
480

Decision Tree with Better Ranking

Chm-les X. Ling CLING~OSD.UWO.CA
Robert J. Yan JYAN~CSD.UWO.CA

Department of Computer Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7

Abstract

AUC (Area Under the Curve) of ROC (Re-
ceiver Operating Characteristics) has been
recently used as a measure for ranking per-
formance of learning algorithms. In this pa-
per, we present a novel probability estima-
tion algorithm that improves the AUC value
of decision trees. Instead of estimating the
probability at the single leaf where the ex-
ample falls into, our method averages prob-
ability estimates from all leaves of the tree.
The contribution of each leaf is determined
by the deviation in attribute values from the
root to the leaf. We design empirical ex-
periments to verify that our new algorithm
outperforms C4.5 and its recent improvement
C4.4 in AUC. Even though C4.4 with bagging
outperforms our method in AUC, our method
produces a single tree with interpretable re-
sults.

1. Introduction

IYaditionally, machine learning researchers have been
using accuracy (percentage of examples that are cor-
rectly classified) as the main evaluation criterion for
the performance of classifiers (Shavlik et al., 1991).
IIowcver, accuracy completely ignores probability es-
timations produced by classifiers. As many real-world
applications require probability estimations or rank-
ing, accuracy is not sufficient in measuring and com-
paring classifiers. As the true ranking of training ex-
amples (Cohen et al., 1999) is often unknown, given
training and testing examples with only class labels,
we need a better measure for classifiers that produce
scores for ranking.

The area under the ROC (Receiver Operating Char-
aeteristics) curve, or simply AUC, has been shown as
one of the measures for the quality of ranking (Bradley,

1997; Ling et al., 2003; tland & Till, 2001). Hand and
Till (2001) suggest a straightforward method to calcu-
late AUC based on examples ranked by their proba-
bility estimation:

So - no(no + 1)/2
AUC =

n0rl1

where So is the sum of ranks of the positive examples
and no and nl are the numbers of positive and neg-
ative examples, respectively. (In this paper, we only
consider the binary classification.) From the equation
above, we can see that AUC essentially measures the
quality of ranking: the more the positive examples are
ranked to the right of the list, the larger the So and
the AUC score.

Decision trees built by C4.5 (Quinlan, 1993) have been
observed to produce poor estimates of class probabil-
ities and ranking (Smyth et al., 1995; Provost et al.,
1998). In this paper, we describe a new tree evalua-
tion algorithm to improve the probability estimation
(and ranking) from a single tree. Instead of estimat-
ing the probability at the single leaf where the exam-
ple falls into, our new evaluation algorithm averages
probability estimates from all leaves of the tree. The
contribution of each leaf in the average is determined
by the deviation in attribute values from the root to
the leaf. We design empirical experiments to verify
that our new algorithm outperforms C4.5 and its re-
cent improvement C4.4 (Provost & Domingos, 2003)
in AUC. Even though C4.4 with bagging still outper-
forms our method in AUC, our method produces a
single tree with interpretable rules. We also show that
our new algorithm is robust against the parameters of
the algorithm, making it more versatile and useful in
real-world applications.

The paper is organized as follows. In Section 2 we dis-
cuss related work on improving ranking based on prob-
ability estimations in decision trees. We then describe
our new tree evaluation algorithm which improves

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

481

the probability estimation measured (indirectly)
AUC in Section 3. We report results of comprehen-
sive experiments using both simulated and real-world
datasets in Section 4. Finally, we summarize our work
and discuss the directions for future research.

2. Related Work

Some traditional decision tree algorithms, such as
C4.5 and ID3, have been observed to produce poor
estimates of probabilities, which result in low AUC
(Provost et al., 1998). One of the reasons is that
the algorithms aim at building a small and accurate
tree which biases against good probability estimates
(Provost & Domingos, 2003).

Researchers have studied how to improve probability
estimations of decision trees (Hastie ~ Pregibon, 1990;
Pazzani et al., 1994; Smyth et al., 1995; Margineantu
& Dietterich, 2001; Provost & Domingos, 2003). In
particular, Provost and Domingos (2003) apply the fol-
lowing techniques to improve the AUC of C4.5.

1. Turn off pruning. Error-based pruning has
been proved successful at building a small and ac-
curate (in terms of accuracy) decision tree. How-
ever, Provost and Domingos (2003) show that
pruning also reduces the quality of the probabil-
ity estimation. This is because the branches re-
moved by pruning mat" still be useful for proba-
bility estimations. For this reason, they choose to
build the tree without pruning, resulting in sub-
stantially large trees.

2. Smooth probability estimates by the
Laplace correction. Without pruning, the de-
cision tree becomes large and has more leaves. In
this case, there are fewer testing examples falling
into one leaf. Thus, a single leaf mat" comprise
only a small number of examples (for example,
2). This leaf may produce probabilities of extreme
values (e.g., 100%). In addition, it cannot provide
reliable probability estimations. For this reason,
Provost and Domingos (2003) use the Laplace cor-
rection to smooth the estimation and make it less
extreme.

They call the resulting algorithm C4.4, show that it
produces decision trees with higher AUC than C4.5
(Provost & Domingos, 2003).

One of the anticipated consequences of these changes
is that the tree becomes huge. Although they use the
Laplace correction to smooth the estimation, there are
still two problems for the probability estimation in the
large tree:

The tree mat" overfit the training examples. The
probabilities estimated by such an overfitting tree
may not be accurate.

.
The number of training examples in the leaves
of a large tree is often very small. This makes
the probability estimation less reliable. In ad-
dition, values of probabilities can easily repeat,
which may decrease the quality of ranking based
on them. For example, if many leaves have 3 ex-
amples, many repeated probabilities will be pro-
duced. Examples with the same probability esti-
mates will be ranked randomly.

Another approach for improving the class probabil-
ity estimations from decision trees is bagging (Bauer
& Kohavi, 1999; Provost et al., 1998). Provost and
Domingos (2003) show that bagging is very effective
for improving AUC in C4.4. However, a disadvantage
of bagging is that it does not produce comprehensible
results.

3. New Algorithm For Improving

Ranking

Let us first analyze the reason that C4.5 produces poor
probability estimations. C4.5 (with pruning) is biased
towards building small trees with fewer leaves. Lower
branches of the tree are pruned if the accuracy is im-
proved. This often results in incorrect probability es-
timates in leaves. Another consequence of a small tree
is that it can only have a small number of distinctive
probability values. Building a large tree by turning off
pruning (as in C4.4) produces a large tree with many
leaves. However, that is not ideal either, as the tree
will likely be overfitted. A large tree may still have
few different probabilities because the probability val-
ues of leaves can easily repeat themselves (see Section
2). In addition, probability estimation in leaves with
small numbers of examples is not reliable.

What we hope to get is a moderate-sized decision tree
with more accurate probability estimations. We notice
that in decision trees, the class label and probability
estimate of an example is solely determined by the
one leaf where the example falls into. It is natural to
expect that there may be some small chance that at-
tribute values might have been altered due to noise or
error in data collection, and thus the example would
have fallen into other leaves. Therefore, the probabil-
ity estimate should be aggregated from other leaves.
This would improve the probability estimations, and
increase the number of distinctive probability values
in the tree.

482

3.1. New Algorithm for Probability Estimation

Assume that in a decision tree (see an example in Fig-
ure 1), there are some different internal nodes Ni and
leaves Li, each internal node is associated with an at-

tribute Ai, and each Ai has several values A{. In our
method, we introduce another parameter - confusion

factor s (s < 1) to each internal nodeJ The confu-
sion factor denotes the amount of "confilsion" among
the children of the node. It also call be regarded as
the probability of errors that alter the attribute val-
ues. Thus when a testing example is classified by a
tree, it has a small probability (s) of going down
other branches of the tree. We assume that attribute
errors are independent, thus the probability of the ex-
ample falling into another leaf is the multiplication of
the confilsion factor,.by the number of times that the
attribute values have deviated.

Figure 1. A sa3nple decision tree
NI

I A1 I

N2 / A ; A ; [N3 ~

A’3

L1 L2 L3 L4

Thus, in the new algorithm, the probability of every
leaf can contribute to the final probability of all ex-
ample. The contribution is decided by the number of
unequal attribute values that the leaf has, compared to
the example. Each unequal attribute value will cause
a discount on the probability contribution in terms of
s. Here the attribute values of a leaf are the attribute
values in the path from this leaf to the root. For ex-
ample, in Figure 1, leaf Lt (with probability p(L1))

has two attribute values A1 = A1 and A2 = A~. If the
testing example e falls into leaf L1, the contribution of
L1 to e is 1 x p(L1). On the other hand, the contribu-
tion of L~ to e is s x p(L2) because L2 has one different
attribute value. The contribution of leaf L3 to e de-
pends on the value of attribute A3 of e. If CA3 = A~,

L3 has one different value and the contribution of La
to e is sxp(La). If CA3 = ASa, the contribution of L3 to

1In order to shnplify our new algorithm, all attributes
are assigned the sa~ne confusion factor value.

e is s x s x p(La). The final probability Pe for the ex-
ample e is a weighted average of all the contributions
of leaves:

Re= ~CPi x sJ~sJ"
where Pi denotes the probability of leaf Li, and j de-
notes the number of attribute values in the path from
leaf Li to the root that are different from the attribute
values of the example e.

Let’s see a hypothetical example (Figure 2). This de-
cision tree has five leaf nodes (A, B, C, D, and E),
each with a probability of customer loyalty (positive).
We hope to predict the loyalty of the following two
customers by this tree:

¯ Customer Henry, with Service (service level) be-
ing L (low), Rate (mortgage rate) being II (high)
and Sex being M (male)

¯ Customer Lily, with Service being L, Rate being
L and Sex being F (female).

According to this tree, Henry and Lily both fall into
the same leaf E. C4.5 predicts that both of them have
a 20% chance of being loyal. Let us calculate Henry’s
probability by our new method. As shown in Figure
2 (we assume that s equals 0.2), we first calculate the
contribution of leaf A. It is easy to find that there
is one different attribute value (Service) between leaf
A and Henry. Thus we multiply one confusion factor
s = 0.2 as a discount to its probability 0.8. The contri-
bution of leafA is 0.2 x 0.8 = 0.16. Then we calculate
the contributions of leaf B, C, D, and E in a similar
manner. Finally, we calculate the final probability of
Henry’s loyalty:

Figure 2. Henry’s probability. A dotted line denotes the at-
tribute values that are different from Henry’s. A solid line
denotes the attribute values that are the stone as Henry’s.

[Service I

H .-’"’M

I [Sex] @
, p(l)---0.2

F /
H ’, /’

p(l)=0.8 p(l)=0.5 p(l)=0.4 p(l)=0.6

PHenry:

0.2 x 0.8 + (0.2 x 0.2) x 0.5 + (0.2 x 0.2) x 0.4 + 0.2 x 0.6 + 1 x
0.2+0,04+0.04+0.2+1

483

= 0.3486

Lily’s probability can be similarly calculated as:

PL~ZV:

(0.2 × 0.2) x 0.8 + 0.2 x 0.5+ 0.2 × 0.4 + (0.2 × 0.2) x 0.6 + 1 ×
0.04 + 0.2+ 0.2 + 0.04 + 1

= 0.2865

Our new method can thus assign more accurate and
different probabilities to examples belonging to the
same leaf.

Our algorithm can be easily extended to multiple-class
datasets. In this case, an important property that the
sum of probabilities of an example e belonging to dif-
ferent classes is equal to 1 remains unchanged.

3.2. Interpretability

Because our new evaluation algorithm is based on a
single decision tree, the outcome is still interpretable.
From the datasets used in extension experiments (see
Section 4), we observe that the rate of change in clas-
sification (from positive to negative or vice versa)
about 10-15%. That is, for most cases, the more ac-
curate probability estimation obtained by our new al-
gorithm does not "flip" the classification prediction.
Thus, if the class prediction is not altered, one can
use the single decision tree just as in C4.5 (or C4.5
rules). In the example of Henry (see Figure 2),
explanation would simply be: as you satisfy the rule
"IF Serviee=L THEN not Loyal", we predict that you
would not be loyal.

If, however, the class label has been changed, or the
probability of the prediction must also be explained
(faithfully), it becomes slightly more complicated. Us-
ing the example of Henry (see Figure 2) again, the
explanation to Henry would be:

¯ As you satisfy completely the rule "IF Service=L
THEN Loyal with 20% probability", we take a full
consideration (with a weight of 1) of this rule.

¯ As you satisfy the following two rules with all
but one condition: "IF Service--M AND Sex--M
THEN Loyal with 60% probability", and "IF Ser-
vice=H AND Rate=H THEN Loyal with 80%
probability", we take a partial consideration (with
a weight of 20%) of these rules.

¯ As you satisfy the following two rules with all
but two conditions: "IF Service=M AND Sex--F
THEN Loyal with 40% probability", and "IF Ser-
vice=H AND Rate=L THEN Loyal with 50%

Table 1. Shnulated Data.sets
Name Size #ofAttr. % Majority exa~nples
artl 500 9 56.5%
axt2 500 9 57.1%
art3 500 9 67.5%
art4 500 9 90.2%

probability", we take a partial consideration (with
a weight of 4%) of these rules.

¯ Combining all of these rules with their corre-
sponding probabilities and weights, the probabil-
ity of your being loyal is 34.86%.

We think that if Henry cares about the probability of
his verdict, there should be a reasonable chance that
he can understand this explanation!

4. Experiments and Results

We use 4 simulated datasets (art1, art2, art3, and art4)
and 7 real-world datasets in our experiments. The 4
simulated datasets (see Table 1) are generated from
different trees. As an example, Figure 3 shows one of
the 4 trees. Each dataset has 500 examples and 9 at-
tributes (not including the class attribute). All the at-
tributes are binary, and attribute values are generated
randomly. We intentionally inject some random noise
in attribute values and class labels to mimic probabil-
ity distributions in real-world domains.

Figure 3. Decision tree for simulated dataset axtl

(
1 0 1

o~

1 0

Q ©
We also use 7 real-world datasets from the UCI repos-
itory (Blake & Merz, 1998). These datasets (see Table
2) are chosen because their class attributes are binary.

4.1. Comparing Single-Tree Algorithms

As we mentioned before, both C4.5 and C4.4 produce
a single decision tree, and examples falling into the
same leaf would be assigned the same probability es-
timation. Our new algorithm, on the other hand, has

484

Tabl 2. Descriptions of real-world datasets
Na3ne # of Attr. # of classes # of examples

australia 12 2 690
cars 10 2 683
eco 7 2 700

hepatitis 7 2 332
import 24 2 205
pima 7 2 392
vote 17 2 232

the ability to assign different probabilities to examples
in the same leaf. This would produce more different
probability values in a tree. We are interested in veri-
fying the following two hypotheses:

1. Does our new algorithm produce more different
probabilities compared to C4.5?

2. The goal of our new algorithm is to improve the
probability-based ranking measured by AUC in
decision trees. We want to know whether our new
algorithm yields better AUC compared to C4.5
and C4.4.

We run C4.5, C4.4, and our new algorithm with a 5-
fold cross validation on each dataset and repeat 20
times. Thus the results presented in Tables 3 and 4
are averages of these 20 runs. The basic tree build-
ing process is the same. In ordcr to investigate the
relationship between the number of different proba-
bilities and the tree size, we set up a parameter to
control the tree depth during the tree-building process
of C4.5 and the new algorithm (C4.4 always builds
full tree without pruning). The confusion factor s of
our new algorithm is set at the optimal value 0.3 (see
Section 4.3) and the Laplace correction is turned on
(see Section 4.4). We then compare the number
probabilities and AUC scores of trees that those two
algorithnls build at each depth. Only a part of the
experimental results arc shown in Tables 3 and 4 (we
choose 5 different depths for artificial datasets and 3
different depths for real-world datasets). We can draw
the following conclusions.

First of all, we are interested in verifying the two hy-
potheses.

1. From Table 3 and Table 4 we can see that for all 11
datasets, the new algorithm does produce many
more different probabilities than C4.5 at different
depths. Therefore our strategy does increase the
number of different probabilities as a consequence
of more accurate probability estimations.

Table 3. Experimental results in simulated datasets (Probs
is the number of different probabilities)

Datasets Depth C4.5 New C4.4
set Probs AUG Probs AUC AUG

3 15.41 74.08 80.54 78.31
4 26.38 74.36 90.49 76.52

axtl 5 29.25 71.27 91.29 75.90 68.55
6 23.32 68.81 91.34 74.49
7 21.27 68.32 90.95 74.29

3 15.57 76.17 79.64 77.30
4 26.34 76.08 90.37 77.91

art2 5 30.03 74.87 90.8 78.58 73.59
6 25.2 73.95 91.24 78.22
7 23.18 72.88 91.17 77.99
3 15.54 76.22 82.45 76.84
4 25.35 76.33 91.23 77.52

art3 5 28.85 75.77 92.01 77.46 74.59
6 24,59 74.72 91.17 77.27
7 22.31 74.37 91.49 76.94

3 9.36 59.06 65.97 67.80
4 10.61 63.44 85.28 71.07

art4 5 9.89 61.56 87.50 70.06 68.6
6 8,04 56.7 87.21 69.30
7 6.77 55.58 87.42 69.32

2. Comparing AUC scores, our new algorithm pro-
duces a higher AUC than C4.5 and C4.4 in almost
all datasets.

We conduct a Wilcoxon test using 95% as the confi-
dence interval. The result shows that the difference
of AUC scores between our algorithm and C4.4 (and
C4.5) is statistically significant. This presents strong
evidence that our new method significantly improves
the probability-based ranking of decision trees.

Secondly, from Table 3 and Table 4 we can also find
that for botll algorithms, the number of different prob-
abilities does not always increase as the tree depth in-
creases. As an example, Figure 4 shows the changes
of number of different probabilities and AUC scores
in both algorithms when the tree size increases. This
figure is based on the data of art4. We can see that
for both algorithms, the changes of AUC scores are
correlated with changes of the number of different
probabilities, rather than the change of the number
of leaves (tree size). Furthermore, we can also find
that the number of different probabilities starts to de-
crease when the tree depth further increases. This
verifies that turning off pruning is not ideal, because
it may produce a large tree with overfitting and re-
peated probability values (see Section 2).

Thirdly, because of averaging of probability estima-
tions in the decision tree, our new algorithm is less
sensitive to the tree size. We compare the AUC score
of our new algorithm on the full and pruned trees
(Laplace = on, s = 0.3). Results are shown in Table
5. We can see that although our algorithm produces
slightly more different probabilities without pruning,

485

Table 4. Experimental results in real-world datasets (Probs
is the number of different probabilities)

Datasets Depth C4.5 New C4.4
Probs [AUC Probs AUC AUC

2 9.8775.65 52.671 76.581 I
Australia 4 17.8 72.84 98.47 77.06 73,09

7 16.42 66.56 99.68 76.89

2 15.12 90.49 97.90I 91.11I I
cars 4 5.39 87.79 140.00 96.02 94.29

7 5.30 87.98 140.00 95.91

2 4.38 98.17 22.97 98.85
eco 4 4.62 97.76 29.53 98.86 99.21

7 4.84 97.97 29.62 98.87

2 6.77 61.54 7.80 62.35
hepatitis 4 6.88 60.98 7.86] 63.18 59.46]

7 6.58 60.69 7.86 62.30

2 2.00I 1ooI 2.ooI 1°°l I
import 4 2.00 1O0 2,00 100 100 I

7 2.00 I00 2.00 I00

2 4.25 74.18 10.83 75.21
pima 4 10.97 73.91 25.25 76.53 75.56

7 11.86 74.68 25.51 76.16

2 4.19 84.76 10.77 85.60
vote 4 4.72 80.60 28.99 86.03 83.09

7 4.8 73.59 35.33 85.49

Table 5. Comparison of new algorithm (New) with and
without pruning

Datasets New (with pruning) New (without pruning)
AUC Probs AUC Probs

art 1 76.2 90.59 75.4 91.06
art2 78.8 90.28 77.9 90.7
art3 77.2 91.12 76.9 91.55
art4 71.5 81.19 69.35 87.44

australia 77.2 97.37 77.4 100.05
cars 95.8 140 95.7 140
eco 98.1 25.58 98.4 29.92

hepatitis 62.2 7.78 61.4 7.83
import 100 2 100 2
pima 76.6 25.14 76.3 25.29
vote 85.7 30.55 85.1 37.14

Average 81.75 61.96 81.26 63.91

Figure 4. Number of different probabilities in different tree
depths

/
/

Fs-
i_s"

f
.a

/i
f

~-
¢-

I I I I "’+:
3 4 5 6 7

Tree depth

05

75

65
.,~.-.. New AU, e~.UC]

---.~- C4.5
55 m

.... New No.
4g ~ d Ptobs

.... -... C4.6 No.
3~ dPr

..... No. of I
25 LeaYesI

15

6

Table 6. AUC scores comparison (new algorithm vs C4.4
with bagging

New C4.4-B
artl 75.33 79.3
art2 79.08 83.2
art3 77.06 82.6
art4 71.2 78.4

australia 76.89 81.9
cars 95.92 97.1
eco 98.51 99.3

hepatitis 62.55 60.3
import 100 100
pima 76.58 74.66
vote 85.48 88.7

the AUC is slightly lowered than the pruned trees.
This is clearly due to the overfitting in the large tree.
Therefore, for the rest of the experiments, we apply our
algorithm on the pruned tree. Comparing AUC scores
by our algorithm to those of C4.4 and C4.5 (Tables
and 4), we can see that our algorithm on the pruned
trees outperforms C4.5 and C4.4 in almost all datasets.

4.2. Comparing New Algorithm with Bagging

Our new algorithm relies on a single tree to produce
more different probability estimations, and it is shown
to outperform other single-tree algorithms in C4.4 and
C4.5. The outcome of our algorithm is still quite com-
prehensible (see Section 3.2). As we mentioned in Sec-
tion 2, bagging has been shown to improve AUC dra-
matically (Provost & Domingos, 2003), as it averages
probabilities from many trees. In this section, we con-
duct experiments to compare C4.4 with bagging (C4.4-

B) with our new algorithm. We use pruned trees, turn
on the Laplace correction, and set the confusion factor
s to 0.3 in our new algorithm. The results of the com-
parison are shown in Table 6. We find that bagging
is better than our new algorithm in terms of AUC (7
wins, 2 ties, 2 losses). However, bagging has two disad-
vantages. One is the greater computational cost, and
the other is the loss of comprehensibility. Our new al-
gorithm only needs a single tree, and the results are
still comprehensible (Section 3.2). There is a tradeoff
among the quality of probability estimation, the com-
prehensibility of the results, and the computational
cost when selecting the best algorithm.

4.3. Optimal Confusion Factor

Different values of the confusion factor s may have dif-
ferent influences on probability estimations in our new
algorithm. Generally speaking, if a testing example c
falls into leaf l, the smaller the s, the less contribution

486

Table 7. AUC scores on different values of the confusion
factor; the bold one is the maximum of each dataset

Data.set s=O.O1 s=0.1 s=0.2 s=0.3 s=0.5 s=0.9
artl 69.43 72.11 74.32 75.33 75.40 69.41
art2 73.73 76.64 77.67 79.08 78.59 72.64
art3 76.34 76.67 77.02 77.06 74.33 67.44
art4 66.7 69.5 70.7 71.2 69.5 67.7

australia 73.65 76.19 76.86 76.89 76.31 75.54
C~l’g 95.29 95.65 95.88 95.92 92.80 79.76
eco 98.81 98.96 98.90 98.51 97.54 96.39

hepatitis 61.77 62.27 62.35 62.55 61.97 62.04
import lOO i00 100 lOO 10O lOO
pima 75.47 76.18 76.87 76.58 76.52 74.81
vote 84.35 84.76 84.97 85,48 85.78 85.11

other leaves will have in the resulting probability of e.
If s = 0, the probability of e is only decided by the l,
as probability estimation in C4.5. With tile increase
of s, more and more influence of other leaves are ap-
plying to the probability of e. If s = 1, each leaf has
the same weight. In this case, no matter which leaf all
example belongs to, the probability of this example is
the same: the average of probabilities in all leaves.

We conduct all experiment to compare AUC scores
as the confusion factor s changes in tile 11 datasets.
The goal is to find out the "best" value of s. We use
pruned trees, and turn on the Laplace correction. For

each dataset, we set s =0.01, 0.1, 0.2, 0.3, 0.5, and
0.9, respectively. For each value of s, we run the new
algorithm with 5-fold cross-validation, and obtain the
AUC scores.

The results are shown in Table 7. We can see that
there is a maximum AUC in each row, which means
that there is a "best value" of s for each dataset. The
maximum AUC scores are all concentrated around a
small area where the value of s is approximately 0.3.
This result indicates that the best confusion factor s
is insensitive to different datasets. In other words, for
most datasets, if the confusion factor is set around 0.3,
the AUC score is often optimal. This feature is very
useful in applying our algorithm to new datasets.

4.4. Laplace Correction

Provost and Domingos (2003) performed experiments
by using 25 datasets from UCI to verify the effect of
the Laplace correction. Their results are duplicated
in Table 8. We can see that by turning off pruning
and using the Laplace correction, C4.4 achieves a to-
tal of 2.0% improvement in AUC over C4.5. By using
the Laplace correction alone in C4.5, C4.5-L already
achieves most of the improvement (1.7%). (The other
0.3% is presumably due to turning off pruning). The
rate of improvement of AUC due to the Laplace cot-

Table 8. The effect of the Laplace correction in C4.4 (C4.5-
L lneans C4.5 with the Laplace correction). From (Provost
& Domingos, 2003).

System Wins-Ties-Losses Avg. diff (%)
C4.4 vs. C4.5 18-1-6 2.0

C4.4 vs C4.5-L 13-3-9 0.2
C4.5-L vs C4.5 21-2-2 1.7

Table 9. AUC scores with the Laplace correction on and
off.

Datasets On Off
artl 76 76.5
art2 78.5 78.4
art3 76.7 77.1
art4 71.3 69.8

australia 76.9 75.9
cars 95.6 94.6
eco 98.2 97.6

hepatitis 62.2 62
import 100 100
pima 76.4 75.8
vote 85.5 85.4

Average 81.57 81.19

rection is thus 1.7/2.0 = 85%. Therefore, most of the
improvement that (24.4 made over 04.5 is due to the
use of the Laplace correction (Provost & Domingos,
2003). The question we are interested in is as follows:
Is the Laplace correction still that important in our
new algorithm?

We hypothesize that the advantage of the Laplace cor-
rection in our new algorithm is less remarkable than
that in C4.5, as the improvement of AUC is mainly
due to the use of the confusion factor. To veri~" this,
we use these 11 datasets to conduct the experiment.
For each dataset, we set the confusion factor s = 0.3
and use the pruned trees. Then we calculate the AUC
scores by turning on and off the Laplace correction.
The results are shown in Table 9. We can see that
the Laplace correction improve the AUC score only
slightly. The average improvement in AUC with the
Laplace correction is 81.57-81.19 = 0.38. We observe
and calculate (not shown here) the total improvement
in AUC of our algorithm over C4.5 is 2.49. Thus, the
rate of AUC improvement due to the Laplace correc-
tion is only 0.38/2.49 = 15.3%. That is, most of the
improvement (about 85%) in AUC of our new algo-
rithm over C4.5 is due to aggregation of probabilities
in leaves in decision trees.

487

5. Conclusions and Future Work

In this paper we present a new tree evaluation algo-
rithm that improves probability-based ranking from a
single tree. It has the advantage of easy comprehen-
sion of results. Experimental results have shown that
our new algorithm does improve AUC over single-tree
algorithms (such as C4.4 and C4.5), and that most
the improvement is due to aggregation of probabilities
in leaves in decision trees. We also found that our
algorithm is robust against the parameters of the al-
gorithm, but it works best on pruned trees, with the
Laplace correction, and the confusion factor set to 0.3.
Although C4.4 with bagging outperformed our new al-
gorithm in AUC, results from multiple trees with bag-
ging are much harder to understand.

In our future research, we will study how to deter-
mine different values of confusion factors on different
attributes. In this paper, we set the confusion factor
for each attribute to be the same. In real-world appli-
cations, the values of confusion factors could be differ-
ent. Attributes with a higher error rate in data could
be assigned a higher confusion factor. This will give
users more flexibility in incorporating domain specific
knowledge in decision trees to obtain optimal results
in prediction.

Acknowledgements

We gratefully thank Foster Provost for kindly provid-
ing us with the source codes of C4.4, which is a great
help to us in the comparison of C4.5 and C4.4 to our
algorithm. We also thank Dong Han and Jingjing Lu
in helping us at various stages of experiments. The
Area Chair and reviewers of this conference provided
excellent suggestions in improving the paper.

References

Bauer, E., & Kohavi, R. (1999). An empirical com-
parison of voting classification algorithms: Bagging,
boosting and variants. Artificial Intelligence, 36,
105-142.

Blake, C., & Merz, C. (1998). UCI repos-
itory of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.
University of California, Irvine, Dept. of Informa-
tion and Computer Sciences.

Bradley, A. P. (1997). The use of the area under the
ROC curve in the evaluation of machine learning
algorithms. Pattern Recognition, 30, 1145-1159.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1999).

Learning to order things. Journal of Artificial Intel-
ligence Research, 10, 243-270.

Hand, D. J., & Till, R. J. (2001). A simple generalisa-
tion of the area under the ROC curve for multiple
class classification problems. Machine Learning, 45,
171-186.

Hastie, T. 3., & Pregibon, D. (1990). Shrinking trees
(Technical Report). At&T laboratories.

Ling, C. X., Huang, 3., & Zhang, II. (2003). AUC:
a statistically consistent and more discriminating
measure than accuracy. Proceedings of 18th Interna-
tional Conference on Artificial Intelligence (IJCAI-
2003). To appear.

Margineantu, D. D., & Dietterich, T. G. (2001). Im-
proved class probability estimates from decision tree
models. In C. Holmes (Ed.), Nonlinear estimation
and classification. The Mathematical Sciences Re-
search Institute, University of California Berkeley.

Pazzani, M., Merz, C., Murphy, P., All, K., IIume,
T., & Brunk, C. (1994). Reducing misclassifica-
tion costs. In Proceedings of the 11th international
conference on machine learning, 217-225. Morgan
Kaufmann.

Provost, F., & Domingos, P. (2003). Tree induction
for probability-based ranking. Machine Learning.
To appear.

Provost, F., Fawcett, T., & Kohavi, R. (1998). The
case against accuracy estimation for comparing in-
duction algorithms. In Proceedings of the fifteenth
international conference on machine learning, 445-
453. Morgan Kaufmann.

Quinlan, J. (1993). C~.5: Programs for machine learn-
ing. Morgan Kaufmann: San Mateo, CA.

Shavlik, J., Mooney, R., & Towell, G. (1991). Symbolic
and neural learning algorithms: An experimental
comparison. Machine Learning, 6, 111- 144.

Smyth, P., Gray, A., & Fayyad, U. (1995). Retrofitting
decision tree classifiers using kernel density estima-
tion. Proceedings of the 12th International Confer-
ence on machine Learning (pp. 506-514).

