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Abstract

The performance of individual agents in a group
depends critically on the quality of information
available to it about local and global goals and
resources. In general it is assumed that the
more accurate and up-to-date the available infor-
mation, the better is the expected performance
of the individual and the group. This conclu-
sion can be challenged in a number of scenar-
ios. We investigate the use of limited informa-
tion by agents in choosing between one of sev-
eral different options, and conclude that if agents
are deliberately kept ignorant about any number
of options, the entire group can converge faster
to a stable and optimal configuration. We also
demonstrate how a couple of coalition formation
schemes improves the rate of convergence and
conclude that a variable, rather than fixed, coali-
tion formation mechanism is more effective.

Introduction

In a distributed multiagent environment the behavior
of a group of agents is measured in terms of the per-
formance of agents and the utilization of resources.
Researchers in the field of Distributed Artificial In-
telligence have studied the effects of local decision-
making on overall system performance in groups of
both cooperative as well as self-interested autonomous
agents (Gasser & Huhns 1989; Huhns 1987}. Ineffec-
tive system performance can be caused by several char-
acteristics of distributed decision-making: conflicts of
interests, contention for resources, asynchronicity in
the decision process, lack of centralized control or in-
formation, incomplete or incorrect global information,
etc.

In this paper, we focus on one particular aspect of
distributed decision-making: the effect of limited lo-
cal knowledge on group behavior. Whereas intuition
suggests that agents are equipped to make better local
decisions with more complete and correct information,
self-interested choices can sometime lead to group in-
stabilities with complete global information. We be-
lieve that reducing the amount of information avail-
ablc to such rational decision makers can be an ef-

fective mechanism for achieving system stability. The
research question that we are asking is the following:
Can limited local knowledge be a boon rather than a
bane in a multiagent system?

To investigate this issue, we use a resource uti-
lization problem where a number of agents are dis-
tributed between several identical resources. We as-
sume that the cost of using any resource is directly
proportional to its usage. This cost can be due to a
delay in processing of the task in hand, or a reduc-
tion in the quality of the resource due to congestion.
Hence, there is a justified need for agents to seek out
and move to resources with lesser usage. Other re-
searchers have shown that such systems can exhibit
oscillatory or chaotic behavior where agents move back
and forth between resources (Hogg & Huberman 1991;
Kephart, Hogg, ~ Huberman 1989) resulting in lack
of system stability and ineffective utilization of system
resources. The case has also been made that the in-
troduction of asynchronous decision making or hetero-
geneous decision-making schemes can improve system
convergence. We see our current work as providing a
natural, complimentary mechanism for enabling agents
in similar situations to quickly converge to the optimal
system state.

Not limited to artificial domains discussed here, we
find an analogy of the resource utilization problem
within the dynamics of human society. We often ob-
serve social trends in human societies where the popu-
lace tend to look for opportunities and search for better
openings within a closed environment (Bartos 1967).
For instance, it is obvious and practical under rational
thinking to shift for greener pastures, move for better
jobs with less competition, to search for resources with
less utilization, etc. The self-interested nature of an
individual leads to choices that are perceived to im-
prove rewards from the environment. The theory of
migration in social behavior and occupational mobil-
ity suggest a dynamic structure, the stability of which
depends on how an individual chooses its action based
on the prevailing circumstances. Similar to human so-
cieties, societies of agents also undergo changes and
evolve with time. As agent designers, we are faced
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with the problem of developing decision mechanisms
that allow agent societies to stabilize in states where
system resources are effectively utilized. In this pa-
per, we consider agent societies where agents decide
on their social mobility based only on their perception
of the current state of the world. This assumption of
relying only on the current state and ignoring the ef-
fects of past history on decision making is also used in
Markovian analysis (Howard 1971).

This study attempts to verify the following conjec-
ture: limited knowledge of the environment can be ben-
eficial for an agent in comparison to complete global
knowledge. We present a decision mechanism to be
used by individual agents to decide whether to con-
tinue using the same resource or to relinquish it in
the above-mentioned resource utilization problem. We
show that a spatially local view of an agent can be
effectively used in a decision procedure that produces
stable allocation of agents to an optimal global state
in terms of effective resource utilization. Experimen-
tal results show that increasing the information avail-
able to an agent increases the time taken to reach the
desired equilibrium state. We provide a probabilistic
analysis explaining this phenomcna. Wc further plan
to study the effects of varying amounts of information
on the convergencc process of these agent groups.

Related Work

Hogg and Huberman (Hogg & IIuberman 1991) have
analyzed a resource utilization problem similar to the
one mentioned in the previous section to study ef-
fects of local decisions on group behavior (Hogg 
Huberman 1991; Kephart, Ilogg, & Huberman 1989).
Kephart et al. (Kephart, IIogg, & Huberman 1989)
show how system parameters like decision rate can pro-
duce stable equilibria, damped oscillations, persistent
oscillations, or can burst into a chaotic regime. They
also provide an analysis of how agents that monitor
system behavior and accordingly adjust their pcrfor-
mazlce can bring the system closer to a stable behavior.
IIogg and Huberman (Hogg & Huberman 1991) present
a robust procedure for suppressing system oscillations
using a reward mechanism based on performance.

We share their motivation of achieving stability in
a multiagent system when individual agents arc mak-
ing decisions based on self-interest. However, whereas
they are interested in investigating decision procedures
that lead to heterogeneity in agent types, we focus our
efforts on identifying a simple decision procedure that
can be used by all agents but would still lead to stable
systems. On another note, we are particularly inter-
ested in evaluating the effects of agent decisions based
on limited system knowledge on tile stability of the sys-
tem. Thus we have chosen to investigate systems with
relatively larger mlmber of resources as compared to
others.

We should also clarify that various other forms
of heterogeneity including asyndlronicity of decision
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Figure 1: Agents sharing resources.

making, different communication delays, different de-
cision algorithms, etc. will help speed up convergence
and attain group stability. Our purpose in this pa-
per, is to investigate the conjecture that access to less
global information can help agents achieve stability un-
der certain situations. It should be noted that because
local information is different for different physically
distributed agents, limiting agent decisions to the use
of local information only provides another source of
heterogeneity in the system.

The Model

In this section we present a simple model of agents
sharing a set of identical resources as shown the Fig-
ure 1. There are m agents and n identical resources. At
any time instant, an agent use only one resource, and
over time tries to move to a resource that is less used
by other agents. In this study, we show that when
an agent has less knowledge about the utilization of
each resource in the resource set, the contention for
resources decreases and results in quicker convergence
to stable resource usage.

At present we model the knowledge of an agent
about the resources by using an r-window. An r-
window is a window through which an agent can see
which of the resources among the resource set it should
look for before making a decision. At each time step
each agent has to make tile following decision: whether
it should continue to use the present resource or should
it movc to another one with less utilization. If agent.
ak is currently using resource i, then it will consider a
nmve to one of the resources in it’s r-window (resource
in the vicinity of the current resource).

The model makes a few basic assumptions. We ~m-
sume that that all resources are equivalent. Moreover,
resources are neither introduced nor eliminated during
the life time of agents. Similarly all agents remain ax:-
tive and they make thcir decisions synchronously. All
agents retain the same r-window size during the pro-
cess of decision making. The probability of an agent
to shift from the current resource to another resource
is inversely proportional to the difference of the usage
of these two resource.
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Figure 2: Resource i has d agents more than every
other resource in its r-window.
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Figure 3: Resource i has d agents less than every other
resource in the r-window.

We now discuss the decision procedure we use to
determine the resource to be used by an agent in the
next time step. It can be shown that a determinis-
tic and greedy decision procedure of choosing the re-
source with the lowest utilization in the r-window will
lead to system oscillations. Hence, we are motivated to
use a probabilistic decision procedure. The particular
procedure that we use first calculates the probability
of moving to each of the resources in the r-window,
and then normalizes theses values by the correspond-
ing sum. The probability of an agent that decides to
continue to use the same resource i is given by:

1
f,i :" .,-o, (1)

1 + rexp a

where ri is the number of agents currently using re-
source i (this is also the utilization of that resource),
and % a, and/~ are control parameters. On the other
hand, the probability of moving to another resource
j ~ i is given by:

I- 1 ifjEWi&r~>rj,ri
fij = 1-1-1"exp -7-0

0 otherwise,
(2)

where Wi are the resources accessible to agent using
resource i. Now, the probability that an agent a~ oc-
cupying a resource i will occupy a resource j in the next
time step is given by normalizing the above terms:

f~jPr(i,j) -- y.j flj " (3)

Our conjecture for the behavior of the group is: the
larger the r-window, the lesser is the stability of the
system, and it takes more time to reach an optimal
equilibrium state. This slower convergence can be ex-
plained by a probabilistic analysis. Consider a resource
i which has higher load than the surrounding resources
(as shown in the Figure 2). We further assume that 

agents are using that resource at a given instance of
time. Let X be a random variable corresponding the
number of agents who will not leave the resource in
the next time step. Therefore, values for X follow a
binomial distribution i with probability Pr(i, i). The
expected value of X is therefore given by:

E[X] = nPr(i, i), (4)

and the variance of X is given by:

Vat[X] = nPr(i, i)(1 - Pr(i, i)). (5)

Similarly, as the Figure 3 shows, the resource i is being
less utilized when compared with its neighbors. Ob-
viously there will be a tendency of an agent who is
currently not using i to move to resource i. Let Y be
the random variable corresponding to the number of
agents who will move into resource i in the next time
step. Therefore values for that Y follow a binomial dis-
tribution with the probability }-’]~j#i Pr(j, i). We can
also think of Y as a sum of several independent bi-
nomially distributed random variables, Yji, where Y
corresponds to the number of agents who will move
into resource i from resource j in the next time step.
]~i has an expected value of nPr(j, i) and a variance of
nPr(j, i)(1 - Pr(j, i)). Therefore, the expected values
of Y is given by:

E[Y] = ~ nPr(j, i). (6)
j#i

And the corresponding variance is:

Vat[Y] = ~ nPr(j, i)(1 - Pr(j, (7)

Let us now analyze the implications of these analy-
sis. Figure 4 plots the expressions in (4) and (5) 
different d values and different r-window sizes. Fig-
ure 4 reveals a very interesting phenomena. For large
window sizes, the variance of the number of agents
staying in the resource decreases as the difference be-
tween the utilization of the current resource usage and
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Figure 4: Expectation and variance of an agent, staying in the current resource (corresponding to Figure 2), and
l+d= 10.
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Figure 5: Expectation and variance of an agent moving to the less used resource (corresponding to Figure 3).

the neighboring resource usages decreu-~es. This means
initially the agents will quickly spread out, but. later
it will have difficulty to converge wizen all resources
have roughly the same utilization. At this point high
variance can again cause some imbalance in the re-
source usage. The situation is precisely the opposite
for small window sizes: here, the variance decreases
with the decreasing difference between the current and
the neighboring resources. This means that there will
be a relatively slower convergence towards a balanced
distribution of agents to resources, but there is a con-
tinuing pressure towards more uniform distribution of
agents to resources. This process is further helped by
a greater inertia of moving of the current resource at
smaller r-window sizes as seen from expected number
of agent plot in Figure 5. A similar phenomena is
observed in Figure 5 where we consider the variance

in the number of agents coming to a resource which
is less utilized than the neighboring resources. These
two figures give a more formal explanation of the faster
convergence with smaUer windows. We are currently
performing a more detailed analysis of this phenomena.

Results
We assume that the resources ;ire arranged in a ring
and each agent knows the number of agents using
the resource it is using and the neighboring resources
within the r-window to the left. and right. Each time
step consists of all agents making a decision regarding
which resource to use next. In Figure 6 we present
experimental results with 27 agents using 9 resources.
The data for these plots are averaged over 10 random
initial assignments of agents to resources. Starting
from r-window size of 3, as we increase the size of the
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Figure 6: Number of steps to convergence for different
R-window sizes.

window to 9, we observe that the system takes much
more time on the average to stabilize. Figure 7 presents
the number of agents occupying resource 1 at different
time steps with r-window sizes of 3, 5, 7, and 9 re-
spectively. These figures confirm our experimentation
that together with taking more time to converge, the
variation in the number of agents occupying a given
resource is higher with the larger window size.

Our initial experiments, therefore, suggest that
agents converge to a stable state (which is also opti-
mal because agents are equally distributed among the
resources) in less number of time steps when they have
relatively less global information.

Forming coalitions
In the previous section, we observed that agents with a
limited view of global scenario converged faster to op-
timal states. However, this work was based on the as-
sumption that every agent made an individual decision
which was based on the current resource utilizations.
The results showed that in cases where the window-size
is large the system took significantly longer to converge
(in some cases the system did not converge even after
a large number of time steps). One reason which we
attributed to this delayed convergence was that the in-
dividual agent had no information about the decision
of the other agents. As a result, all the agents tried to
move towards the least utilized resource within their
view thus letting the previously under-utilized resource
to become over-utilized in the next time step and vice
versa.

We conjectured that some of the convergence prob-
lems mentioned above can be alleviated by forming
coalitions of agcnts, where agents belonging to a given
coalition will cooperatively decide on their next move.
For exanlple, within any such coalition, agents may
take turns in selecting which resource they are go-

ing to occupy in the next time step and then inform
other agents in the coalition about that decision. Thus,
agents will have more up-to date and accurate informa-
tion about the likely resource usages in the next time
step, and hence are in a position to make a more ef-
fective movement decision. In the extreme case, if all
agents form one coalition and the R-window included
all resources, each agent will have a complete and cor-
rect global information at all times, and the system
will immediately converge if each agent moves to the
least used resource at the time it makes its movement
decision.

We studied two modes of forming coalitions: in
the first mode agents were randomly partitioned into
equal-sized coalitions before the start of the simulation
and no agents ever changed coalitions (we use a coali-
tion size of 5); in the second form, agents occupying
the same resource at any given time formed a coali-
tion and hence coalitions changed from one time step
to the next. In both the groups, an individual agent’s
decision of moving to a resource is not only based on
the current utilization of the resources within its view
window but is also guided by the actual status of that
resource after all the other agents in its group have
decided to move to a particular resource.

We ran experiments for both these coalition types
by varying the window size and keeping the number
of agents and resources constant. The results of these
experiment averaged over 10 runs are shown in the
Figure 6. The convergence patterns with two types of
coalitions were very similar to the convergence pattern
with no coalitions, i.e., increasing the window still re-
suited in slower convergence. Runs with coalitions,
however, converged faster than runs with no coali-
tions. This was particularly true for larger window
sizes where runs without coalition often took an ex-
tremely long time to converge. In fact, we believe for
larger window sizes (will require more resources too)
and number of agents, the system may not converge if
some form of coalitions are not used.

When comparing the performance of two coalition
types, we find the variable coalitions converge faster
than fixed coalitions. This observation can be ex-
plained by two reasons:

¯ Agents belonging to a static coalition may be dis-
persed over all the resources at any given point in
time. So, the movement decision of any one such
agent may not impact all the other agents in the
coalition (the agent may be moving from and to re-
sources both of which may be outside the window of
some of the other agents). Hence, only some of the
information that is shared among the coalition mem-
bers is useful. On the other hand, in the variable
coalition case, movement decisions of any one agent
impacts every other agent in the coalition. Thus, for
same sized coalitions, agents in variable coalitions
take more informed decisions compared to agents in
fixed coalitions.
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Figure 7: System convergence with 27 Agents and 9 resources. From top left in clockwise order we have R-windows
of 3, 5, 9, and 7 respectively.

¯ The size of fixed coalitions is determined a priori:
whereas the size of variable coalition dynamically
changes. The larger the load on a resource, the larger
is the size of the corresponding variable coalition,
and the more informed is the decisions made by cor-
responding coalition members. IIence, our proposed
variable coalition formation scheme allows agents ac-
cess to more information precisely when it is critical.
This allows variable coalitions to converge faster.

The more general lesson from this set of experiments
is that in order for agents to be flexible to changing en-
vironmental demands, it is more appropriate to provide
a coalition formation and dissoh]tion mechanism that
utilizes current problem loads and inter-relationships
between agents. As these critical factors change over
time, it is often myopic to pre-assign the coalition to
which an agent should belong over its lifetime.

Discussions

To "bury the head in the sand" arid ignore most of I.he
information (in this case of using a small r-window)
does not appear to be a sound principle in general.
However, to observe what neighbors are doing may be
good precept, but to base our decisions closely on what
is happcning anywhere in the whole wide world can be
misleading at times, and call be detrimental in specific
circumstances. One can easily find the effectiveness of
sudl principles in daily chores of our lives. To name
a few: a visit to a ticket countcr, which highway to
take to work, computational jobs waiting in various
queues for their turn to get processed, etc. Similarly,
we bclieve that a homogeneous agent society utiliz-
ing a set of limited resources might be able to utilize
their resources efficiently by avoiding complete knowl-
edge about the entire set of resource. Analyzing the
data from these experiments suggests some furLher in-
vestigations on the interplay between limited global
knowledge and group stability. We discuss som~" of our
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planned experiments below:

Adaptive agents: Counter to our normal expecta-
tions we have shown that it may be detrimental to
search far and wide for the best opportunity if ev-
eryone is doing the same. In retrospective, an in-
telligent agent may adopt an adaptive policy of in-
creasing its information window until it senses an
instability in the system (finds itself jumping contin-
uously from one option to another). At that point
it may be prudent to reduce the information win-
dow. Adaptive policies may use specific dynamic
learning strategies to handle specific problems. For
instance, resource utilization problem might use a
learning strategy which might not be suitable in a
problem where communication is a critical.

Graded movements: We can also model agents with
graded inertia of rest. These agents prefer to shift to
a nearer resource with less utilization rather than to
a more distant resource with negligible utilization. A
more uniform treatment of this approach would be
to add a notion of stability to the probability calcu-
lation, i.e., the further off a resource is located from
the current resource, the less will be the probability
of making the move given the same difference in re-
source utilizations. Agents may have large window
size, but is more and more reluctant to move further
away from its current choice. This mechanism as-
sumes a distance metric between choices. A simple
extension to equation (1) can be shown as follows:

f 1 if j E I4~ & ri > rj,1 1+¢exp(ri--rJ)’/lliJfij = 0 otherwise,

(8)
where J~j is the distance between resource i and re-
source j.

Conclusions
In this study we investigated the problem of resource
utilization and global performance based on limited
local information. The agents with a limited view of
global scenario converged faster to optimal states. We
provide a probabilistic analysis that sheds some light
on this interesting phenomenon. We argued in favor of
dynamic, rather than static, coalition formation mech-
anism to improve system performance. We also identi-
fied future avenues of work that will produce adaptive
agents which perform more effectively than agents with
static strategies.
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