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Abstract
We examine the set covering machine when
it usesdata-dependent half-spacesfor its set
of features and bound its generalization er-
ror in terms of the number of training errors
and the number of half-spaces it achieves on
the training data. We show that it provides a
favorable alternative to data-dependent balls
on some natural data sets. Compared to
the support vector machine, the set cov-
ering machine with data-dependent half-
spaces produces substantially sparser clas-
sifiers with comparable (and sometimes bet-
ter) generalization. Furthermore, we show
that our bound on the generalization error
provides an effective guide for model selec-
tion.

1. Introduction

The set covering machine (SCM) has recently been
proposed by Marchand and Shawe-Taylor (2001;
2002) as an alternative to the support vector machine
(SVM) when the objective is to obtain a sparse classi-
fier with good generalization. Given a feature space,
the SCM tries to find the smallest conjunction (or dis-
junction) of features that gives a small training er-
ror. In contrast, the SVM tries to find the maximum
soft-margin separating hyperplane on all the features.
Hence, the two learning machines are fundamentally

different in what they are trying to achieve on the
training data.

The learning algorithm for SCM generalizes the
two-step algorithm of Valiant (1984) and Haussler
(1988) for learning conjunctions (and disjunctions)
of Boolean attributes to allow features that are con-
structed from the data and to allow a trade-off be-
tween accuracy and complexity. For the set of fea-
tures known asdata-dependent balls, Marchand and
Shawe-Taylor (2001; 2002) have shown that good
generalization is expected when a SCM with a small
number of balls and errors can be found on the train-
ing data. Furthermore, on some “natural” data sets,
they have found that the SCM achieves a much higher
level of sparsity than the SVM with roughly the same
generalization error.

In this paper, we introduce a new set of features for the
SCM that we calldata-dependent half-spaces. Since
our goal is to construct sparse classifiers, we want
to avoid usingO(d) examples to construct each half-
space in ad-dimensional input space (like many com-
putational geometric algorithms). Rather, we want
to useO(1) examples for each half-space. In fact,
we will see that by using only three examples per
half-space, we need very few of these half-spaces to
achieve a generalization as good (and sometimes bet-
ter) as the SVM on many “natural” data sets. More-
over, the level of sparsity achieved by the SCM is al-
ways substantially superior (sometimes by a factor of
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at least 50) than the one achieved by the SVM.

Finally, by extending the sample compression tech-
nique of Littlestone and Warmuth (1986), we bound
the generalization error of the SCM with data-
dependent half-spaces in terms of the number of errors
and the number of half-spaces it achieves on the train-
ing data. We will then show that, on some “natural”
data sets, our bound is as effective as 10-fold cross-
validation in its ability to select a good SCM model.

2. The Set Covering Machine

We provide here a short description of the Set Cov-
ering Machine (SCM), more details are provided
in Marchand and Shawe-Taylor (2002).

Let x denote an arbitraryn-dimensional vector of the
input spaceX which could be arbitrary subsets of
<n. We consider binary classification problems for
which the training setS = P ∪ N consists of a set
P of positive training examples and a setN of neg-
ative training examples. We define afeatureas an
arbitrary Boolean-valued function that mapsX onto
{0, 1}. Given any setH = {hi(x)}|H|i=1 of features
hi(x) and any training setS, the learning algorithm
returns a small subsetR ⊂ H of features. Given that
subsetR, and an arbitrary input vectorx, the output
f(x) of the SCM is defined to be:

f(x) =
{ ∨

i∈R hi(x) for a disjunction∧
i∈R hi(x) for a conjunction

To discuss both the conjunction and the disjunction
cases simultaneously, let us useP to denote setP in
the conjunction case but setN in the disjunction case.
Similarly, N denotes setN in the conjunction case
but denotes setP in the disjunction case. It then fol-
lows thatf makes no error withP if and only if each
hi ∈ R makes no error withP. Moreover, ifQi de-
notes the subset of examples ofN on which featurehi

makes no errors, thenf makes no error onN if and
only if

⋃
i∈RQi = N . Hence, as was first observed

by Haussler (1988), the problem of finding the small-
est setR for which f makes no training errors is just
the problem of finding the smallest collection ofQis
that covers allN (where each correspondinghi makes
no error onP). This is the well-knownMinimum Set
Cover Problem(Garey & Johnson, 1979). The inter-
esting fact is that, although it isNP -complete to find

the smallest cover, theset covering greedy algorithm
will always find a cover of size at mostz ln(|N |) when
the smallest cover that exists is of sizez (Chvátal,
1979; Kearns & Vazirani, 1994). Moreover this al-
gorithm is very simple to implement and just consists
of the following steps: first choose the setQi which
covers the largest number of elements inN , remove
fromN and eachQj the elements that are inQi, then
repeat this process of finding the setQk of largest car-
dinality and updatingN and eachQj until there are
no more elements inN .

The SCM built on the features found by the set cov-
ering greedy algorithm will make no training errors
only when there exists a subsetE ⊂ H of features
on which a conjunction (or a disjunction) makes zero
training error. However, this constraint is not really
required in practice since we do want to permit the
user of a learning algorithm to control the tradeoff be-
tween the accuracy achieved on the training data and
the complexity (here the size) of the classifier. Indeed,
a small SCM which makes a few errors on the training
set might give better generalization than a larger SCM
(with more features) which makes zero training errors.
One way to include this flexibility into the SCM is to
stop the set covering greedy algorithm when there re-
mains a few more training examples to be covered.
In this case, the SCM will contain fewer features and
will make errors on those training examples that are
not covered. But these examples all belong toN and,
in general, we do need to be able to make errors on
training examples of both classes. Hence, early stop-
ping is generally not sufficient and, in addition, we
need to consider features that also make some errors
with P provided that many more examples inN can
be covered. Hence, for a featureh, let us denote by
Qh the set of examples inN covered by featureh and
by Rh the set of examples inP for which h makes
an error on. Given that each example inP misclassi-
fied byh should decrease by some fixedpenaltyp its
“importance”, we define theusefulnessUh of feature
h by:

Uh
def= |Qh| − p · |Rh|

Hence, we modify the set covering greedy algorithm
in the following way. Instead of using the feature that
covers the largest number of examples inN , we use
the featureh ∈ H that has the highest usefulness value
Uh. We removed fromN and eachQg (for g 6= h) the



elements that are inQh and we removed from each
Rg (for g 6= h) the elements that are inRh. Note that
we update each such setRg because a featureg that
makes an error on an example inP does not increase
the error of the machine if another featureh is already
making an error on that example. We repeat this pro-
cess of finding the featureh of largest usefulnessUh

and updatingN , and eachQg andRg, until only a few
elements remain inN (early stopping the greedy).

Here is a formal description of our learning algorithm.
The penaltyp and the early stopping points are the
two model-selection parameters that give the user the
ability to control the proper tradeoff between the train-
ing accuracy and the size of the function. Their val-
ues could be determined either by using k-fold cross-
validation, or by computing our bound (see section 4)
on the generalization error based on what has been
achieved on the training data. Note that our learning
algorithm reduces to the two-step algorithm of Valiant
(1984) and Haussler (1988) when boths andp are in-
finite and when the set of features consists of the set
of input attributes and their negations.

Algorithm BuildSCM (T, P, N, p, s,H)

Input: A machine typeT (which is either “conjunc-
tion” or “disjunction”), a setP of positive training
examples, a setN of negative training examples,
a penalty valuep, a stopping points, and a set
H = {hi(x)}|H|i=1 of Boolean-valued features.

Output: A conjunction (or disjunction)f(x) of a
subsetR ⊆ H of features.

Initialization:R = ∅.

1. If (T = “conjunction”) letP ← P andN ← N .
Else letP ← N and letN ← P .

2. For eachhi ∈ H, let Qi be the subset ofN cov-
ered byhi and letRi be the subset ofP covered
byhi (i.e.examples inP incorrectly classified by
hi).

3. Let hk be a feature with the largest value of
|Qk| − p · |Rk|. If (|Qk| = 0) then go to step 7
(cannot cover the remaining examples inN ).

4. LetR ← R∪ {hk}. LetN ← N −Qk and let
P ← P −Rk.

5. For all i do: Qi ← Qi−Qk andRi ← Ri−Rk.

6. If (N = ∅ or |R| ≥ s) then go to step 7 (no more
examples to cover or early stopping).Elsego to
step 3.

7. Returnf(x) where:

f(x) =
{ ∨

i∈R hi(x) for a disjunction∧
i∈R hi(x) for a conjunction

3. Data-Dependent Half-Spaces

With the use of kernels, each input vectorx is implic-
itly mapped into a high-dimensional vectorφ(x) such
that φ(x) · φ(x′) = k(x,x′) (the kernel trick). We
consider the case where each feature is a half-space
constructed from a set of 3 points{φa, φb, φc} where
φa is the image of a positive examplexa, φb is the im-
age of a negative examplexb, andφc is the image of a
P-examplexc. The weight vectorw of such an half-

spacehc
a,b is defined bywdef=φa−φb and its threshold

t is identified byt
def=w · φc − ε, whereε is a small

positive real number in the case of a conjunction but
a small negative number in the case of a disjunction.
Hence

hc
a,b(x) def= sgn{w · φ(x)− t}

= sgn{k(xa,x)− k(xb,x)− t}
where

t = k(xa,xc)− k(xb,xc)− ε.

When the penalty parameterp is set to∞, Build-
SCM tries to cover with half-spaces the examples of
N without making any error on the examples ofP. In
that case,φc is the image of the examplexc ∈ P that
gives the smallest value ofw · φ(xc) in the case of a
conjunction (but the largest value ofw · φ(xc) in the
case of a disjunction). Note that, in contrast with data-
dependent balls (Marchand & Shawe-Taylor, 2002),
we are not guaranteed to always be able to cover all
N with such half-spaces. When training a SCM with
finite p, anyxc ∈ P might give the best threshold for
a given(xa,xb) pair. Hence, to find the half-space
that maximizesUh, we need to computeUh for every
triple (xa,xb,xc).



Note that this set of features (in the linear kernel case
k(x,x′) = x · x′) was already proposed by Hinton
and Revow (1996) for decision tree learning but no
analysis of their learning method has been given.

4. Bound on the Generalization Error

First note that we cannot use the “standard” VC theory
to bound the generalization error of SCMs with data-
dependent half-spaces because this set of functions is
defined onlyafter obtaining the training data. In con-
trast, the VC dimension is a property of a function
class defined on some input domainwithout reference
to the data. Hence, we propose another approach.

Since our learning algorithm tries to build a SCM with
the smallest number of data-dependent half-spaces,
we seek a bound that depends on this number and,
consequently, on the number of examples that are used
in the final classifier (the hypothesis). We can thus
think of our learning algorithm as compressing the
training set into a small subset of examples that we
call thecompression set. It was shown by Littlestone
and Warmuth (1986) and Floyd and Warmuth (1995)
that we can bound the generalization error of the hy-
pothesisf if we can always reconstructf from the
compression set. Hence, the only requirement is the
existence of such areconstruction functionand its
only purpose is to permit the exact identification of
the hypothesis from the compression set and, possi-
bly, additional bits of information. Not surprisingly,
the bound on the generalization error raises rapidly in
terms of these additional bits of information. So we
must make minimal usage of them.

We now describe our reconstruction function and the
additional information that it needs to assure, in all
cases, the proper reconstruction of the hypothesis
from a compression set. As we will see, our proposed
scheme works in all cases provided that the learning
algorithm returns a hypothesis that always correctly
classifies the compression set (but not necessarily all
of the training set). Hence, we need to add this con-
straint inBuildSCM1 for our bound to be valid but,
in practice, we have not seen any significant perfor-
mance variation introduced by this constraint.

1For this, it is sufficient to test if a newly added feature does
not misclassify any previousP-example in the current compres-
sion set.

Given a compression set (returned by the learning al-
gorithm), we first partition it into three disjoint sub-
setsΛa, Λb, Λc that consists of the examples of type
xa, xb, andxc that we have described in section 3.
Now, from these sets, we must construct the weight
vectors. Recall that each weight vectorw is speci-
fied by a pair(xa,xb). Hence, for eachxa ∈ Λa,
we must specify the different pointsxb ∈ Λb that are
used to form a weight vector withxa. Although each
point can participate in more than one weight vector,
each pair(xa,xb) ∈ Λa×Λb can provide at most one
weight vector under the constraint that the compres-
sion set is always correctly classified by the hypoth-
esis. Hence, the identification of weight vectors re-
quires at mostλaλb bits of information (whereλa =
|Λa| andλb = |Λb|). However, it is more economi-
cal to provide insteadlog2(λaλb) bits to first specify
the numberr of weight vectors and thenlog2

(
λaλb

r

)
bits to specify which group ofr pairs(xa,xb) is cho-
sen among the set of all possible groups ofr pairs
taken fromΛa × Λb. To find the thresholdt for each
w, we choose the examplex ∈ Λc ∪ Λa that gives
the smallest value ofw · φ(x) in the case of a con-
junction. In the case of a disjunction, we choose the
examplex ∈ Λc ∪ Λb that gives the largest value of
w · φ(x). This is the only choice that assures that the
compression set is always correctly classified by the
resulting classifier. Note that we adopt the convention
that each point in the compression set is specified only
once (without repetitions) and, consequently, a point
of Λa or Λb can also be used to identify the threshold.

In summary, we can always reconstruct the hypothe-
sis from the compression set when we partition it into
the subsetsΛa, Λb, Λc defined above and provide, in
addition,log2(λaλb) + log2

(
λaλb

r

)
bits to extract the

weight vectors fromΛa × Λb. This is all that is re-
quired for the next theorem.

Theorem 1 Let S = P ∪N be a training set of pos-
itive and negative examples of sizem = mp + mn.
LetA be the learning algorithmBuildSCM that uses
data-dependent half-spaces for its set of features with
the constraint that the returned functionA(S) always
correctly classifies every example in the compression
set. Suppose thatA(S) containsr half-spaces, and
makeskp training errors on P , kn training errors
on N (with k = kp + kn), and has a compression



set Λ = Λa ∪ Λb ∪ Λc (as defined above) of size
λ = λa + λb + λc . With probability1 − δ over all
random training setsS of sizem, the generalization
error er(A(S)) of A(S) is bounded by

er(A(S)) ≤ 1− exp
{ −1

m− λ− k

(
lnBλ+

ln
(

λaλb

r

)
+ ln(λaλb) + ln

1
δλ

)}

where

δλ
def= δ ·

(
π2

6

)−5(
(λa + 1)(λb + 1)·

(λc + 1)(kp + 1)(kn + 1)
)−2

and where

Bλ
def=

(
mp

λa

)(
mn

λb

)(
mp − λa

λc

)(
mn − λb

kn

)
·

(
mp − λa − λc

kp

)
for conjunctions

Bλ
def=

(
mp

λa

)(
mn

λb

)(
mn − λb

λc

)(
mp − λa

kp

)
·

(
mn − λb − λc

kn

)
for disjunctions

Proof LetX be the set of training sets of sizem. Let
us first bound the probability

Pm
def= P

{
S ∈ X : er(A(S)) ≥ ε |m(S) = m

}

given thatm(S) is fixed to some valuem where

mdef=(m,mp,mn, λa, λb, λc, kp, kn).

For this, denote byEp the subset ofP on whichA(S)
makes an error and similarly forEn. Let I be the mes-
sage of information bits needed to specify the weight
vectors (as described above) for a givenΛa andΛb.
Now defineP ′

m to be

P ′
m

def= P

{
S ∈ X : er(A(S)) ≥ ε | Λa = S1,

Λb = S2, Λc = S3, Ep = S4,

En = S5, I = I0,m(S) = m
}

for some fixed set of disjoint subsets{Si}5
i=1 of S

and some fixed information messageI0. SinceBλ is
the number of different ways of choosing the differ-
ent compression subsets and set of error points in a
training set of fixedm, we have:

Pm ≤ λaλb ·
(

λaλb

r

)
·Bλ · P ′

m

where the first two factors come from the additional
information that is needed to specify the weight vec-

tors. Note that the hypothesisf
def=A(S) is fixed in

P ′
m (because the compression set is fixed and the re-

quired information bits are given). To boundP ′
m, we

make the standard assumption that each examplex is
independently and identically generated according to
some fixed but unknown distribution. Letp be the
probability of obtaining a positive example, letα be
the probability that the fixed hypothesisf makes an
error on a positive example, and letβ be the prob-
ability that f makes an error on a negative exam-

ple. Let tp
def=λa + λc + kp for the conjunction case

(and tp
def=λa + kp for the disjunction case). Simi-

larly, let tn
def=λb + kn for the conjunction case (and

tn
def=λb + λc + kn for the disjunction case). We then

have:

P ′
m = (1− α)mp−tp(1− β)m−tn−mp

(
m− tn − tp

mp − tp

)
pmp−tp(1− p)m−tn−mp

≤
m−tn∑

m′=tp

(1− α)m′−tp(1− β)m−tn−m′

(
m− tn − tp

m′ − tp

)
pm′−tp(1− p)m−tn−m′

= [(1− α)p + (1− β)(1− p)]m−tn−tp

= (1− er(f))m−tn−tp

≤ (1− ε)m−tn−tp

Consequently:

Pm ≤ λaλb ·
(

λaλb

r

)
·Bλ · (1− ε)m−tn−tp .

The theorem is obtained by bounding this last expres-
sion by the proposed value forδλ(m) and solving for
ε since, in that case, we satisfy the requirement that:



P

{
S ∈ X : er(A(S)) ≥ ε

}

=
∑
m

PmP

{
S ∈ X : m(S) = m

}

≤
∑
m

δλ(m)P
{

S ∈ X : m(S) = m
}

≤
∑
m

δλ(m)

= δ

where the sums are over all possible realizations of
m for a fixedmp andmn. With the proposed value
for δλ(m), the last equality follows from the fact that∑∞

i=1(1/i2) = π2/6.

In order to obtain the tightest possible bound, note
that we have generalized the approach of Littlestone
and Warmuth by partitioning the compression set into
three different subsets and by taking into account the
number of positive and negative examples actually ob-
served in the training set.

Basically, our bound states that good generalization is
expected when we can find a small SCM that makes
few training errors. It may seem complicated but the
important feature is that it depends only on what the
hypothesis hasachievedon the training data. Hence,
we could use it as a guide for choosing the model se-
lection parameterss and p of algorithm BuildSCM
since we can compute its value immediately after
training.

5. Empirical Results on Natural data

We have compared the practical performance of
the SCM with the Support Vector Machine (SVM)
equipped with a Gaussian kernel (also called the Ra-
dial Basis Function kernel) of variance1/γ. We have
used the SVM program distributed by the Royal Hol-
loway University of London (Saunders et al., 1998).
The data sets used and the results obtained are re-
ported in table 1. All these data sets where obtained
from the machine learning repository at UCI, except
the Glass data set which was obtained from Rob Holte,
now at the University of Alberta. For each data set, we
have removed all examples that contained attributes

with unknown values (this has reduced substantially
the “votes” data set) and we have removed examples
with contradictory labels (this occurred only for a few
examples in the Haberman data set). The remaining
number of examples for each data set is reported in ta-
ble 1. No other preprocessing of the data (such as scal-
ing) was performed. For all these data sets, we have
used the 10-fold cross validation error as an estimate
of the generalization error. The values reported are
expressed as the total number of errors (i.e. the sum
of errors over all testing sets). We have ensured that
each training set and each testing set, used in the 10-
fold cross validation process, was the same for each
learning machine (i.e. each machine was trained on
the same training sets and tested on the same testing
sets).

The results reported for the SVM are only those ob-
tained for the best values of the kernel parameterγ
and the soft margin parameterC found among anex-
haustivelist of manyvalues. The “size” column refers
to the average number of support vectors contained in
SVM machines obtained from the 10 different training
sets of 10-fold cross-validation.

We have reported the results for the SCM with
data-dependent balls (Marchand & Shawe-Taylor,
2002) (with theL2 metric) and the SCM with data-
dependent half-spaces (with a linear kernel). In both
cases theT column refers to type of the best machine
found: c for conjunction, andd for disjunction. Thep
column refers the best value found for the penalty pa-
rameter, and thes column refers the the best stopping
point in terms of the number of features (i.e.balls and
half-spaces respectively). Again, only the values that
gave the smallest 10-fold cross-validation error are re-
ported. We have also reported, in the “bound” col-
umn, the bound on the generalization error obtained
by computing the r.h.s. of the inequality of Theo-
rem 1 (with δ = .05), for each of the 10 different
training sets involved in 10-fold cross validation, and
multiplying that bound with the size of each testing
sets. We see that, although the bound is not tight, it is
nevertheless non-trivial. This is to be contrasted with
the VC dimension bounds which cannot even be ap-
plied for our case since the set of functions supported
by the SCM depends on the training data. Further-
more, if we exclude the BreastW data set, we can see
in the “ratio” column of table 1 that the ratio of the



Table 1.Data sets and results for SCMs and SVMs.

Data Set SVM SCM with balls SCM with half-spaces
Name #exs γ C size errors T p s errors T p s errors bound ratio

BreastW 683 0.005 2 58 19 c 1.8 2 15 c 1.0 1 18 103 5.72
Votes 52 0.05 15 18 3 d 0.9 1 6 c 0.8 1 6 20 3.33
Pima 768 0.002 1 526 203 c 1.1 3 189 c 1.5 3 175 607 3.47
Haberman 294 0.01 0.6 146 71 c 1.4 1 71 d 0.7 1 68 209 3.07
Bupa 345 0.002 0.2 266 107 d 2.8 9 107 c 1.4 1 103 297 2.88
Glass 163 0.8 2 92 34 c 0.85 4 33 c 1.05 3 39 113 2.90
Credit 653 0.0006 32 423 190 d 1.2 4 194 d 1.2 3 148 513 3.47

bound to the generalization error is remarkably stable
even across different learning tasks, suggesting that
the bound may indeed work well as a model selection
criterion.

The most striking feature in table 1 is the level of
sparsity achieved by the SCM in comparison with the
SVM. This difference is huge. In particular, the SCMs
with half-spaces never contained more than 3 half-
spaces (i.e. a compression set of at most 9 points).
Compared with the SVM, the SCM with half-spaces is
more than 50 times sparser than the SVM on the Pima,
Bupa, and Credit data sets! The other important fea-
ture is that SCMs with half-spaces often provide better
generalization than SCMs with balls and SVMs. The
difference is substantial on the Credit data set. Hence
it is quite clear that data-dependent half-spaces pro-
vides an alternative to data-dependent balls for the set
of features used by the SCM. Although it is within
acceptable bounds2, the price to pay is extra computa-
tion time since triples of points needs to be examined
to find a half-space but only pairs of points need to be
considered for balls.

We now investigate the extent to which our bound can
perform model-selection. More specifically, we want
to answer the following question. Given a set of SCMs
obtained fromBuildSCM for various values of the
model-selection parametersp ands, is our bound on
the generalization error, evaluated on the training set,
effective at selecting the SCM that will give the best
generalization?

Note that the results reported in table 1 are, in fact,
the 10-fold cross validation estimate of the general-

2It takes less than 20 seconds on a 1.6 GHz PC to train once
the SCM with half-spaces on the BreastW data set.

Table 2.Model-selection results.

Data Set T MS from 10-fold CV MS from bound

s errors std s errors std

BreastW c 1.2 23 4.7 1.8 25 4.4
Votes c 1.1 9 3.1 1.0 6 2.8
Pima c 4.3 191 9.2 3.8 181 11
Haberman d 1.7 73 5.0 3.8 74 3.8
Bupa c 2.3 118 6.0 2.5 115 8.2
Glass c 2.6 50 7.9 2.5 49 7.3
Credit d 3 157 17 3.5 162 17

ization error that is achieved by the model selection
strategy that correctly guesses the best values forp
ands. This model-selection strategy is, in that sense,
optimal (but not realizable). Hence, we will refer to
the score obtained in table 1 as those obtained by the
optimal model-selection strategy.

The results for the model-selection strategy based on
our bound are reported in table 2. Here we have used
our bound to select the best SCM among those ob-
tained for various penalty values among a list of fif-
teen penalty values (that always contained the optimal
value) and for all possible sizess. Also shown in these
tables, are the results obtained for the 10-fold cross
validation model selection method. This latter method
is perhaps the most widely used—here, it consists of
using 10-fold cross validation to find the best stop-
ping points and the best penalty valuep on a given
training set and then use these best values on the full
training set to find the best SCM. Both model selec-
tion methods were tested by 10-fold cross validation.
Finally, in addition to the error and size (as in the pre-



vious tables), we have also reported a rough estimate
of the standard deviation of the error. This estimate
was obtained in the following way. We first compute
the standard deviation of the generalization error (per
example) over the 10 different testing sets and then
divide by

√
10 (since the variance of the average ofn

iid random variables, each with varianceσ2, isσ2/n).
Finally we multiply this estimate by the number of ex-
amples in the data set. From the results of table 2, we
see that model selection by using our bound is gener-
ally as effective as using 10-fold cross validation (but
takes substantially less computation time).

6. Conclusion and Outlook

We have introduced a new set of features for the SCM,
called data-dependent half-spaces, and have shown
that it can provide a favorable alternative to data-
dependent balls on some “natural” data sets. Com-
pared with SVMs, our learning algorithm for SCMs
with half-spaces produces substantially sparser clas-
sifiers (often by a factor of 50) with comparable, and
sometimes better, generalization.

By extending the sample compression technique
of Littlestone and Warmuth (1986), we have bound the
generalization error of the SCM with data-dependent
half-spaces in terms of the number of errors and the
number of half-spaces it achieves on the training data.
Our bound indicates that good generalization error is
expected whenever a SCM, with a small number of
half-spaces, makes few training errors. Furthermore,
on some “natural” data sets, we have seen that our
bound is generally as effective as 10-fold cross valida-
tion at selecting a good SCM model. Note, however,
that our bound applies only to the case of symmetri-
cal loss. Hence, the next important step is to general-
ize our bound to the case of asymmetrical loss (which
frequently occurs in practice) and investigate its effec-
tiveness at performing model selection.
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