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Abstract

Given a Markov decision process (MDP)
with expressed prior uncertainties in the pro-
cess transition probabilities, we consider the
problem of computing a policy that opti-
mizes expected total (finite-horizon) reward.
Implicitly, such a policy would effectively
resolve the "exploration-versus-exploitation
tradeoff" faced, for example, by an agent
that seeks to optimize total reinforcement ob-
tained over the entire duration of its interac-
tion with an uncertain world. A Bayesian
formulation leads to an associated MDP de-
fined over a set of generalized process "hy-
perstates" whose cardinality grows expo-
nentiaily with the planning horizon. Here
we retain the full Bayesian framework, but
sidestep intractability by applying techniques
from reinforcement learning theory. We ap-
ply our resulting actor-critic algorithm to a
problem of "optimal probing," in which the
task is to identify unknown transition proba-
bilities of an MDP using online experience.

1. Introduction

Suppose we are confronted with a Markov decision
process that has unknown transition probabilities, plk,

i = 1,...,N, k = 1,...,M, where N and M are the
number of states and actions respectively. We wish to
identify these unknown parameters.

At our disposal we have a "probe," which we can
launch into the MDP. The probe has a finite lifetime,
and may be pre-loaded with an adaptive policy for
navigating through the MDP. Its goal is to reduce un-
certainty as much as possible during its lifetime.

In this paper, we cast this problem of optimal prob-
ing as a particular instance of a problem of com-
puting optimal policies for what we term "Bayes-
adaptive Markov decision processes" (BAMDP’s). 

BAMDP is a sequential decision processes that, in
incorporating a Bayesian model for evolving uncer-
tainty about unknown process parameters, takes the
form of an MDP defined over a set of "hyperstates"
whose cardinality grows exponentially with the plan-
ning horizon--conventional dynamic programming so-
lution techniques are typically dismissed as being in-
tractable. We propose a computational procedure that
retains the full Bayesian formulation, but sidesteps in-
tractability by utilizing reinforcement learning tech-
niques that employ Monte-Carlo simulation and pa-
rameterized function approximators.

One way of thinking about the algorithm is that it
performs an offiine computation of an online, adaptive
machine. One may regard the process of computing
an optimal policy for the BAMDP as "compiling" an
optimal learning strategy, which can then be "loaded"
into an agent. With actions dictated by the compiled
policy, the agent would behave in a (seemingly adap-
tive) manner that would be optimal with respect to its
prior, which describes the distribution of environmen-
tai scenarios the agent is likely to encounter.

Given the prior uncertainty over possible environ-
ments, the optimal-learning agent must collect and use
information in an intelligent way, balancing greedy ex-
ploitation of certainty-equivalent world models with
exploratory actions aimed at discerning the true state
of nature. The optimal policy for a BAMDP implicitly
performs this "exploration-versus-exploitation trade-
off"’ in an optimal way, though in our formulation the
agent does not expicitly explore or exploit, rather it
takes an optimal action (which may be some subtle
mixture of pure explore or exploit) with respect to its
full Bayesian model of the uncertain sequential deci-
sion process.

By pursuing an approach that is grounded in theory,
and that appeals to a complete world model that incor-
porates a Bayesian framework for characterizing evolv-
ing uncertainty, the algorithm we develop produces po-
lices that exhibit performance gains over simple heuris-
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tics. Moreover, in contrast to many heuristics, tile
justification or legitimacy of tile policies follows di-
rectly from the fact that they are clearly motivated by
a complete characterization of the underlying decision
problem to be solved.

In the following section, we review the Bayesian frame-
work for modeling MDP’s with uncertain transition
probabilities. This is followed by the development
of our algorithm, which is a Monte-Carlo, gradient-
based scheme utilizing particular function approxima-
tion architectures for representing policies and value
functions--the approach has been advanced in the con-
text of conventional MDP’s by Sutton et al. (2000)
and Konda and Tsitsiklis (2000). Finally, we return 
the problem of designing an optimal probe and show
how our actor-critic algorithm can be applied.

2. Bayes-adaptive Markov decision
processes

Let us refer to a Markov decision process with Bayesian
modeling of unknown transition probabilies as a
Bayes-adaptive Markov decision process (BAMDP)
(Bellman (1961) uses the term "adaptive control pro-
cess"). The status of such a process at a given stage
is summarized by its hyperstate, (s, x), which consists
of the process’s Markov chain state, s, which we shall
refer to as the physical state, together with its infor-
mation state, x, which is the collection of distributions
describing uncertainty in the transition probabilites.
Given the hyperstate, if we apply an action and ob-
serve a transition, then Bayes’s rule prescribes how
the information state is to be revised.

(a) Co)

Figure 1. An MDP with uncertain transition probabilities:
dynamics under (a) action 1 and (b) action 2 (+1 denotes
the rewards for entering right- and left-hand states).

Figure 1 depicts the transition diagram for a simple
MDP with 2 physical states and 2 feasible actions in
each state. Transition probabilities, about which we
arc uncertain, label arcs. Rewards (4-1) are taken here
to be deterministic rewards that are received upon
transitioning into a particular state. Our goal is to

maximize the expected total (undiscounted) reward re-
ceived over the entire course of interaction, which we
assume has finite duration.

If the process is in a given state and an action is taken,
then the result is that the process either remains in its
current physical state or jumps to the other comple-
mentary state--one observes a Bernoulli process with
unknown parameter.

In general, the distributions characterizing uncertainty
can be general densities defined over continuous do-
mains; representing these densities and performing the
integrations prescribed by Bayes’s rule can be a com-
putationally intensive process. In practice, it is conve-
nient to adopt "conjugate families of distributions" to
model our uncertainty (DeGroot, 1970). For example,
if our uncertainty in Plt is expressed as a beta distri-
bution parameterized by (al,/3~), then the posterior
distribution for Pll, given an observation (transition
from state 1 under action 1), is also a beta distribu-
tion, but with parameters that are incremented to re-
flect the observed datum.

For the process as a whole, we track the progress of
four Bernoulli processes: the result of taking action 1
in state 1, action 1 in state 2, action 2 in
state 1, action 2 in state 2. So if the prior
probability for remaining in the current state, for
each of these state-action pairs, is represented by
a beta distribution, then one may construct a cor-
responding hyperstate transition diagram, in which
information-state components are composed of four
pairs of parameters specifying the beta distributions
describing the uncertainty in the transition proba-
bilities. The full hyperstate may be written as:

(s, (c~I , 1 1 2 2,fit), (%,f12), (~t,CY,), (~,f12)), where 
physical Markov chain state, and where, for example,
(al,fl~) denotes the parameters specifying the beta
distribution that represents uncertainty in the transi-
tion probability Pla.

Figure 2 shows part of the hyperstate transition dia-
gram associated with the uncertain Markov decision
process of Figure 1. We have written the information
state parameters in matrix form to highlight their ob-
served correspondence to transition counts modulo the
prior; i.e., if we subtract the information state associ-
ated with the prior from any given hyperstate’s infor-
mation state component, the result may be interpreted
as the number of transitions of each type observed in
transit from the initial hyperstate to the given hyper-
state.

An optimality equation may be written in terms of the
hyperstates (see Martin (1967) for a rigorous deriva-
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Figure 2. The hyperstate transition diagram associated
with the uncertain Markov decision process of Figure 1.

tion); the optimal value function must be consistent
with local transitions to successor hyperstates and
their values, for example:

[4,+

y(l;[

In principle, one can consider computing an optimal
policy via dynamic programming, though the transi-
tion diagram suggests 4depth hyperstates at a given
depth--roughly a million hyperstates at a horizon of
10. This is Bellman’s (1961) "menace of the expand-
ing grid"--the number of hyperstates grows exponen-
tially with the time-horizon. 1 Another feature of the
transition diagram is that the transition probabili-

1Not all 4depth hyperstates at a given depth are distinct.
At a depth of 25, for example, there are only 403,702 dis-

ties are known. Although the underlying transition
probabilites between physical states are unknown, the
Bayesian model (a la beta distribution parameters)
leads to a hyperstate process with known transition
probabilities (which, it should be stressed, are consis-
tent with the assumed prior over MDP’s).

For MDP’s with more than two physical states, sam-
pling becomes multinomial, for which the appropri-
ate conjugate family of distributions is Dirichlet, and
the current formulation generalizes in a straightfor-
ward way. We should also mention that the concept
of a conjugate family of distributions can be general-
ized. One can consider mixtures of conjugate distribu-
tions, or "extended natural conjugate distributions"
(Martin, 1967), which provide more degrees of free-
dom for expressing our prior uncertainty and allow for
nonzero correlation between rows of the generalized
transition matrix. 2 However, the central issue of Bell-
man’s "menace of the expanding grid" remains--the
number of distinct reachable hyperst&tes grows expo-
nentially with the time horizon.

3. An actor-critic algorithm for
BAMDP’s

3.1. Stochastic policy and value

A stochastic policy for a general MDP with state set S

may be specified by: 7r/k de f Pr{action = klstate -= i},
The value function, V/=, i = 1, ..., ISI, is the expected
infinite-horizon discounted sum of rewards, starting in
state i and applying a fixed policy 7r. Value function
components satisfy a linear system of equations that
enforces local consistency:

pq(rlj + ’TV/’-) i = 1, ..., ISl.
k

In the context of BAMDP’s, the state set, S, is the col-
lection of hyperstates, which even for simple problems,
is quite large. Suppose we represent policies by func-
tions that depend upon parameters r/l, 772, ..., ilL, where

tinct hyperstates (Duff, 2002), though this number still
grows exponentially with the planning horizon.

2A Dirichlet prior assumes independence between rows
of the generalized transition matrix. For a matrix with N
columns, one would like to select Dirichlet parameters as-
sociated with each row to matchthe prior estimates of the
means and variances of the N individual p~j’s. However,
this would require 2N - 1 parameters, and the Dirichlet
prior supplies only N. A practical approach for assigning
a prior from empirical data proceeds by fitting the means
exactly, then by performing a least-squares fit of the re-
maining Dirichlet parameter to match the variances of the
pi~j’s (Silver, 1963).
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typically, L << ISl: ...,r/L). One may think of
the rl’s as parameters that, together with a collection
of features, determine distributions over actions given
a hyperstate as input.

With this reduced flexibility, we cannot specify all pos-
sible stochastic policies exactly (in particular, in gen-
eral we cannot specify the optimal policy), but our
hope is that our parameterized family of policies will
be rich enough to represent policies that are good or
nearly optimal. In exchange, the space required by our
policy representation, which is now biased, becomes
independent of the number of hyperstates.

Consider the state-action probabilities to be implicit
functions of the parameter vector 7/; that is, 7r/k =
7rik(rh,r/2,...,r/L), i = 1,...,]SI, k = 1,...,M. Taking
partial derix-atives of both sides of the value-function
equation with respect to a generic component of the
policy parameter vector leads to:

or,. ~ ~, k + 7v{)8m = ~-~’k ant ~-’~’J Pij (rij
~k.ak OVff+"f ~j Z--,k "i ~"ij aO~ "

(t)
This describes an ISl x ISl linear system of equations

for the components ~ i = 1,2,...,[S I It has the
OOi ’

form Ax = b, where

Aij = ~ij k k- 7 ~k ~q Pij
o4 (2)bi = ~k~-]-j k kPij(rij + 7Vj).

There are L such linear systems, one corresponding to
each rh.

3.2. Monte-Carlo gradient computation

A is a square matrix with dimension size equal to
the number of hyperstatcs. Solving for the vector of
gradient components directly (an O(IS]3) proposition)
or iteratively ( O(ISI2 per iteration) is unthinkable in
general However, a Monte-Carlo approach leads to a
tractable computational procedure.

Note that the matrix A is of the form A = I - 7P=,
where P~ is the "policy-averaged" transition matrix;
i.e., it is the average transition matrix associated with
the stochastic policy r. Let us re-express the solution
of the linear system in terms of the Neumann series:

Our goal is to maximize the value associated with the
initial hyperstate, i0. Therefore, we are interested in
determining the gradient of this value component with

respect to controller parameters. Notice that ~ is
the i0th element of A-lb, or equivalently, it is the (ioth
row of A-1) xb. A Monte-Carlo scheme can make
use of this fact. For example, for an episodic, undis-
counted (7 -- 1) process, the Neumann series expres-
sion above implies that the (i0, j)th component of A-1
is just the expected number of visits to hyperstate j,
given that the process starts in i0. Thks implies that we
may obtain an unbiased sample of ~ by simulating
a hyperstate trajectory starting in i0 and accumulat-
ing components of the b-vector corresponding to the
trajectory’s hyperstates:

bj.
j on trajectory

Note that the A matrix is the same for all gradient
components. Only the b-vector depends upon the pa-
rameter, r/t. Therefore a single trajectory yields unbi-
ased estimates for all gradient components, ~ Vl.

Conceptually, Equation 1 defines L linear systems of
equations; each linear system has the form Ax = b,
where the solution, x, is the vector of gradient compo-

nents, 0_Etv-, i = 1,...,N for fixed choice of/. Each ofor/i
the L linear systems has the same A-matrix, but the
b-vectors vary ~"ith 1 as specified by Equation 2. In our
Monte-Carlo approach, we simulate a hyperstate tra-
jectory starting from i0, which determines the element
indices of b that are to be accumulated to form an

.unbmsed estimate of o Vl. This method for select-
. ¯ . Oil!
mg element radices of b is valid for all of the b-vectors
corresponding to different choices of r/t, and so, op-
erationally, a single hyperstate trajectory is sufficient
for providing an unbiased estimate of gradient compo-
nents with respect to all rh.

3.3. Function approximation

We shall employ distinct parameterized function ap-
proximators for representing value functions and
stochastic policies for the BAMDP. First, with regard
to value-function approximation, we propose that our
approximator be a linear combination of hyperstate
features; i.e., V (s,x) ~’..t Ot£ot (s,x). Wechoose thi
architecture for its simplicity, and useful analytical
convergence results exist for this case.

We proceed under the assumption that value is a rela-
tively smooth function of information state? Without
further (problem-specific) assumptions, little can 
said in general about behavior as a function of physical

3It is known that the value function, V, is a continuous
function of information state parameters, x (Martin, 1967,
p.44).
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state. Therefore, we propose using separate parame-
terized value-function approximators for each physical
state. For our feature set, we propose using the com-
ponents of information state, x, together with a "bias"
feature grounded at a value of 1--the total number of
feature-vector components is thus N2M + 1, where N
is the number of physical states. We then write:

where V8 denotes the function-approximator associ-
ated with physical state s, and xo = 1 while xl for
I > 0 ranges over information state components.

Turning now to the issue of function approximation for
policies, we propose that stochastic policy functions,
which map hyperstates and collections of admissible
actions to probability distributions over admissible ac-
tions, be relatively smooth functions of information
state, but allow for arbitrary and discontinuous vari-
ation with respect to physical state and prospective
action. We therefore propose using a separate param-
eterized function approximator for each physical state
and each admissible action. Since we have commit-
ted to using parameterized function approximation for
representing policies, we choose an architecture that
produces only valid distribution functions over candi-
date actions. In anticipation of utilizing the gradient
formula developed in Section 3.1, we also require that
our approximator be differentiable with respect to its
parameters. Many policy approximation architectures
satisfy these criteria--here we consider one possibil-
ity, an exponentiated, normalized function involving
exponential terms that are linear in the feature com-
ponents:

e~, "[’1[~1=’,~ ((s, =),.) = ~(.,.) =
~., e~, "[’1["’]=’ ’

where zr(s,a) signifies the function approximator asso-
ciated with state s and action a, and where l ranges
over the N2M + 1 components of information state
and bias.

3.4. BAMDP policy and value gradients

We now combine the gradient formula (Equation 1)
with the policy representation parameterized as in the
previous section. The main analytical step consists of

¯ .calculating the various componentso,.. appearing in
Equation l’s formula for value-gradient. Applying the
quotient rule, considering the numerator of the result
for possible cases of i and k, and using our definition

of zr results in:

O O e~ ’Tz(’l[a)=z
~’(.,.) (x) =~C., ~C,’,(’l(°]’,

{~(,,o)(=) [~ko ,,(,,k) (=)] =j 
= 0 ifs

where 5 is the Kronecker delta.

Recall that the Monte-Carlo scheme estimates gradi-
ent components via °~° ~ ~-~-ietraj hi, where b~ =

Ek~ ~ k
Previously, we provided a Monte-Carlo interpretation
of our value-gradient formula. With hyperstates (s,x)
sampled by following policy zr from the initial state,
(s(t0), x(to)), the incremental contribution to the gra-
dient estimate (reflecting one hyperstate transition,
(s,x) --+ (s’,x’)) becomes:

’ Ao~V~ (s(to),x(to)) 
X-" 07r(,.~)(x) X-~ aZ--,a Orl /,,,~,ss,(x)[rs,, +V’(s’,x’(s,a,s’,x))].

Here, P~s’ (x) denotes the Bayesian point estimate for
a physical state transition from s to s’ under action
a given information state x, and xt(s, a, d, x) denotes
the Bayes-rule-updated information state induced by
a physical-state transition in the underlying Markov
chain from s to s~ under action a, given the prior
information-state, x. Substituting our expression for
the policy gt~u u ~,~, leads to:

A 0 V~ (s(to),x(to) 

x Es, pL,(z) L, + v~(s’, x’(s,a, s’,x))]
= ~c.,~) (x) { E., pL,(x) [rL, ~ (.’,x’(s, k, s’,x))]

- E. ~c.,.) (x) E., pL, (=)
x [rL, + v" (s’,x’(~,a, s’,x))] 

3.5. Algorithm summary

The Monte-Carlo algorithm for approximating optimal
policies for BAMDP’s is sample-based with separate
parameterized function approximators for value and
for policy. It proceeds by simulating trajectories of the
BAMDP: starting from the the initial hyperstate--the
physical state s(to) and information state x(to), which
defines the prior--it follows the hyperstate trajectory
under policy lr. At each step of the trajectory,

¯ Let the current hyperstate be (s, x). Suppose the
value function parameters are 8t[s], s = 1, 2, ..., N,
l = 0, 1,2,...,L, and the policy parameters are
~[s][a], s = 1,2,...,N, a = 1,2,...,M, l =
0,1, 2, ..., L, where L = N2M is the number of
information state components.
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¯ Generate action a via random sampling from the
action distribution:

~.~, e~* odsl[-’l~, ’

¯ Observe (s, x) ~ (s’, x’) and reward 

¯ Update value function parameters (via a TD up-
date): for j = 0, 1, 2, ...L,

OJ[s] +" SJ[s]+a (r + E Sl[sl]x~ -- E Ol[s]x~)xj’t l

where a is some small step size.

¯ Update policy parameters; for k = 1, 2, ...M and
j = 0,1,2, ...,N2M:

,j [s][k] ~- ,~ [8] [k]
+,8~-(.,k) (:~) { E., p k, 

(%, + E, o~[811~’, (~, k, 8’, ~))
- Co ~(.,~) (~) E., p~.., 

(%, + E~ 0~[s’]~i(8,a,8’,x)) 

where ~r is specified by our exponentiated, normal-
ized approximator, and fl is some small step-size

(smaller than a makes sense and works well).

3.6. Example

We applied our algorithm to the horizon=25 case of
the example presented in Figures 1 and 2. We chose
to accumulate the parameter changes suggested by our
algorithm over the course of each simulated trajec-
tory, and then scaled those changes by total change-
magnitude before making a true parameter change;
i.e., we performed a "batch" update of the parame-
ters --results are plotted in Figure 3.

Each point plotted represents an estimate of expected
total reward under the evolving policy---each point is
the sample average, over 100,000 Monte-Carlo trials,
of total reward obtained for a given policy. Perfor-
mance is not quite that of the optimal tabular policy
(which has value 5.719 and was computed by a sin-
gle backward Ganss-Seidel sweep over the 2 million
hyperstates--see (Duff, 2002) for the details of this
computation). Our compressed policy representation
does not have sufficient degrees-of-freedom to repro-
duce the optimal policy, which can tailor actions to
every specific hyperstate, but its performance is within
approximately 4% of optimal.

,zf ’~:~ i

2
¢

i!
i

Figure 3. Performance of simulation-based stochastic pol-
icy iteration (a = .05, ~ = .01) on the 2-state, 2-action
example, with uniform priors for unknown transition prob-
abilities. For this 2-state/2-action horizon=25 problem,
there are nearly 2 million distinct reachable hyperstates.
Value and policy function approximators for this case used
only 18 and 36 parameters, respectively, but achieved per-
formance that is within 4% of optimal.

4. Design for an optimal probe

To make matters concrete, consider the specific exam-
ple depicted in Figure 4, an MDP with seven states
and two actions. Action 1 tends to move the probe
left, while action 2 tends to move the probe to the
right.

We express our prior uncertainty in state-transition
probabilities under these actions in terms of beta dis-
tribution parameters, which in Figure 4 label arcs;
for example, our uncertainty in transitions (left move)
from state 2 under action 1 is defined by the beta-
distribution parameter pair (6, 2).

We have sculpted this example in such a way that our
prior defines the expected probability of moving left
under action 1 as .75 for each state, but with un-
certainty that increases with distance from the middle
state, state 4, which we assume to be the start state.
The prior uncertainty for action 2 transitions is de-
fined similarly (but with mean probability of moving
right equal to .75).

We shall adopt the variance of the beta distribution as
our measure of uncertainty:

Var(a, fl) = (a+fl)2(a+ fl+ 1)"

Let us denote the full set of beta-distribution parame-
ters, which express our uncertainty in state transition
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Figure 4. Beta distribution parameters label transition
arcs for a simple optimal probing problem. Under action
1, the process moves left with a mean probability .75, but
with uncertainty that increases with distance from the mid-
die (start) state. Under action 2, the process moves right
with mean probability .75, and uncertainty increases in the
sazne way as for ac’cion 1. Density graphs plot prior un-
certainty in the probability of moving left.

probabilities, as M = {m~j} i = 1,2,...,7, k = 1,2,
and j E {L,R}, where "L" and "R" denote indices
’associated with left and right transitions, respectively.
Thus 28 parameters suffice to specify our uncertainty
in the MDP. The prior uncertainty may be assigned
subjectively, or may be informed by the results re-
ported from previous probes.

If we are in a particular state, s, and take action
a, then experience a transition to the left, then our
uncertainty in transition probability associated with
state s / action a becomes: Var(m~L + 1, maR).

We propose defining the reward associated with
this transition as the reduction in variance; i.e.,

a areward(s a --) LIM) = Var(m=L,re=R) -- Yar(ma=L 
1, re=R), and the probe’s goal is to maximize the ex-
pected sum of such rewards over its lifetime.

We note that, if we repeatedly sample a fixed state
and action, the expected reward (variance-decrement)
diminishes with the number of samples (Figure 5).

This, together with the assumed structure of prior un-
certainty, should lead to non-triviai probing strate-
gies. For example, one would think that the probe
should drive toward one of the ends of the chain where
variance is high, squash out uncertainty there, then
at some point turn toward the opposite end, passing
through low-variance states en route.

We applied our actor-critic algorithm to this BAMDP

o.o2

8

I o.o15

~ o.o1

0.005

t i
o 5 lO 15

Figure 5. Diminishing variance reduction with repeated
sampling. The graph plots the expected incremental re-
duction in variance for a Bernoulli process with unknown
parameter and initial beta distribution parameters (~,/3) 
(1, 1).

(lifetime=f5) and its performance is plotted in Fig-
ure 6 (each point is the expected performance as
gauged by the average of 10,000 Monte-Carlo tri-
ais). As a comparison, we also show the expected
performance of a probe that chooses its actions ran-
domly, and the performance of a greedy probe that,
at each step, chooses the action that maximizes the
expected one-step reduction in variance. The actor-
critic probe yields approximately a 23% improvement
over the random probe and an 11% improvement over
the greedy probe (or, over twice as much improvement
from greedy to actor-critic as from random to greedy).

’ i!
I i00,~ l

1 i
0 L .................................,. .................................~, .....................................~ ......................................

0 600 ~000 ~03 3000
Nurnbe(a~ lf~

Figure 6. Probe performance (lifetime= 15).
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5. Summary

For classical dynamic programming approaches, the
complexity of computing optimal BAMDP policies
scales exponentially with the time horizon. Even
for two physical states and two physical actions, the
horizon=25 case examined in our first example is
rapidly approaching the limits of tractability. How-
ever, the complexity of our simulation-based algorithm
does not scale in this way. Space requirements are
O(N3) for representing the value function and policy--
space complexity is independent of the time horizon.
It is difficult to be precise regarding the time com-
plexity of our algorithm. We simply observe that it is
a trial-based algorithm, involving repeated estimation
of V" through simulation of controlled trajectories of
length equal to the time horizon. In very simple terms
(neglecting the nonstationarity of the value function as
the policy improves), estimation error scales inversely
with the square root of the number of trials (and
squared error is proportional to the variance, which
may be significant). Sutton et al. (2000) and Konda
and Tsitsiklis (2000) have considered issues of convcr-
gence for actor-critic, policy-gradient algorithms of the
type we have proposed and applied to BAMDP’s. One
of their main conclusions is that features employed
by the ~-alue function approximation architecture (the
"critic") should span a subspace prescribed the choice
of parameterization of the controller (the "actor")--
the critic need only compute a certain projection of the
value function (a high-dimensional object) onto a low-
dimensional subspace spanned by a set of basis func-
tions that are completely determined by the parame-
terization of the actor. In practice, if one assumes a
particular parameterization of a policy, a "compatabil-
ity condition" (Sutton et al., 2000) suggests the func-
tional form of parameterization for the value function
approximator. For example, if we adopt an exponen-
tiated, normalized functional form for stochastic poli-
cies, as we have done in Section 3.3, then the compata-
bility condition would lead us to propose a linear ar-
chitecture for the value-function approximator, which
is exactly what we have done naively.

In summary, the actor-critic algorithm for BAMDP’s
avoids the massive memory requirements inherent
in conventional dyanamic programming (Bellman’s
"menace of the expanding grid"), and is applicable
to general problems of optimal learning, of which the
optimal probe example is a special case. The algo-
rithm is practical and it works, at least to the extent
that the function approximators invoked adequately
represent value functions and policy mappings, and to
the extent that the gradient scheme employed leads
to improved policies. Our current research seeks al-

ternative general, flexible, concise function approxi-
mators. In executing its adaptive strategy, the agent
simply tracks the evolving hyperstate (i.e., maintains
state-transition counts) and applies actions as pre-
scribed by its hyperstate-to-action policy mapping;
that is, the agent is not required to perform signif-
icant amounts of computation online. The resulting
policy may be viewed as implementing a form of far-
sighted (hyperopic) active learning. In contrast 
many heuristics, the legitimacy of policies computed
by the algorithm follows from the fact that the algo-
rithm is grounded in Bellman’s optimality equation
defined over hyperstates--we acknowledge long-range
effects of information gain by retaining the complete
Bayesian formulation of the problem to be solved.
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