~2(m--l) The conditions
on utility functions ensure that excess demand func-
tions are continuous, and thus that F is continuously
differentiable. The conditions also ensure the existence
of a competitive equilibrium P*, and therefore there
is a point (P*,(P*,0)) such that F(P*,(P*,O)) 
Then by the Implicit Function Theorem (Spivak 1965),
there exists an open set 7~ containing P* and an open
set /3 containing (P*,0) such that for each P E 

~Here we refer to the vectors a = (al,...,a,n) and
/~1,-.., ~,~, since the excess demand for good j generally
depends on conjectures about the prices for all goods.
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there is a unique g(P) E/3 such that F(P, g(P)) 
All of these points (P, g(P)) constitute market conjec-
tural equilibria for E. []

Note that the conditions of Theorem 2 are satisfied
by our experimental setup of the previous section. In
that situation, the initial/3 determined which of the in-
finite conjectural equilibria was reached. Adding more
strategic learning agents (those that could express non-
constant conjecture functions) could only add more po-
tential equilibria.

Learning and Convergence

The function Ci changes as consumer i learns about
the effect of z~ on the price vector P. The strategic
learning process given by equations (6) and (77 can 
transformed into the following system of differential
equations, assuming that we allow continuous adjust-
ment. For all j,

ai = (Pj - -/3jzj),

Note that all variables are functions of time. The zj
solve the strategic agent’s optimization problem, thus
each is a function a and/3.

We assume that the market determines prices as a
function of specified demands. In that case, we can
express Pj as a function a and/3 as well.

Thus, the system of differential equations can be
rewritten as

where fj (or,/3) = (Pj (~, ~) - aj -/3j zj (a, 
The equilibrium (¢i, ~) of this system is the solution

of the following equations:

fj(a,/3) =O, j = l,...,m--1.

Since there are m - 1 equations with 2(m - 1) un-
knowns, the equilibrium is not a single point but
a continuous surface, expressed as (¢i,~(~)), where

E Rm-1.
Although we do not yet have a proof, we believe

that this learning process does converge, as suggested
by our empirical results.

Welfare Implication

Our experiments demonstrated that a learning agent
might rendered be better off or worse off by behaving
strategically rather than competitively. However, the
ambiguity disappears if it has sufficient knowledge to
make a perfect conjecture.
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If an agent’s conjecture reflects full knowledge of
the aggregate excess demand of the other agents,
its utility from strategic behavior is at least as
great as from competitive behavior.

Intuitively, if the agent makes a perfect conjecture,
then it makes its choice based on the actual optimiza-
tion problem it faces. Any other choice would either
have lower (or equal) utility, or violate the budget con-
stralnt. However, when a strategic agent has imperfect
information of the aggregate excess demand, for exam-
ple a linear approximation, it may actually perform
worse than had it used the constant approximation of
competitive behavior.

Discussion

The fact that learning an oversimplified (in our case,
linear) model of the environment can lead to subop-
timal performance is not very surprising. Perhaps
less obvious is the observation that it often leads to
results worse than remaining completely uninformed,
and behaving in a purely reactive (competitive) man-
ner. Moreover, the situation seems to be exacerbated
by the behavior of the agent itself, optimizing with re-
spect to the incorrect model, and thus "self-fulfilling"
the conjectural equilibrium.6

In our ongoing work on self-fulfilling bias, we are at-
tempting to characterize more precisely the situations
in which it can arise. In addition, we intend to explore
techniques to overcome the problem. Random restart
of the learning process is one straightforward approach,
as is expanding the space of models considered (e.g.,
considering higher-order polynomials).

Another way to handle self-fulfilling bias is to trans-
form this problem into a more traditional problem of
decision under uncertainty. Agents that form proba-
bilistic expectations may be less prone to get trapped
in point equilibria. However, there is certainly a possi-
bility of non-optimal expectations equilibrium even in
this expanded setting.

A simple lesson of this exercise is that attempting to
be a little bit more sophisticated than the other agents
can be a dangerous thing, especially if one’s learning
method is prone to systematic bias. We hope to be
able to provide more precise guidance for the design
of strategic learning agents as a result of our further
research.
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