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Abstract 
Conditional exponential model has been one of 
the widely used conditional models in machine 
learning field and improved iterative scaling 
(IIS) has been one of the major algorithms for 
finding the optimal parameters for the 
conditional exponential model. In this paper, 
we proposed a faster iterative algorithm named 
FIS that is able to find the optimal parameters 
faster than the IIS algorithm. The theoretical 
analysis shows that the proposed algorithm 
yields a tighter bound than the traditional IIS 
algorithm. Empirical studies on the text 
classification over three different datasets 
showed that the new iterative scaling 
algorithm converges substantially faster than 
both the IIS algorithm and the conjugate 
gradient algorithm (CG). Furthermore, we 
examine the quality of the optimal parameters 
found by each learning algorithm in the case of 
incomplete training. Experiments have shown 
that, when only a limited amount of 
computation is allowed (e.g. no convergence is 
achieved), the new algorithm FIS is able to 
obtain lower testing errors than both the IIS 
method and the CG method. 

1.  Introduction 

Conditional exponential model has been one of the 
popular conditional models in machine-learning field 
and has been successfully applied to many different 
machine-learning problems, such as automatic speech 
recognition (Rosenfeld, 1996), text classification 
(Nigam, Lafferty & McCallum, 1999), text 
segmentation (Beefman, Berger & Lafferty, 1997 & 
1999), name identity extraction (Borthwick et. al, 1998) 
and part-of-speech (POS) tagging (Ratnaparkhi, 1996). 
One advantage of the conditional exponential model 

versus the other models is that it is able to combine 
many correlated input evidences for predicting the class 
labels without requiring input features to be 
independent from each other. Furthermore, by assigning 
high weights to the relevant features and low weights to 
those irrelevant ones, the conditional exponential model 
can be quite resilient to the introduction of irrelevant 
features. Another interesting aspect of the conditional 
exponential model is that it is strongly associated with 
Maximum Entropy (ME) model (Jelinek, 1997; Berger, 
Pietra & Pietra, 1996). More precisely, it has been 
shown that the conditional exponential model is 
actually a dual problem of ME model and therefore has 
the unique global maximum. 

To find the optimal conditional exponential model for 
given training data, two groups of approaches have 
been used in the past research. One is named iterative 
scaling approach (Brown, 1959), including the 
Generalized Iterative Scaling (GIS) (Darroch & Ratcli, 
1972) and the Improved Iterative Scaling (IIS) (Berger, 
1997). The underlying idea for iterative scaling 
approaches is similar to the idea of Expectation-
Maximization (EM) approach: by approximating the 
log-likelihood function of the conditional exponential 
model as some kind of ‘simple’ auxiliary function, the 
iterative scaling methods are able to decouple the 
correlation between the parameters and the search for 
the maximum point can be operated along many 
directions simultaneously. By carrying out this 
procedure iteratively, the approximated optimal point 
found over the ‘simplified’ function is guaranteed to 
converge to the true optimal point due to the convexity 
of the objective function. The distinction between GIS 
and IIS is that the GIS method requires the sum of input 
features to be a constant over all the examples while the 
IIS method doesn’t. This constraints can limits the 
application of GIS, particularly when the sum of 
features is not bounded. Furthermore, in the previous 
studies, people have found that the IIS method is able to 



 

 

find the optimal parameters for the conditional 
exponential model significantly faster than the GIS 
method, particularly for the applications of natural 
language processing. Therefore, we will only consider 
the IIS method as the comparison peer for the proposed 
method. 

The second group of approaches are mainly the generic 
approaches for nonlinear optimization, including the 
conjugate gradient approach (CG) (Shewchuk, 1994) 
and the quasi-Newton method (Liu & Norcedal, 1989). 
Previous studies have shown that both the conjugate 
gradient and the quasi-Newton method are able to find 
the optimal parameters for the conditional exponential 
model much faster than the iterative scaling methods 
(Minka, 2001;Malbouf, 2002). One advantage of the 
conjugate gradient approach versus the quasi-Newton 
approach is that the quasi-Newton method requires the 
explicit computation of the approximate Hessian matrix 
while the conjugate gradient approach does not. Since 
the number of elements within a Hessian matrix is 
equal to the square of the number of parameters for the 
problem, the storage of a Hessian matrix can be 
extremely expensive if the problem involves hundreds 
of thousands of parameters. Therefore, in the paper, we 
will only include the conjugate gradient approach for 
the comparison. 

In this paper, we propose a new iterative scaling 
method, which shares the similar idea with the previous 
iterative scaling methods, namely for each iteration, 
approximating the original log-likelihood function with 
a lower bound auxiliary function and find the optimal 
point over the auxiliary function as the approximation 
to the global optimal solution for the original log-
likelihood function. The only difference between this 
work and previous work on iterative scaling methods is 
that, this work provides a better approximate auxiliary 
function that is able to bounds the original log-
likelihood function tighter. Therefore, we would expect 
this new iterative scaling method is able to converge to 
the global optimium faster than the previous iterative 
scaling methods. Empirical studies on the text 
classification over three different collections have 
shown that the new iterative scaling method is able to 
achieve significantly faster convergence rate than IIS 
method. Furthermore, we compared the proposed 
iterative scaling method to CG method over the same 
testbed and found that the new algorithm also runs 
faster than the CG method over all three collections.  

The rest of the paper is arranged as follows: The formal 
description and analysis of the new iterative scaling 
method will be presented in Section 2. The empirical 
studies on the effectiveness of the new iterative 
algorithm are presented in Section 3. Within it, we will 
examine the convergence rate of the new algorithm 
with respect to IIS method and CG method, 
respectively. Conclusion and future works will be 
presented in Section 4. 

2.  A Faster Iterative Scaling Algorithm: FIS 

As already mentioned in the introduction section, the 
basic idea of the IIS algorithm is to approximate the 
log-likelihood function with a lower bound auxiliary 
function and compute the optimal point over the 
auxiliary function as the approximation of the global 
optimal solution for the true log-likelihood function. 
Therefore, a lower bound auxiliary function that is able 
to bound the log-likelihood function tighter than the IIS 
method will lead to a faster convergence rate. In order 
to propose a better lower bound auxiliary function, we 
first examine how the IIS algorithm bounds the log-
likelihood function in Section 2.1 and then a better 
auxiliary function is proposed in Section 2.2.  

For the sake of simplicity, throughout the rest of this 
paper, we assume that all the features are nonnegative.  

2.1  Overview of Improved Iterative Scaling (IIS) 
Algorithm 

The key component for a conditional model is to 
compute the p(y|x), namely the likelihood for an 
instance to have a class label y given the input x. For a 
conditional exponential model, p(y|x) is usually written 
as: 
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where fi(x,y) stands for the ith feature extracted from the 
input x and the output y, and λi stands for the 
corresponding weight. Symbol Z(x) is the normalization 
constant, which enforces the sum of p(y|x) over 
different class labels y to be one, i.e. 
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For the purpose of simplicity, let’s assume that every 
class uses the same set of features {fi(x)}. Under that 
assumption, the general form (1) can be rewritten as 
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As seen from Equation (1’), the weight λy,i has two 
indices, with y for the class index and i for the feature 
index. 

The goal of the training procedure is to find the set of 
weights {λ y,i} that maximizes the log-likelihood of the 
training data. Given the empirical data distribution 

),(~ yxp  obtained from the training examples, the log-
likelihood will be written as: 
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where )(~ xp  stands for the empirical data distribution 
for input x. Since directly optimizing Equation (2) can 
be difficult, people take the iterative approach, namely 
dividing the procedure of maximization into many steps 
and each iteration will only increase the log-likelihood 
slightly from the previous iteration. Let δy,i stands for 
change in the weight λy,i between two consecutive 
iterations. Then, the difference in the log-likelihood L 
for two consecutive iterations will be expressed as the 
function of δy,i, which is 
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As seen from Equation (3), the complexity in 
maximizing ∆L comes from the second term where the 
set of parameters {δy,i} are coupled with each other 
through the exponential function and the logarithm 
function. The IIS method uses the inequality 

αα −≥− 1log  to decouple the interaction between 
parameters {δy,i} due to the logarithm function and 
Jensen’s inequality, namely 

∑∑ ≤ xx xqxpxqxp ))(exp()())()(exp(  for any p.d.f. 
p(x), to decouple the correlation caused by the 
exponential function. With these two inequalities, the 
resulted lower bound auxiliary function for ∆L is 
written as: 
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where symbol #f  stands for the sum of all the features, 
i.e. ∑i i xf )( . With the inequality (4), instead of 
optimizing the true log-likelihood function ∆L, we can 
maximize the auxiliary function QIIS. Since the 
auxiliary function QIIS has all the interaction between 
variables {δy,i} removed, we can simply optimize it 
with respect to each variable  δy,i independently from 
other variables. Furthermore, since QIIS low bounds the 
difference in log-likelihood function ∆L, by 
maximizing QIIS, we can make sure ∆L to be at least 
non-negative, which means that the log-likelihood 
function will never decrease in the iterative procedure. 
One of the usual procedure used for optimizing QIIS is 
the univariate Newton method. 

2.2  A New Low Bound Auxiliary Function 

2.2.1  BASIC IDEA 
The lower bound auxiliary function QIIS for the IIS 
method in Equation (4) can be rewritten as a sum of a 
set of functions {gy,i} and each function gy,i only 
depends on a single variable δy,I, i.e., 
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Therefore, the correlation between variables {δy,i} has 
been completely decoupled in the IIS method. 
However, the price paid for the full decoupling is that, 
the auxiliary function may not be able to bound the 
original log-likelihood function tightly enough. In 
particular, inequalities αα −≥− 1log  and 

∑∑ ≤ xx xqxpxqxp ))(exp()())()(exp(  have been used 
in the IIS method. As a result, many iterations are 
required in order to reach the true optimal solution. 
Clearly, there is a tradeoff between the complexity of 
auxiliary function and number of iteration. On one 
hand, by bounding the log-likelihood function with a 
simple auxiliary function, we are able to obtain the 
optimal solution over the auxiliary function quickly 
however we may have to run through the iterative 
procedure many times. On the other hand, a 
complicated auxiliary function may be able to bound 
the log-likelihood function more tightly however 
computing the optimal solution of the complicated 
bounding function may be expensive.  

The basic idea of improving the IIS algorithm is to 
introduce an auxiliary function, which only decouples 
part of the interaction between parameters. Unlike the 
IIS method, where QIIS consists of functions only with a 
single variable, the new auxiliary function will be the 
sum of functions {gi} related to multiple variables. By 
keeping some of the interaction between variable alive 
in the approximation, we are able to achieve an 
auxiliary function that bounds the original log-
likelihood function more tightly than the IIS algorithm. 
Meanwhile, only a small number of variables are 
related to each gi in the auxiliary function. Therefore 
the optimization of each function gi can still be solved 
efficiently by using traditional numerical methods such 
as the method of multivariate Newton. 

2.2.2  HOLDER INEQUALITY 
The most critical component in the derivation of the 
proposed auxiliary function is so called ‘Holder Sum 
Inequality’ (Abramowitz & Stegun, 1972). In this 
subsection, we will give a brief introduction of this 
inequality and its extension. 

The original version of Holder Inequality can be stated 
as follows: 

For a set of non-negative variables {ak}k=1
n and {bk}k=1

n, 
the following inequality will always hold 
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for any p>1,  q>1 and 111 =+ −− qp . Clearly, Cauchy 
Inequality is a special case of this inequality when both 
p and q are set to be 2.  

Furthermore, the Holder Inequality can be extended to a 
more general form. Considering the function form 
∑ ∏i k ki,α , where all variable ki,α are nonnegative. It 
is not difficult to show that the following inequality will 
always hold, i.e. 

∏ ∑∑∏








≤
k

q

i
ki

i k
ki

k
kq

/1

,, αα  (6) 

for any set of {qk}, as long as all the qk are positive and 
satisfies the constraint 11 =∑ −

k kq . A proof of the 
extension of Holder Inequality is provided in the 
Appendix. 

To understand why inequality in (6) is useful in 
building up auxiliary function, we can simply take the 
logarithm of the both sides of the inequality, i.e. 
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On the LHS of the above inequality, we have all the 
variables ki,α  couple due to the existence of product 
and the logarithm function. However, on the RHS of 
this inequality, we only have ki,α  with same index k 
interacted with each other and all the other couplings 
between variables { ki,α } are removed from the object 
function. Therefore, by applying inequality (6), we are 
able to delete part of the interaction between variables 
so that the original optimization problem is simplified. 

2.2.3  A FASTER ITERATIVE SCALING ALGORITHM: FIS 
Now consider how to apply the extension of Holder 
Inequality to find a better lower bound auxiliary 
function for the log-likelihood function in (3). Notice 
that, the most complicated term within (3) is term ( )∑ ∑y i iiy xfxyp ))(exp()|(log ,δ . Similar to the IIS 
algorithm, let )(# xf  stands for the sum of all the 
features. If we denote 

))(/)())|(log()(exp( #
, xfxfxypxf iiiy +δ  as iy,α , the 

log-likelihood function can be rewritten as: 
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Then, according to the extension of Holder Inequality, 
we have an upper bound for the log-likelihood function 
as: 
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By setting )(/)(# xfxfq ii = , we have Equation (7) 
simplified as: 
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By substituting Equation (7’) for the term ( )∑ ∑y i iiy xfxyp ))(exp()|(log ,δ  in Equation (3), we 
will have the following inequality 
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According to Equation (8), the auxiliary function QFIS is 
a sum of a set of functions gi and each gi only involved 
in variables δy,i with same feature index i. In general, 
the number of features is substantially larger than the 
number of classes. Therefore, the lower bound auxiliary 
function in (8) is able to remove most of the correlation 
between variables and only the interaction between 
variables δy,i with the same feature index i are kept. 
Furthermore, it is not difficult to see that each function 
gi within Equation (8) is a convex function by simply 
checking if the Hessian matrix of each function gi is 
semi-positive definite. Therefore, simple methods such 
as a Newton method can be employed for finding the 
optimal solution of function gi because each gi function 
only contains a small number of parameters (equal to 
the number of classes). 

Comparing QFIS in (8) to QIIS in (4), we can show that 
QFIS is an upper bound of QIIS by using inequality 

αα −≥− 1log . The sketch of proof is shown in 
Equation (9). Therefore, the new iterative scaling 
algorithm forms a tighter lower bound for the original 
log-likelihood function. As a result, we would expect 
the new algorithm is able to converge to the global 
optimal solution in a significantly smaller number of 
iteration than the IIS method. However, as mentioned 
before, the computation complexity of each iteration 



 

 

and the number of iteration form a tradeoff pair. The 
new algorithm may use a smaller number of iterations 
but each iteration could consume more computation 
cycles. In order to account for the total amount of 
computation complexity, in the experiment, we simply 
use the total amount of time consumed CPU by both 
algorithms, which can be obtained by the matlab 
command ‘cputime’. The algorithm that is able to find 
the set of good parameters within a smaller amount of 
CPU time is deemed as a faster algorithm. 
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Finally, it may be attractive to think that, the inequality 
(8) can be obtained by simply applying Jensen 
inequality to both the exponential function and 
logarithm function. However, that is not true because 
the Jensen inequality for logarithm function only leads 
to a lower bound for logarithm function, namely 

∑∑ ≥ xx xqxpxqxp ))(log()())()(log(  

for any p.d.f p(x). Instead, in the above derivation, we 
need an upper bound function for logarithm as 
illustrated in Equation (7’). Therefore, using Jensen 
inequality for logarithm won’t lead to the results in (8).  

3.  Experiments 

3.1  Experiment Design 

The goal of this experiment is to examine the efficiency 
of the proposed algorithm on the text classification task. 
The efficiency issue involves in two aspects: 

1) Whether the proposed algorithm is able to increase 
the log-likelihood function more efficiently than other 
learning algorithms? As pointed out before, though the 
new algorithm yields a better auxiliary function that 
bounds the original log-likelihood function more tightly 
than the IIS method, it may still not be as efficient as 
the IIS method because in the new algorithm each 
iteration consumes more computation cycles. 
Therefore, we need to examine whether the introduction 
of a tightly bound but complicated auxiliary function is 

worthwhile. Furthermore, since the conjugate gradient 
method has been shown to be more efficient than the 
iterative scaling methods in some of previous studies, 
we will also compare the proposed iterative scaling 
method to the conjugate gradient method. 

2) Whether the solution found by the proposed method 
results in lower classification error when the model is 
not full trained? In many cases, due to the limitation of 
time, we may have to stop the learning algorithm when 
it is still far from the global optimal solution. Under 
that circumstance, we need to know the quality of the 
parameters found by the learning algorithm. A learning 
algorithm is preferred when it is able to find ‘decent’ 
parameters that result in low testing errors even it is far 
from the convergence point. Notice that it is not always 
true that parameters that result in a larger value of log-
likelihood function of training data will definitely lead 
to a lower testing error, particularly in case that the 
model is not fully trained. 

For the first efficiency issue, we compute the value of 
the likelihood function versus the accumulative CPU 
time for every iteration. An algorithm that is able to 
achieve a large value of log-likelihood function within a 
small amount of CPU time is deemed to be a good 
algorithm. To determine the quality of learned 
parameters in the middle of learning process, for every 
20 iterations, we compute the classification errors on a 
separate testing dataset using the learned parameters. 
An algorithm that achieves lower testing error within 
smaller amount of CPU time is believed to be a better 
algorithm. Three collections of text classification are 
used in this experiment and for each collection. For 
each collection, we split it into a training set and a 
testing set by 70% vs. 30% shares. The details are 
described in Table 1. 

Data Set # Vocabulary #Class #Training #Testing 

WebKB 19676 6 2398 1355 

Industry 
Sector 

28915 38 2215 1021 

NewsGroup 47411 11 7149 3298 

Table 1: Description of datasets 

For comparison methods, we will mainly compare the 
proposed algorithm to the previous iterative scaling 
algorithm, namely the IIS method, because both of 
them use very similar techniques except for the 
auxiliary function. Meanwhile, previous studies on the 
conditional exponential model have indicated that the 
CG method appears to be more efficient than IIS 
algorithm for learning an exponential model (Minka, 
2001; Malbouf, 2002). Therefore, we will also compare 
the proposed algorithm with respect to the CG method. 

In terms of implementation, we try to make each 
algorithm as efficiently as possible. For the IIS 



 

 

algorithm, the key computation complexity is on the 
optimization of the auxiliary function QIIS in (4). 
Usually, a uni-variate Newton method is used for 
finding the optimal solution over QIIS. Since Newton 
method is an iterative method, it usually requires at 
least several iterations to find the optimal solution over 
the auxiliary function. However, it may not be 
worthwhile to find the optimal point over the auxiliary 
function since it is just an approximation of the original 
log-likelihood function and our goal is to find the 
optimal solution over the likelihood function not the 
auxiliary function. In fact, as long as the solution δy,i in 
(4) is able to increase the log-likelihood, the whole 
iterative scaling method is guaranteed to find the global 
optimal solution. Therefore, in practice, instead of 
running the Newton method through many iterations, 
we simply run it once over the auxiliary function. 
Furthermore, a linear search is applied in order to 
guarantee that the new point found in each iteration is 
always better than the previous one. Our empirical 
studies have found that this implementation is able to 
find the global optimal solution substantially faster than 
the implementation of running the Newton method till it 
converges. The same strategy applies to the 
implementation of the proposed FIS algorithm. For the 
CG method, the choice of search direction has great 
impact on the convergence speed. In our 
implementation, we choose Hestenes-Stiefel (Moller, 
1993) method since it has been found very efficiently in 
practice. 

3.2  Conditional Exponential Model for Text 
Classification 

The conditional exponential model has been found to be 
an effective method for text classification in the 
previous study (Nigram et al., 1999). The main idea is 
to treat each unique word as a separate feature and try 
to find the appropriate weights of words for different 
classes using the conditional exponential model. In 
addition to the standard practice for conditional 
exponential model, two main issues need to be 
considered for the case of text classification: 

1) Feature selection. As indicated in Table 1, the 
vocabulary size of each collection is considerably large, 
around the order of 10,000. Apparently, most of words 
will not be informative to indicate the category of 
documents. Thus, it is important to remove those 
uninformative words and only leave the informative 
words as the representation features. We use 
Information Gain (Nigram et al., 1999) as the feature 
selection criterion, and the top 300 features with the 
highest information gain are selected. For each feature, 
the corresponding unigram probability, namely the term 
frequency of the corresponding word divided by the 
document length, is used as its value. In addition, we 
also conducted the same experiments but with top 500 
and 1000 selected features. The results are extremely 

similar to the experiment with only 300 selected 
features. Due to the limited space, we will only show 
the results for 300 features. 

2) Regularization. The conditional exponential model 
sometimes can give overly large weights to words, 
particularly those rare words. Consider the case that a 
word only appears in one document within the whole 
training corpus. According to the conditional 
exponential model, this word can have an infinitive 
large weight. However, this is definitely undesirable 
since the word may be accidentally used for that 
document and may not be informative at all. A general 
practice to avoid this kind of disaster is to introduce 
some kind of regularization factor. For text 
classification, people have tried the Gaussian prior as 
the regularization factor and found it is quite effective 
(Nigram et al., 1999), which prevents weights from 
growing too large. Furthermore, people have found that 
by introducing the regularization factor into the 
conditional exponential model, we are able to even 
improve the classification accuracy. We use the similar 
regularization approach for all the learning algorithms 
to be compared. 

 

3.3  Results And Discussions 

3.3.1  COMPARISON OF CONVERGENCE SPEED 
Figure 1 shows the results for IIS, CG and the proposed 
method FIS over three datasets for text classification. 
Among all the diagrams, the horizontal axis is the 
number of seconds used by CPU and the vertical axis 
represents the log-likelihood. The parameters are 

Figure 1: Convegence behaviors of the proposed iterative
scaling algorithm FIS and other algorithms namely the IIS
and CG method. 



 

 

initialized to be zeros for all three algorithms. Due to 
the large negative values of log-likelihood for the first 
several iterations (on the order –log(num_of_class)), we 
only show the curve of log-likelihood since the 20 
iterations. The same strategy applies to the Figure 2, 
when the curve of testing errors is displayed. Clearly, 
the curve of the FIS algorithm is able to reach the 
maximum of likelihood much more quickly than the 
other two algorithms. In addition, the experiments with 
500 and 1000 selected features are conducted and the 
similar behavior is observed, namely the FIS algorithm 
reaches the maximum of likelihood much faster than 
both the IIS method and CG. These observations 
indicate that in the text classification task, the proposed 
algorithm ‘FIS’ is a more efficient algorithm in learning 
the conditional exponential model than both the IIS 
algorithm and the CG algorithm. 

The other interesting observation from Figure 1 is that, 
the IIS algorithm performs at least as well as the CG 
algorithm over all the three datasets, which is quite 
different from what other researchers have claimed 
(Minka, 2001; Malouf, 2002). We think that it can be 
attributed either to the special characteristics of the text 
classification task or to the particular implementation of 
IIS algorithm used in this paper such as how to find the 
optimal point over the auxiliary function. 

 

3.3.2  QUALITY OF LEARNED MODEL IN CASE OF 
INCOMPLETELY TRAINING 

In addition to the convergence rate, we are also 
concerned with the quality of parameters learned from 
the algorithm particularly when the model is not fully 
trained. Figure 2 plots the behavior of the testing errors 

with respect to the amount of CPU time devoted to 
computing. Similar to the previous experiment, 
parameters are set to be zeros for all three algorithms 
and the plotted curves start from 20 iterations due to the 
large testing errors at the beginning of the learning. 

According Figure 2, the FIS algorithm is able to reach 
the lower classification error much faster than the other 
two algorithms. Meanwhile, for the collection ‘Industry 
Sector’, we can see the overfitting problem for the FIS 
algorithm. By varying the regularization constant, we 
are able to avoid the overfitting problem but obtain the 
same classification error at the end. This fact of 
overfitting in the FIS algorithm indicates the 
importance of regularization in learning the conditional 
exponential model. The same experiment with 500 and 
1000 selected features are conducted and the similar 
behaviors are observed, namely the FIS algorithm is 
able to achieve lower testing errors faster than the IIS 
algorithm and the CG algorithm. Thus, we conclude 
that the proposed algorithm FIS is able to not only 
optimize the log-likelihood function faster than the 
other two algorithms but also find ‘decent’ parameters 
faster. The other interesting observation is that, for 
collection ‘Industry Sector’, according to Figure 1, it 
seems that both the IIS and the CG algorithms have 
very similar behavior in the convergence of log-
likelihood. However, according to Figure 2, for most of 
time, the IIS algorithm appears to achieve lower testing 
errors than the CG algorithm in collection ‘Industry 
Sector’. This fact again indicates that a larger log-
likelihood of training data may not necessarily lead to a 
lower testing error, particularly when the model is not 
fully trained. 

4.  Conclusions 

In this paper, we propose a novel iterative scaling 
algorithm, named ‘FIS’. Compared to the previous 
work on iterative scaling method, the FIS algorithm 
uses an auxiliary function that is able to bound the 
original log-likelihood function tighter. In our empirical 
studies of text classification problems over three 
datasets, the FIS method is able to converge 
significantly faster than the IIS algorithm and the CG 
algorithm. Furthermore, the new algorithm FIS is able 
to obtain ‘decent’ estimation of parameters (e.g. 
parameters resulting in low testing error) even when the 
learning process is still far away from the convergence 
point. As a future work, we would like to examine the 
effectiveness of this new iterative scaling algorithm on 
other tasks such as part of speech tagging. 

References 
Abramowitz, M. and Stegun, C. A. (Eds.) (1972) 

Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables, 9th printing. New 
York: Dover, p. 11, 1972.  

Figure 2: The behavior of testing errors with respect to
the running time for the proposed algorithm FIS and
other algorithms namely IIS and CG methods. 



 

 

D. Beeferman, A. Berger and J. Lafferty (1999), 
Statistical Models for Text Segmentation. In Machine 
Learning, 34:177-210, 1999. 

A. Berger, V. Pietra and S. Pietra (1996), A Maximum 
Entropy Approach to Natural Language Processing. 
In Computational Linguistics, 22:39--71, 1996. 

A. Berger (1997), The improved iterative scaling 
algorithm: A gentle introduction, 
www.cs.cmu.edu/afs/~aberger/www/ps/scaling.ps 

A. Borthwick, J. Sterling, E. Agichtein and R. 
Grishman (1998), Exploiting diverse knowledge 
sources via maximum entropy in named entity 
recognition. In Proceedings of the Sixth Workshop on 
Very Large Corpora, 1998. 

J. Darroch and D. Ratcli (1972), Generalized iterative 
scaling for log-linear models. Annals of Math. 
Statistics, 43(5):1470-1480, 1972. 

F. Jelinek (1997). Statistical Methods for Speech 
Recognition. The MIT Press, Cambridge, 
Massachusetts,  London, England, 1997.  

T. Minka (2001), Algorithms for maximum-likelihood 
logistic regression, CMU Statistics Tech Report 758, 
http://www.stat.cmu.edu/~minka/papers/logreg.html, 
2001. 

K. Nigam, J. Lafferty and A. McCallum (1999), Using 
Maximum Entropy for Text Classification.  In IJCAI-
99 Workshop on Machine Learning for Information 
Filtering, 1999. 

A. Ratnaparkhi (1996), A Maximum Entropy Model for 
Part-of-Speech Tagging. In Proceedings of the 
Conference on Empirical Methods in Natural 
Language Processing, 1996. 

R. Rosenfeld (1996), A Maximum Entropy Approach to 
Adaptive Statistical Language Modeling. In 
Computer, Speech and Language, 10:187-228, 1996. 

J. Shewchuk(1994), An Introduction to the Conjugate 
Gradient Method Without the Agonizing Pain, 1994. 

M. Moller (1993), A Scaled Conjugate Gradient 
Algorithm for Fast Supervised Learning, Neural 
Network, 6, 525-533. 

R. Malouf (2002), A Comparison of Algorithms for 
Maximum Entropy Parameter Estimation, 
Proceedings of CoNLL-2002 

D.C. Liu & J. Nocedal (1989) On the Limited 
Memory BFGS Method for Large Scale 
Optimization, Math. Prog. 45, 503-528, 1989 

Appendix: Proof of the Extension of Holder 
Sum Inequality 

The extension of Holder Sum Inequality claims that the 
following inequality will always hold 
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for any set of {qk}, as long as all the qk are positive and 
satisfies the constraint 11 =∑ −

k kq . The above 
inequality can simply be proved by the induction on k: 
(1) k=1: inequality in (6) holds because the RHS of the 
inequality is identical to the LHS of the inequality. 

(2) Assuming inequality in (6) holds for any k≤l and 
need to prove when k=l+1. Using Holder Sum 
Inequality, we have the following inequality hold 
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for any p>1,  q>1 and 111 =+ −− qp . Now by letting 
q=ql+1 and p=1/(Σk=1

lqk), we will have inequality (A1) 
further expanded as: 
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According to the induction assumption, the extension of 
Holder Sum Inequality holds for any k≤l. Therefore, we 
can use it to upper bound the second item in the RHS of 
above equation, i.e. 
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By merging inequality (A3) and (A2) together, we have 
extension of Holder Sum Inequality proved when 
k=l+1. With this induction step, we proved the 
extension of Holder Sum Inequality is true for any k. 


