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Abstract

Many different metrics are used in machine
learning and data mining to build and evaluate
models. However, there is no general theory of
machine learning metrics, that could answer
questions such as: When we simultaneously want
to optimise two criteria, how can or should they
be traded off? Some metrics are inherently inde-
pendent of class and misclassification cost distri-
butions, while other are not — can this be made
more precise? This paper provides a derivation
of ROC space from first principles through 3D
ROC space and the skew ratio, and redefines
metrics in these dimensions. The paper demon-
strates that the graphical depiction of machine
learning metrics by means of ROC isometrics
gives many useful insights into the characteris-
tics of these metrics, and provides a foundation
on which a theory of machine learning metrics
can be built.

1.  Introduction

Many different metrics are used in machine learning and
data mining to build and evaluate models. For instance,
for model building we can use precision in (association)
rule learning, information gain in decision tree building,
and weighted relative accuracy in subgroup discovery.
For model evaluation on a test set we can use accuracy, F-
measure, or area under ROC curve. Many variants of
these metrics are used, for instance probability estimates
can be Laplace-corrected or m-corrected to take a prior
distribution into account.

However, which metrics are used in a certain context
seems to be, to a large extent, historically determined. For
instance, it is not clear why precision is a good metric for
deciding which condition to add to a classification rule, or
why decision tree splitting criteria should rather be impu-
rity-based. Machine learning researchers have (re-)
discovered the importance of being able to deal with
skewed class and misclassification cost distributions that
may differ from training to deployment, but a general
theory how to characterise dependence on these aspects is
lacking.

In this paper we use ROC analysis to start tackling these
and related issues. Our main tool will be ROC isometric
plots, which are contour plots for the metric under inves-
tigation. ROC isometrics are a very powerful tool to ana-
lyse and characterise the behaviour of a range of machine
learning metrics. While ROC analysis is commonly asso-
ciated with model selection, we demonstrate in this paper
that ROC analysis has a much wider applicability and
should be one of the most used instruments in every ma-
chine learner’s toolbox.

There has been some previous work in this area. Provost
and Fawcett (2001) use isometrics (which they call iso-
performance lines) to determine the optimal point on a
ROC convex hull. The term ‘isometric’ seems to originate
from (Vilalta & Oblinger, 2000); they give a contour plot
for information gain identical to the one presented in this
paper, but their analysis is quantitative in nature and the
connection to ROC analysis is not made. The purpose of
this paper is to outline a general framework for analysing
machine learning metrics, and to demonstrate the broad
applicability of the framework, which ranges from classi-
fication, information retrieval, subgroup discovery, to
decision tree splitting criteria. To demonstrate that the
approach can lead to concrete, useful results, we derive an
equivalent simplification of the F-measure used in infor-
mationi retrieval, as well as a version of the Gini splitting
criterion that is insensitive to class or cost distributions.
Further results are obtained in (Fürnkranz & Flach, 2003)
by applying a similar analysis to rule evaluation metrics.

The outline of the paper is as follows. Section 2 presents
the fundamentals of ROC space, including a novel per-
spective on how 2D ROC space is obtained from 3D ROC
space by means of the skew ratio. Section 3, the main part
of the paper, analyses a range of evaluation metrics and
search heuristics through their isometric plots. Section 4
presents a more formal analysis, and Section 5 concludes.

2.  3D and 2D ROC Space

A contingency table (sometimes called confusion matrix)
is a convenient way to tabulate statistics for evaluating the
quality of a model. In Table 1, TP, FP, TN and FN stand
for true/false positive/negative counts, respectively; PP
and PN stand for predicted positive/negative; and POS



and NEG stand for actual positive/negative. N is the sam-
ple size. We use lowercase for relative frequencies, e.g.
tp=TP/N and pos=POS/N. In this paper we will only con-
sider metrics that can be defined in terms of the counts in
a contingency table (this excludes, e.g., metrics that con-
sider model complexity). We also restrict attention to
two-class problems.

Table 1. Counts organised in a two-by-two contingency table
with marginals. The top two rows stand for actual classes, while
the left two columns stand for predicted classes.

TP FN POS

FP TN NEG

PP PN N

The metrics we consider all have in common that they
evaluate the quality of a contingency table in some way.
However, it is not necessarily the case that the counts are
obtained from evaluating a complete model; they could
also be obtained from parts of a model, such as a single
rule, or a decision tree split. So, even though ROC analy-
sis is usually applied to the model evaluation stage rather
than the model building stage, the analysis in this paper
applies to any metric that evaluates the quality of a two-
by-two contingency table for some purpose, and we use
the term ‘model’ in a generic sense.

2.1  Contingency Tables in 3D

A two-by-two contingency table with relative frequencies
has three degrees of freedom, and can thus be seen as a
point in a three-dimensional Cartesian space. The chosen
co-ordinates depend on the purpose of the analysis. A
typical choice1 related to ROC analysis is to use the false
positive rate fpr=FP/NEG on the X-axis, true positive
rate tpr=TP/POS on the Y-axis, and the relative fre-
quency of positives pos=POS/(POS+NEG) on the Z-axis.
We will call this 3D ROC space. As we explain in Section
2.2, the key assumption of ROC analysis is that true and
false positive rates describe the performance of the model
independently of the class distribution, and we are thus
free to manipulate the Z-axis in 3D ROC space to con-
form to the class distribution of the environment in which
the model will be employed.

Any metric that is defined in terms of the counts in a con-
tingency table assigns a value to each point in 3D ROC
space. For instance, accuracy can be defined as pos*tpr +
(1–pos)*(1–fpr). The set of points that are assigned the

                                                            
1 Other choices are possible; e.g., in information retrieval

(Van Rijsbergen, 1979) performance is evaluated irrespective of
the true negatives (non-answers that are correctly not returned)
and the sample size, and the chosen co-ordinates are preci-
sion=TP/PP and recall=TP/POS (the same as tpr). DET curves
(Martin et al., 1997) are essentially a re-scaling of ROC curves.

same accuracy m are given by the equation pos*tpr +
(1–pos)*(1–fpr) = m, which can be re-arranged to yield
the surface pos = (m+fpr–1)/(tpr+fpr–1) under the con-
straints 0≤pos≤1 and tpr+fpr–1≠0. (These constraints are
needed because not all combinations of tpr and fpr are
possible for a given value of accuracy: e.g., on the line
tpr+fpr–1=0 we have equal true positive and true negative
rates, hence tpr=1–fpr=m is the only possible point on this
line.) We call this surface an accuracy isosurface; a
graphical depiction is given in Figure 1. The intuition
behind this isosurface is that in the bottom plane pos=0
we have the line 1–fpr=m; increasing pos rotates this line
around tpr=1–fpr=m until in the top plane we reach the
line tpr=m. By increasing m the surface is shifted to the
front and left, as indicated in Figure 1.

Figure 1. Accuracy isosurfaces for 80% (front/left) and 50%
accuracy in 3D ROC space, with the proportion of positives on
the vertical axis.

2.2  From 3D to 2D: Skew Ratio

Suppose we have evaluated a number of models and
plotted their contingency tables in 3D ROC space. The
models may have been evaluated on different test sets
with different class distributions, hence these points may
be located in different horizontal planes. Assuming that
the models’ true and false positive rates are independent
of the class distribution in the test set, we are free to use
vertical projection to collect all points in a single plane.
We could decide to discard the vertical dimension alto-
gether and work in 2D (fpr,tpr) space. However, metrics
such as accuracy have different behaviour in different
‘slices’ of ROC space (see Figure 1). It is therefore better,
at least conceptually, to regard 2D ROC space as a hori-
zontal slice of 3D ROC space upon which all 3D ROC
points describing models are projected.

The appropriate slice can be selected once the expected
class distribution in the target context is known, which
fixes the behaviour of the metrics involved. To ease sub-
sequent analysis, we will use the class ratio c=NEG/POS
rather than the relative frequency of positives; note that
this is merely a re-scaling of the vertical axis in 3D ROC



space (pos=1/(1+c)). If all models were evaluated on a
test set with class ratio equal to the expected class ratio,
all points in 3D ROC space are in the same horizontal
plane and we use this slice as our 2D projection. Other-
wise, we project all points onto the appropriate slice cor-
responding to the expected class ratio.

It is easy to factor in non-uniform misclassification costs
by adjusting the expected class ratio. For instance, if false
positives are 3 times as expensive as false negatives, we
multiply the expected class ratio with 3 — the intuition is
that this cost ratio makes us work harder on the negatives.
This can be further extended by taking correct classifica-
tion profits into account. For instance, if true positives
result in profit 5, false negatives result in cost 3, true
negatives have profit 2, and false positives have cost 1,
then this results in an adjustment to the class ratio of
(2–1)/(5–3): the cost matrix has effectively a single de-
gree of freedom (Elkan, 2001).

All these scenarios (test class ratios are meaningful, test
class ratios need adjustment, misclassification costs need
to be taken into account, correct classification profits need
to be taken into account as well) are thus covered by as-
suming a single skew ratio c: c<1 tells us positives are
more important, c>1 tells us the opposite. It is therefore
perfectly legitimate to assume in what follows the sim-
plest scenario: all models are evaluted on the same test set
with meaningful class distribution, and c stands for the
ratio of negatives to positives in the test set. The reader
should just keep in mind that the analysis is equally appli-
cable to the other scenarios, in which the skew ratio only
partly depends on the class distribution in the test set.

To summarise, we assume that true and false positive
rates are sufficient statistics for characterising the per-
formance of a classifier in any target context. The skew
ratio tells us what the expected trade-off between nega-
tives and positives is in the target context, and is therefore
a parameter of the metrics we consider. If the skew ratio
is biased (i.e., unequal to 1), it is irrelevant for our pur-
poses whether this is because of a skewed class distribu-
tion, unequal misclassification costs, or both. We will
therefore avoid terms like ‘cost-sensitive’ in favour of the
more neutral skew-sensitive. Only if we want to interpret
what a metric measures, we need to take the components
of the skew ratio into account. For instance, consider ac-
curacy: (1) Disregarding misclassification costs, accuracy
estimates the probability that a randomly chosen example
is correctly classified. (2) With misclassification costs,
accuracy estimates the probability that a randomly chosen
example incurs zero cost. (3) With misclassification costs
and correct classification profits, accuracy estimates the
probability that a randomly chosen example incurs a
profit. Of course, if we want to know the expected yield
of a model (the number of correctly classified examples,
the amount of cost or profit incurred) we need to know, in
addition, the absolute numbers of examples of each class
and the associated cost and profit parameters.

2.3  2D ROC Space

2D ROC space, hereafter simply referred to ROC space if
no confusion can arise, is thus a slice out of 3D ROC
space determined by the skew ratio c. The skew ratio does
not influence the position of models in the (fpr,tpr) plane,
but it does influence the behaviour of metrics which take
c as a parameter. Isosurfaces in 3D ROC space become
lines in 2D ROC space, called isometrics in this paper.
We will take a detailed view at ROC isometrics for a
range of machine learning metrics in the next section. In
the remainder of the present section, we will take a closer
look at some specific points and lines in 2D ROC space.

The points (0,0) and (1,1) represent the training-free clas-
sifiers AlwaysNegative and AlwaysPositive; the point
(0,1) represents the ideal classifier, and (1,0) represents
the classifier which gets it all wrong. The ascending di-
agonal (0,0)–(1,1) represents random training-free be-
haviour: any point (p,p) can be obtained by predicting
positive with probability p and negative with probability
(1–p). The upper left triangle contains classifiers that per-
form better than random, while the lower right triangle
contains those performing worse than random. The de-
scending diagonal (0,1)–(1,0) represents classifiers that
perform equally well on both classes (tpr=1–fpr=tnr); left
of this line we find classifiers that perform better on the
negatives than the positives, to the right performance on
the positives dominates.

Figure 2. 2D ROC space.

Some of these special points and lines may have a slightly
different interpretation in e.g. subgroup discovery or deci-
sion tree learning. For instance, the ascending diagonal
here means a child node or subgroup that has the same
class distribution as the parent node or overall population;
the upper left (lower right) triangle contains subgroups
deviating towards the positives (negatives). Therefore,
metrics for subgroup discovery and splitting criteria are
normally 0 on the ascending diagonal. The descending
line tpr+c*fpr=1 represents subgroups whose size equals
the number of positives in the population.

It is worth noting the following symmetries in contin-
gency tables and ROC space. Exchanging columns in a



contingency table corresponds to, e.g., inverting the pre-
dictions of a classifier; in ROC space, this amounts to
point-mirroring a point through (0.5,0.5). Exchanging
rows in the contingency table, on the other hand, amounts
to keeping the model the same but inverting the labels of
the test instances; it corresponds to swapping true and
false positive rates, i.e., line-mirroring ROC space across
the ascending diagonal. Notice that this also affects the
skew ratio (c becomes 1/c). Exchanging both rows and
columns, i.e., swapping the correct predictions for both
classes as well as the misclassifications, corresponds to
line-mirroring ROC space across the descending diagonal.

3.  Machine Learning Metrics in ROC Space

This section is devoted to a geometric investigation of the
behaviour of a range of metrics in ROC space. A more
formal analysis is given in Section 4. As has been argued
in the previous section, we consider metrics evaluating
the performance of models in terms of their (estimated)
true and false positive rates, which additionally take the
skew ratio c as a parameter. Table 2 contains formulas for
the main metrics considered in this paper. The formulas
can be verified by substituting c=NEG/POS, tpr=TP/POS
and fpr=FP/NEG. Further explanation for these metrics is
given in the corresponding subsection below.

Table 2. Metrics defined in terms of true and false positive rates
and skew ratio. An asterisk indicates weak skew-insensitivity.

METRIC FORMULA SKEW-INSENSITIVE

ACCURACY

† 

tpr + c(1- fpr)
1+ c

† 

(tpr +1- fpr)
2

PRECISION*

† 

tpr
tpr + c ⋅ fpr

† 

tpr
tpr + fpr

F-MEASURE

† 

2tpr
tpr + c ⋅ fpr +1

† 

2tpr
tpr + fpr +1

WRACC*

† 

4c
(1+ c)2 (tpr - fpr)

† 

tpr - fpr

3.1  Isometrics

We recall that isometrics are collections of points with the
same value for the metric. Generally speaking, in 2D
ROC space isometrics are lines or curves, while in 3D
ROC space they are surfaces. If the isometric lines are
independent of the skew ratio the isometric surfaces will
be vertical; we will refer to such metrics as strongly skew-
insensitive. Alternatively, the metric can be weakly skew-
insensitive (isometric surfaces are non-vertical but their
isometrics retain their shape when varying the skew ra-
tio); or they can be skew-sensitive as in Figure 1. These
concepts will be made more precise below.

We obtain isometric lines by fixing the skew ratio c. Most
of the plots in this paper show isometrics for the unbiased
case (c=1) as well as a biased case such as c=1/2 or c=5.

As explained previously, the parameter c tells us how
positives and negatives should be traded off in the target
context; we refer to it as the expected skew ratio, or
briefly expected skew. We contrast this with the effective
skew ratio, which is the slope of the isometric in a given
point. This indicates the trade-off between true and false
positive rates the metric makes locally in that point, which
is important for determining the direction in which im-
provements are to be found. Below we will see three
types of isometric landscapes: (a) with parallel linear iso-
metrics (accuracy, WRAcc); (b) with non-parallel linear
isometrics (precision, F-measure); and (c) with non-linear
isometrics (decision tree splitting criteria). Type (a)
means that the metric applies the same positive/negative
trade-off throughout ROC space; type (b) means that the
trade-off varies with different values of the metric; and
type (c) means that the trade-off varies even with the
same value of the metric.

In addition, we will describe isometric landscapes associ-
ated with metric m using the following concepts: (1) The
tpr-indicator line, where m = tpr. This is useful for read-
ing off the value of the metric associated with a particular
isometric. (2) The line or area of skew-indifference,
which is the collection of points such that m is independ-
ent of c. This line may be a useful target if the expected
skew is unknown, but known to be very different from the
training set distribution. (3) The metric that results for
c=1, which we call the skew-insensitive version of the
metric (see the right column in Table 2).

3.2  Accuracy

It is obvious from Figure 1 that accuracy behaves differ-
ently in different slices of 3D ROC space, and thus is
skew-sensitive (notice that the term ‘cost-sensitive’ might
be considered confusing in this context). This can be ex-
plained by noting that accuracy ignores the distribution of
correct predictions over the classes. Its definition is given
in Table 2, and Figure 3 shows an isometric plot.

Figure 3. Accuracy isometrics for accuracy values 0.1, 0.2, … 1.
The solid lines with slope 1 result from an unbiased expected
skew ratio (c=1), while the flatter dashed lines indicate an ex-
pected skew biased towards positives (c=1/2).



Not surprisingly, accuracy imposes a constant effective
skew ratio throughout ROC space, which is equal to the
expected skew ratio c. The flatter isometrics for c=1/2
indicate a bias towards performance on the positives. On
the descending diagonal performance on positives and
negatives is equal, and consequently unbiased and biased
versions of accuracy give the same value — accuracy’s
line of skew-indifference. In the lower left triangle (better
performance on positives), biasing the expected skew
ratio c towards negatives has the effect of decreasing ac-
curacy in any fixed point, whereas in the upper right tri-
angle the effect is opposite. The effect is larger the further
we are from the descending diagonal. Finally, the tpr-
indicator line for accuracy, where accuracy equals tpr, is
the descending diagonal, independent of the expected
skew. For c=1 accuracy reduces to (tpr+1–fpr)/2, which
can be seen as a skew-insensitive version of accuracy
(i.e., the average of true positive and true negative rates).

3.3  Precision

An entirely different isometric landscape is obtained
when we plot precision, which is defined as
tpr/(tpr+c*fpr). Unlike accuracy, precision imposes a
varying effective skew ratio: e.g., above the ascending
diagonal effective skew is biased towards the negatives,
and optimal precision is obtained if fpr=0. Precision has
only trivial lines of skew-indifference (the fpr and tpr
axes), but it is weakly skew-insensitive: we get the same
isometrics for different values of c, only their associated
values differ. A fully skew-insensitive version of preci-
sion is tpr/(tpr+fpr). The descending diagonal is the tpr-
indicator line for the skew-insensitive version of preci-
sion; in general the t p r-indicator line is given by
tpr+c*fpr=1. Finally, notice that increasing precision’s
bias towards positives by decreasing c results in increased
precision values throughout ROC space.

Figure 4. Precision isometrics for c=1 (solid lines) and c=1/2
(dashed lines).

3.4  F-measure

The F-measure (Van Rijsbergen, 1979) trades off preci-
sion=TP/(TP+FP) and recall=TP/(TP+FN) by averaging

FP and FN: TP/(TP+Avg(FP,FN)) = 2TP/(2TP+FP+FN)
= 2TP/(TP+FP+POS). This measure is insensitive to how
the incorrect predictions are distributed over the classes.
The F-measure can be rewritten as 2tpr/(tpr+c*fpr+1); a
skew-insensitive version is 2tpr/(tpr+fpr+1). An isometric
plot is given in Figure 5; because it is customary in in-
formation retrieval to have many more negatives than
positives, the biased plot uses c=5.

Figure 5. F-measure isometrics for c=1 (solid lines) and c=5
(dashed lines).

Figure 5 is drawn in this way to emphasise that the F-
measure can be seen as a version of precision where the
rotation point (for fixed c) is translated to the left to
(fpr=–1/c,tpr=0). Obviously, when c>>1 the difference
with precision becomes negligable (for that reason, a non-
uniform weighting of false positives and false negatives is
sometimes used). Also, notice how the tpr axis is a line of
skew-indifference, where the F-measure has the same
value regardless of the expected skew. Along this line the
F-measure is a re-scaling of the true positive rate (i.e.,
2tpr/tpr+1); the tpr-indicator line is the same as for preci-
sion, i.e., tpr+c*fpr=1. Again, biasing c towards positives
increases the value of the metric throughout ROC space.

It is interesting to note that versions of precision with
shifted rotation point occur more often in machine learn-
ing. In (Fürnkranz & Flach, 2003) it is shown that both
Laplace-corrected and m-corrected precision follow this
pattern, and that by moving the rotation point further
away from the origin we can approximate accuracy-like
measures. Also, Gamberger and Lavrac (2002) use this
device to control the generality of induced subgroups.

We propose the following simplification of the F-
measure, which we call the G-measure = TP/(FP+POS) =
tpr/(c*fpr+1). This measure has the same isometrics as
the F-measure, only its values are distributed differently.
In particular, fpr=0 is both a line of skew-indifference and
the tpr-indicator line for the G-measure. We prove the
equivalence of F- and G-measures in Section 4.

3.5  Weighted Relative Accuracy

Subgroup discovery is concerned with finding subgroups
of the population that are unusual with respect to the tar-
get distribution. Weighted relative accuracy (WRAcc) is a
metric that compares the number of true positives with the
expected number if class and subgroup were statistically



independent (Lavrac, Flach & Zupan, 1999):
tp–(tp+fp)*pos = tp*neg–fp*pos, which can be rewritten
to (c/(c+1)2)*(tpr–fpr) (if desired, it can be re-scaled to
range from –1 to +1 by multiplication with 4). The iso-
metrics are parallel to the ascending diagonal: WRAcc is
essentially equivalent to an unbiased version of accuracy.
However, it is only weakly skew-insensitive — a fully
skew-insensitive version is tpr–fpr. We omit the isomet-
rics plot for lack of space.

It is worth pointing out the following connection with
area under the ROC curve, which evaluates the aggre-
gated quality of a set of classifiers (Hand & Till, 2001).
This can be applied to a single model by combining it
with the default models AlwaysNegative and Always-
Positive: i.e., by constructing a three-point ROC curve
(0,0)–(fpr,tpr)–(1,1) from the origin, through a point
(fpr,tpr) to the top-right corner. Geometrically, it is easy
to see that the area under this curve is (tpr–1+fpr)/2, i.e.,
the average of true positive and true negative rates, which
is the skew-insensitive version of accuracy; or tpr–fpr if
measured only above the ascending diagonal.

3.6  Decision Tree Splitting Criteria

Most decision tree splitting criteria compare the impurity
of the unsplit parent with the weighted average impurity
of the children. If we restrict attention to a binary split in
a two-class problem, the split can be described by a con-
tingency table where POS and NEG denote the positive
and negative instances in the parent, true and false posi-
tives denote the instances in one child, and true and false
negatives denote the instances in the other child. Impu-
rity-based metrics then take the following form:

† 

m = Imp(pos,neg) - (tp + fp)Imp( tp
tp + fp

, fp
tp + fp

)

-( fn + tn)Imp( fn
fn + tn

, tn
fn + tn

)

Impurity can be defined as entropy (Quinlan, 1986), Gini
index (Breiman et al., 1984), or DKM (Kearns & Man-
sour, 1996); their definitions can be found in Table 3. The
right column of the table contains, for Gini index and
DKM, the weighted impurity of the (tp,fp) child as a pro-
portion of the impurity of the parent (relative impurity).

Table 3. Impurity measures used in decision tree splitting crite-
ria (all scaled to [0,1]).

IMPURITY Imp(p,n) RELATIVE IMPURITY

ENTROPY

† 

-plog p - n logn

GINI

† 

4 pn

† 

1+ c
tpr + c ⋅ fpr

tpr ⋅ fpr

DKM

† 

2 pn

† 

tpr ⋅ fpr

Splitting criteria naturally have more symmetry than the
metrics discussed in the previous sections. In particular,
they are insensitive to swapping columns in the contin-

gency table: as has been pointed out before, this corre-
sponds to point-mirroring through (0.5,0.5) in ROC space.
The next three figures show isometrics for an impurity-
based splitting criterion using these impurity measures.
Because we want to investigate the influence of class
skew, we plot isometrics for c=1 and c=1/10.

(a) Information gain

(b) Gini-split

(c) DKM-split

Figure 6. Splitting criteria isometrics for c=1 (solid lines) and
c=1/10 (dashed lines).



The top two plots in Figure 6 demonstrate skew-
sensitivity, as with decreasing c the isometrics become
flatter; however, we can observe that Gini-split is much
more dependent on the expected skew than information
gain. DKM-split, on the other hand, is (weakly) skew-
insensitive (Drummond & Holte, 2000): in ROC space,
this amounts to having both the ascending and the de-
scending diagonals as symmetry axes. The fact that
DKM-split is skew-insensitive can also be seen from
Table 3, as the relative impurity (the weighted impurity of
the (tp,fp) child as a proportion of the impurity of the par-
ent) is independent of c.

All these splitting criteria have non-linear isometrics: in
points close to the edge of the plot, where one of the chil-
dren is nearly pure, the effective skew is more biased. It is
not entirely clear why this should be the case. For in-
stance, in (Ferri, Flach & Hernandez, 2002) we report
good results with an alternative splitting criterion that is
not impurity-based but instead geared towards increasing
the area under the ROC curve. The isometrics of this
AUC-split metric can be easily shown to be straight par-
allel lines, but the metric is skew-sensitive.

The foregoing analysis gives rise to a novel, strongly
skew-insensitive splitting criterion that can be derived
from Gini-split by setting c=1. As can be observed from
Table 3, this results in a relative impurity of the (tp,fp)
child of 2tpr fpr/(tpr+fpr). Setting the impurity of the par-
ent to 1, the complete formula is

† 

Gini - ROC =1-
2tpr ⋅ fpr
tpr + fpr

-
2(1- tpr)(1- fpr)
1- tpr +1- fpr

The idea is that the class distribution in the parent is taken
into account when calculating the impurity of the chil-
dren, through the true and false positive rates. There is no
need for weighting the impurities of the children. The
isometrics for this splitting criterion are equal to the Gini-
split isometrics for c=1; they are flatter than the DKM-
split isometrics, and thus place less emphasis on com-
pletely pure children. Generalisation of Gini-ROC to
multiple classes and experimental comparison with DKM-
split are interesting issues for further research. We would
also like to mention that Gini-split can be shown to be
equivalent to the c2 statistic normalised by sample size,
up to a factor of 4c/(1+c)2, thus settling an open question
in (Vilalta & Oblinger, 2000). It follows that Gini-ROC
also establishes a strongly skew-insensitive version of c2.

4.  Formal Analysis

The main message of this paper is that machine learning
metrics are distinguished by their effective skew land-
scapes rather than by their values per se. This is captured
by the following definition.

Definition 1. Two metrics are skew-equivalent if they
have the same effective skew ratio throughout 2D ROC
space for each value of c.

In (Fürnkranz & Flach, 2003) we defined two metrics m1

and m2 to be equivalent if they are either compatible or
antagonistic, where m1 and m2 are defined to be compati-
ble if m 1(x)>m1(y) iff m2(x)>m2(y) holds for all points x
and y, and antagonistic if m1(x)>m1(y) iff m2(x)<m2(y). If
two metrics are equivalent, they lead to the same results
in any setting where the metric is used for ranking mod-
els. We now show that Definition 1 states a necessary
condition for equivalence.

Theorem 1. Equivalent metrics are skew-equivalent.
Proof. Suppose m1 and m2 don’t have the same effective
skew ratio everywhere, then there exists a point x where
their isometrics cross. Let y be another point close to x on
the m1 isometric, then m1(x)=m1(y) but m2(x)≠m2(y), i.e.,
m1 and m2 are neither compatible nor antagonistic.

Skew-equivalence is not a sufficient condition for
equivalence: tpr–fpr and (tpr–fpr)2 are skew-equivalent
but not equivalent. We conjecture that the difference be-
tween the two can be characterised by imposing continu-
ity or monotonicity constraints on the metric.

We proceed to demonstrate equivalence of the F- and G-
measures. Although it would be straightforward to prove
compatibility, we prove skew-equivalence instead to
demonstrate one technique for deriving an expression for
the effective skew ratio of a metric.

Theorem 2. The F- and G-measures are skew-equivalent.
Proof. The isometric for a given value tpr/(c*fpr+1) = m
of the G-measure is given by tpr=(mc*fpr+m). The slope
of this line is mc . In an arbitrary point (fpr,tpr) this is
equal to c*tpr/(c*fpr+1). The isometric for a given value
2tpr/(tpr+c*fpr+1) = m  of the F-measure is given by
tpr=(mc*fpr+m)/(2–m). The slope of this line is mc/(2–m).
In an arbitrary point (fpr,tpr) this is again equal to
c*tpr/(c*fpr+1).

We can use the notion of skew-equivalence to define
(weak) skew-insensitivity.

Definition 2. A metric is weakly skew-insensitive if it is
skew-equivalent to itself for all expected skew ratios. A
metric is strongly skew-insensitive if it is identical to itself
for all expected skew ratios.

Theorem 3. Precision is weakly skew-insensitive.
Proof. The isometric through any given point (fpr,tpr)
goes through the origin and thus has slope tpr/fpr, which
is independent of c.

The next result relates two metrics in terms of their effec-
tive skew ratios. This complements results from (Vilalta
& Oblinger, 2000) who developed a method to quantify
the difference between metrics.

Theorem 4. For any expect skew ratio and throughout
ROC space, the F-measure is more biased towards the
positives than precision.
Proof. The effective skew ratio of the F-measure in a



point (fpr,tpr) was derived in the proof of Theorem 2 as
c*tpr/(c*fpr+1) < tpr/fpr, which is the slope of the preci-
sion isometric through that point according to Theorem 3.

Table 4 gives a summary of the effective skew ratios of
some of the metrics considerd in this paper.

Table 4. Effective skew ratio (slope) of various metrics as a
function of true and false positive rates and expected skew ratio.

METRIC EFFECTIVE SKEW RATIO

ACCURACY c
PRECISION tpr/fpr
F-MEASURE, G-MEASURE tpr/(fpr+1/c)
WRACC 1

5.  Concluding Remarks

In this paper we have proposed the use of ROC isometric
plots to analyse machine learning metrics that are com-
monly used for model construction and evaluation. By
deriving 2D ROC space from 3D ROC space we have
made the central role of the skew ratio explicit. We have
argued that the defining characteristic of a metric is its
effective skew landscape, i.e., the slope of its isometric at
any point in 2D ROC space. This provides a foundation
on which a theory of machine learning metrics can be
built. We have obtained a number of initial results, in-
cluding a simplification of the F-measure commonly used
in information retrieval, and compared metrics through
their effective skew ratios. We have also demonstrated
that, while both information gain and Gini-split are skew-
sensitive, the latter is more so than the former. Finally, we
have derived a skew-insensitive version of Gini-split as an
alternative to the weakly skew-insensitive DKM-split.

There are a variety of ways in which this work can be
taken forward, the most obvious of which is perhaps to
include the purpose served by the metric in the analysis.
For instance, an evaluation metric like accuracy considers
each point in ROC space as a finished product, while
search heuristics aim to find points that can be turned into
finished products. We conjecture that the gradient of the
metric, which is orthogonal to the slope of isometrics,
would play an important role in this analysis. Another
avenue for further research is to consider n by m contin-
gency tables, for instance to obtain a multi-class and
multi-split version of Gini-ROC.
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