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Abstract different in what they are trying to achieve on the
We examine the set covering machine when ~ fraining data.
it usesdata-dependent half-spacies its set The learning algorithm for SCM generalizes the
of features and bound its generalization er-  two-step algorithm of Valiant (1984) and Haussler
ror in terms of the number of training errors (1988) for learning conjunctions (and disjunctions)

and the number of half-spaces itachieveson  of Boolean attributes to allow features that are con-
the training data. We show thatit providesa  structed from the data and to allow a trade-off be-
favorable alternative to data—dependent balls tween accuracy and Comp|exity_ For the set of fea-
on some natural data sets. Compared t0  tyres known aslata-dependent ballviarchand and

the support vector machine, the set cov-  Shawe-Taylor (2001; 2002) have shown that good
ering machine with data-dependent half-  generalization is expected when a SCM with a smalll
spaces produces substantially sparser clas-  number of balls and errors can be found on the train-
sifiers with comparable (and sometimes bet-  ing data. Furthermore, on some “natural” data sets,
ter) generalization. Furthermore, we show  they have found that the SCM achieves a much higher
that our bound on the generalization error  |evel of sparsity than the SVM with roughly the same

provides an effective guide for model selec- generalization error.

tion.

In this paper, we introduce a new set of features for the
SCM that we caldata-dependent half-spaceSince
1. Introduction our goal is to construct sparse classifiers, we want

The set covering machine (SCM) has recently beertlO avoid using0(d) examples to construct each hal-

proposed by Marchand and Shawe-Taylor (2001_spac<_a N ai-d|men5|pnal mp_utspace (like many com-
. . putational geometric algorithms). Rather, we want
2002) as an alternative to the support vector machin

(SVM) when the objective is to obtain a sparse classi£ eu\fv(;lO ééé ?;(Ztmg Ielsjsfic: e(?r?lh rt]r?rlfe_:ps;aer.n Ilrésfacé’r
fier with good generalization. Given a feature space y g only ples p

the SCM tries to find the smallest conjunction (or dis-

junction) of features that gives a small training er-
) ) 9 g ter) as the SVM on many “natural” data sets. More-

ror. In contrast, the SVM tries to find the maximum . . .
. . over, the level of sparsity achieved by the SCM is al-
soft-margin separating hyperplane on all the features, : . .
. ) Wways substantially superior (sometimes by a factor of
Hence, the two learning machines are fundamentally

half-space, we need very few of these half-spaces to
achieve a generalization as good (and sometimes bet-
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at least 50) than the one achieved by the SVM. the smallest cover, theet covering greedy algorithm
will always find a cover of size at mosin(|\|) when
the smallest cover that exists is of sizgChvatal,
1979; Kearns & Vazirani, 1994). Moreover this al-

Finally, by extending the sample compression tech
nique of Littlestone and Warmuth (1986), we bound

the generalization error of the SCM with data-~" " . . . . .
dependent half-spaces in terms of the number of error%Orlthm is very simple to implement and just consists
of the following steps: first choose the <@t which

and the number of half-spaces it achieves on the train- the | A ber of el N\
ing data. We will then show that, on some “natural’ covers the fargest humber of elementsiih remove

data sets, our bound is as effective as 10-fold crossf—romN and eacl); the elements that are @, then

T - repeat this process of finding the ggt of largest car-
lidat ts ability to select d SCM model. "~ . :
validation in ffs ability fo select a goo mode dinality and updating\” and each?); until there are

2. The Set Covering Machine no more elements /.

The SCM built on the features found by the set cov-

We provide here a short description of the Set COV'ering greedy algorithm will make no training errors

ering Machine (SCM), more details are provided,, . \when there exists a subs&tc H of features

in Marchand and Shawe-Taylor (2002). on which a conjunction (or a disjunction) makes zero
Let x denote an arbitrarg-dimensional vector of the training error. However, this constraint is not really
input spaceX which could be arbitrary subsets of required in practice since we do want to permit the
R". We consider binary classification problems foruser of a learning algorithm to control the tradeoff be-
which the training se6 = P U N consists of a set tween the accuracy achieved on the training data and
P of positive training examples and a s§tof neg- the complexity (here the size) of the classifier. Indeed,
ative training examples. We definefeatureas an asmall SCM which makes a few errors on the training
arbitrary Boolean-valued function that magisonto ~ Set might give better generalization than a larger SCM
{0,1}. Given any set{ = {M(X)}ﬂ of features (with more features) which makes zero training errors.
hi(x) and any training sef, the learning algorithm One way to include this flexibility into the SCM is to
returns a small subs@ c 7 of features. Given that Stop the set covering greedy algorithm when there re-
subsetR, and an arbitrary input vectot, the output mains a few more training examples to be covered.

f(x) of the SCM is defined to be: In this case, the SCM will contain fewer features and
will make errors on those training examples that are

F(x) = Vier hi(x) for a disjunction not covered. But these examples all belongv@nd,
Nier hi(x) for a conjunction in general, we do need to be able to make errors on

. . . - .__training examples of both classes. Hence, early stop-
To discuss both the conjunction and the d|SJunct|or|Oing is generally not sufficient and, in addition, we

cases simultaneously, let us uBeto denote seP in
the conjunction case but sbtin the disjunction case.
Similarly, ' denotes sefV in the conjunction case
but denotes seP in the disjunction case. It then fol-
lows thatf makes no error wittP if and only if each
h; € R makes no error withP. Moreover, ifQ); de-
notes the subset of examples\dfon which feature;
makes no errors, thefi makes no error oiV if and
only if J,cx @: = N. Hence, as was first observed _

by Haussler (1988), the problem of finding the small- ' def

est setR for which f makes no training errors is just Un= |Qn| —p-| Bl

the problem of finding the smallest collection@fs  Hence, we modify the set covering greedy algorithm
that covers allV' (where each correspondihgmakes  in the following way. Instead of using the feature that
no error onP). This is the well-knowrMinimum Set covers the largest number of examples\in we use
Cover Problem(Garey & Johnson, 1979). The inter- the featurér € H that has the highest usefulness value
esting fact is that, although it & P-complete to find  Uj,. We removed frordV and eacl®), (for g # h) the

need to consider features that also make some errors
with P provided that many more examples/An can

be covered. Hence, for a featukelet us denote by

Q}, the set of examples iV covered by featuré and

by R;, the set of examples i for which h makes

an error on. Given that each examplefmisclassi-

fied by h should decrease by some fixpdnaltyp its
“importance”, we define thesefulnesd/;, of feature



elements that are i), and we removed from each 4. LetR «— R U {hy}. Let N — N — Q and let
R, (for g # h) the elements that are iR;,. Note that P — P — Ry.

we update each such sB}, because a featurgthat )
makes an error on an exampleZhdoes not increase 5. Forallido:Q; « Qi—QpandR; — R;—Ry.
the error of the machine if another features already 6. If (M =0 or|R| > s)then go to step 7 (no more

making an error on that example. We repeat thIS pI’O- examples to cover or early Stoppin@lse go to

cess of finding the feature of largest usefulness;, step 3.

and updatingV/, and eacl), andR,, until only a few

elements remain iV (early stopping the greedy). 7. Returnf(x) where:

Here is a formal description of our learning algorithm. F(x) = Vier hi(x) for a disjunction
The penaltyp and the early stopping pointare the | Aier hi(x) for a conjunction

two model-selection parameters that give the user the
ability to control the proper tradeoff between the train-3. Data-Dependent Half-Spaces

ing accuracy and the size of the function. Their val- hth f | hi s impli
ues could be determined either by using k-fold cross_W't the use of kernels, each input vectors implic-

validation, or by computing our bound (see section 4)|tly mapped mt/o a h|gh—d|rt1en5|onal Vec‘@ifx) such
on the generalization error based on what has beelid! ?(X) - (x') = k(x,x') (the kemel trick). We
achieved on the training data. Note that our IearningconSlder the case where each feature is a half-space
algorithm reduces to the two-step algorithm of Valiantcnstructed from a set of 3 poin{s., ¢, ¢} where
(1984) and Haussler (1988) when betandp are in- @2 1S the image of a positive exampig, ¢, Is the im-

finite and when the set of features consists of the sét9¢ ofa r:egatlvcra] exampﬁf’ andg. |sfthe w:agehoflfa
of input attributes and their negations. P-examplex.. The weight vectosv of such an half-

spaceny, , is defined bywdéqua — ¢y and its threshold

Algorithm BuildSCM (7', P, N, p, 5, H) t is identified byt®w - ¢, — ¢, wheree is a small

positive real number in the case of a conjunction but

Input: A machine typel” (which is either “conjunc- a small negative number in the case of a disjunction.

tion” or “disjunction”), a setP of positive training

. o Hence
examples, a sefV of negative training examples,
a penalty valuep, a stopping points, and a set ¢ (x) Y sgn{w-d(x) —t}
H = {hi(x)}y;"1 of Boolean-valued features. = sgn{k(xq,x) — k(xp,%) — t}
where

Output: A conjunction (or disjunction)f(x) of a

subsetR C H of features. b= k(Xa, Xe) = k(xp, %c) — €.

When the penalty parameteris set tooco, Build-
Initialization: R = 0. SCM tries to cover with half-spaces the examples of
N without making any error on the examples/afin
that case¢. is the image of the exampte. € P that
gives the smallest value &f - ¢(x.) in the case of a
conjunction (but the largest value of - ¢(x.) in the
2. For eachh; € H, letQ; be the subset of” cov-  case of adisjunction). Note that, in contrast with data-

ered byh; and letR; be the subset gP covered dependent balls (Marchand & Shawe-Taylor, 2002),

by h; (i.e.examples ifP incorrectly classified by We are not guaranteed to always be able to cover all
hy). N with such half-spaces. When training a SCM with

finite p, anyz. € P might give the best threshold for
3. Let hy be a feature with the largest value of a given(x,,x;) pair. Hence, to find the half-space
|Qkx| — p - |Rg|. If (|Qr| = 0) then go to step 7 that maximizedJ;,, we need to comput&), for every
(cannot cover the remaining examples\i). triple (x4, Xp, Xc).

1. If (T =“conjunction”) letP «— P andN « N.
Elselet P +— N and let\ < P.



Note that this set of features (in the linear kernel cas&iven a compression set (returned by the learning al-

k(x,x’) = x - x’) was already proposed by Hinton gorithm), we first partition it into three disjoint sub-

and Revow (1996) for decision tree learning but nosetsA,, Ay, A. that consists of the examples of type

analysis of their learning method has been given.  x,, X3, andx,. that we have described in section 3.
Now, from these sets, we must construct the weight

4. Bound on the Generalization Error vectors. Recall that each weight vecteris speci-
fied by a pair(x,,x;). Hence, for eackx, € A,,

First note that we cannot use the “standard” VC theorxNe must specify the different points, € A, that are
to bound the generalization error of SCMs with data- ,saq t0 form a weight vector witk,. Although each
’ -

dependent half—spaces_because t_hi_s set of functions ﬂ)%int can participate in more than one weight vector,
defined onlyaftelr obtal_nlng the training data. In CoN- aach pail(x,, x5) € Aa x Ay can provide at most one
trast, the VC dimension is a property of & functionyejght vector under the constraint that the compres-
class defined on some input domaiithout reference ;o set is always correctly classified by the hypoth-
to the data. Hence, we propose another approach.  egjs  Henge, the identification of weight vectors re-
Since our learning algorithm tries to build a SCM with quires at mosi, )\, bits of information (where\, =

the smallest number of data-dependent half-spaceg).| and X, = [A;[). However, it is more economi-
we seek a bound that depends on this number angal to provide insteatbg, (A, ) bits to first specify
consequently, on the number of examples that are usdtie number of weight vectors and thelog, ()

in the final classifier (the hypothesis). We can thuspits to specify which group of pairs(x,, x;) is cho-
think of our learning algorithm as compressing thesen among the set of all possible groupsrgbairs
training set into a small subset of examples that wdaken fromA, x A;. To find the threshold for each
call thecompression sett was shown by Littlestone w, we choose the exampte ¢ A. U A, that gives
and Warmuth (1986) and Floyd and Warmuth (1995the smallest value o# - ¢(x) in the case of a con-
that we can bound the generalization error of the hyjunction. In the case of a disjunction, we choose the
pothesisf if we can always reconstrugt from the examplex € A. U A, that gives the largest value of
compression set. Hence, the only requirement is th& - ¢(x). This is the only choice that assures that the
existence of such @econstruction functiorand its compression set is always correctly classified by the
only purpose is to permit the exact identification ofresulting classifier. Note that we adopt the convention
the hypothesis from the compression set and, possihat each pointin the compression set is specified only
bly, additional bits of information. Not surprisingly, once (without repetitions) and, consequently, a point
the bound on the generalization error raises rapidly i®f A, or A, can also be used to identify the threshold.
terms of these additional bits of information. So we, summary,

- we can always reconstruct the hypothe-
must make minimal usage of them.

sis from the compression set when we partition it into
We now describe our reconstruction function and théhe subsets\,, Ay, A, defined above and provide, in
additional information that it needs to assure, in alladdition,log, (A \s) + log, () bits to extract the
cases, the proper reconstruction of the hypothesigeight vectors from\, x A,. This is all that is re-
from a compression set. As we will see, our proposedjuired for the next theorem.

scheme works in all cases provided that the learning
algorl_t_hm returns a hyp_othe3|s that always correctIy[heorem 1LetS = P U N be a training set of pos-
classifies the compression set (but not necessarily aII

- . ive and negative examples of size = m, + m,,.
of the training set). Hence, we need to add this con: : . : b
straint inBuildSCM? for our bound to be valid but, Let A be the learning algorithnBuildSCM that uses

) . L data-dependent half-spaces for its set of features with
in practice, we have not seen any significant perfor-

L . . the constraint that the returned functioh(.S) always
mance variation introduced by this constraint. . ) .
correctly classifies every example in the compression

'For this, it is sufficient to test if a newly added feature doesset. Suppose that(S) containsr half-spaces, and
not misclassify any previouB-example in the current compres- i ini
Son set makesk:p_ training errors on P, k,, training errors
on N (with & = k, + k), and has a compression



setA = A, U A, U A, (as defined above) of size for some fixed set of disjoint subsefs;}?_; of S

A= X+ N + Ac . With probabilityl — § over all
random training setsS of sizem, the generalization
error er(A(S)) of A(S) is bounded by

er(A(S)) < 1—eXp{m__)\1_k(lnB>\+

In (A“Ab> +In(AaAp) + In 1) }
T oy

where
def w2 -
oy = 0- ( 6) (()\a—l—l)()\b—i-l)-
-2
(Ae+ 1) (kp+1)(kn + 1))
and where
B, et (Mp) [Ty mp — A\ [(Mn — Np .
Aa Ap Ac kny,
<mp - )\a - >\C> . .
for conjunctions
kp
B, def My (M My — A\ (Mp — Ag '
Aa Ap Ac k,

A
C) for disjunctions

Proof Let X be the set of training sets of size Let
us first bound the probability

P P{S € X rer(A(S)) > €| m(S) = m}

given thatm(.S) is fixed to some valuen where

def
m= (m7 m]:h mn; )‘an )\ba /\07 k;pv kn)

For this, denote by, the subset of” on which A(SS)
makes an error and similarly fék,. Let I be the mes-

sage of information bits needed to specify the weight

vectors (as described above) for a givepn and Ay,
Now defineP), to be

p. P{S € X er(A(S)) > €| Ay = Sy,

Ab = 527Ac = S37£p = 543
En=255,1=1p,m(S) = m}

and some fixed information messafie SinceB) is

the number of different ways of choosing the differ-
ent compression subsets and set of error points in a
training set of fixedm, we have:

Pm < Aap - <A“Ab> - By P,
r

where the first two factors come from the additional
information that is needed to specify the weight vec-

tors. Note that the hypothesigi2 A(S) is fixed in

P}, (because the compression set is fixed and the re-
quired information bits are given). To bourit,, we
make the standard assumption that each examjde
independently and identically generated according to
some fixed but unknown distribution. Letbe the
probability of obtaining a positive example, letbe

the probability that the fixed hypothesismakes an
error on a positive example, and Igtbe the prob-

ability that f makes an error on a negative exam-

ple. Lettpdéf/\a + A + kj, for the conjunction case

(and tpd:ef/\a + k, for the disjunction case). Simi-

larly, let tnd:ef/\b + k, for the conjunction case (and

tndéf)\b + X¢ + k,, for the disjunction case). We then

have:

P = (L= a)ms (1 gymtoms
(m —tn — tp) pmp—tp(l _ p)m_tn_mp
mp — tp
m—tn
< Y (- gyt
m/'=t,
m—tn —1p\ m'—t, —tn—m’
p(] — m—tp—m
( w—t, )p (1-p)

[(1—a)p+(1—p6)(1—p)]"
(1= ex( )=t
(1 — e)m_t"_tp

IN

Consequently:
AgA L
P < My - ( Tb> "By (1—e™ tn—tp_

The theorem is obtained by bounding this last expres-
sion by the proposed value fox(m) and solving for
€ since, in that case, we satisfy the requirement that:



with unknown values (this has reduced substantially

the “votes” data set) and we have removed examples
P{S € X :er(A(S)) = 6} with contradictory labels (this occurred only for a few
examples in the Haberman data set). The remaining
= Z PmP{S € X: m(S) = m} number of examples for each data set is reported in ta-
m ble 1. No other preprocessing of the data (such as scal-

ing) was performed. For all these data sets, we have
used the 10-fold cross validation error as an estimate
of the generalization error. The values reported are
= Z 0x(m) expressed as the total number of errams. he sum
B 5“‘ of errors over all testing sets). We have ensured that
each training set and each testing set, used in the 10-
where the sums are over all possible realizations ofold cross validation process, was the same for each
m for a fixedm, andm,. With the proposed value learning machineif. each machine was trained on
for 5, (m), the last equality follows from the fact that the same training sets and tested on the same testing
>, (1/i%) = =% /6. m sets).

The results reported for the SVM are only those ob-

In order to obtain the tightest possible bound, notetamed for the best values of the kemel parameter

. . and the soft margin paramet€rfound among amex-
that we have generalized the approach of thtlesmn%austiveﬁst of magnyvzlues The “size” colun?n refers

and Warmuth by partitioning the compression set intg : .
yp g P to the average number of support vectors contained in

three dlfferent_Sfubsets and b.y taking into account th%VM machines obtained from the 10 different training
number of positive and negative examples actually ob-

. . sets of 10-fold cross-validation.
served in the training set.

< gwmw{s € X: m(s) = m}

Basically, our bound states that good generalization iWe have reported the resuilts for the SCM with
Y. 9 g aata—dependent balls (Marchand & Shawe-Taylor,

expectgq when we can find a small SC.M that make%OOZ) (with theLy metric) and the SCM with data-
few training errors. It may seem complicated but the

. : ) dependent half-spaces (with a linear kernel). In both
important feature is that it depends only on what the i
. . . cases thd” column refers to type of the best machine
hypothesis haachievedon the training data. Hence, . . - A
. . . found: ¢ for conjunction, and! for disjunction. Thep
we could use it as a guide for choosing the model se-
lection parameters and» of algorithm BuildSCM column refers the best value found for the penalty pa-
: P P gont . rameter, and the column refers the the best stopping
since we can compute its value immediately after . . :
trainin point in terms of the number of features(balls and
g half-spaces respectively). Again, only the values that
gave the smallest 10-fold cross-validation error are re-
ported. We have also reported, in the “bound” col-
We have compared the practical performance ofifmn, the bound on the generalization error obtained
the SCM with the Support Vector Machine (SVM) by computing the rh.s. of the inequality of Theo-
equipped with a Gaussian kernel (also called the Raem 1 (withé = .05), for each of the 10 different
dial Basis Function kernel) of variandg¢~. We have training sets involved in 10-fold cross validation, and
used the SVM program distributed by the Royal Hol-multiplying that bound with the size of each testing
loway University of London (Saunders et al., 1998).sets. We see that, although the bound is not tight, it is
The data sets used and the results obtained are réevertheless non-trivial. This is to be contrasted with
ported in table 1. All these data sets where obtaine#he VC dimension bounds which cannot even be ap-
from the machine learning repository at UCI, exceptplied for our case since the set of functions supported
the Glass data set which was obtained from Rob Holthy the SCM depends on the training data. Further-
now at the University of Alberta. For each data set, wemore, if we exclude the BreastW data set, we can see
have removed all examples that contained attributel the “ratio” column of table 1 that the ratio of the

5. Empirical Results on Natural data



Table 1.Data sets and results for SCMs and SVMs.

Data Set SVM SCM with balls SCM with half-spaces
Name #exs || vy C | size|emors|| T | p s |emors|| T | p s | errors | bound | ratio
Breastw | 683 | 0.005 |2 |58 |19 c |18 |2]15 c |10 |1]18 103 | 5.72
Votes 52 0.05 15|18 | 3 d 09 |1|6 c 08 |1]|6 20 3.33
Pima 768 0.002 |1 |526|203 |c |11 |[3|189 |c |15 |3| 175 | 607 | 3.47
Haberman| 294 || 0.01 0.6|146 | 71 c|1l4 1|71 d |07 |1]68 209 | 3.07
Bupa 3451 0.002 | 0.2| 266|107 ||d |28 |9|107 ||c |14 |1|103 | 297 |2.88
Glass 163 || 0.8 2 92 | 34 c (085433 c [105| 3] 39 113 | 2.90
Credit 653 || 0.0006| 32 | 423|190 | d |12 |4|194 | d |12 | 3| 148 | 513 | 3.47

bound to the generalization error is remarkably stable
even across different learning tasks, suggesting that

the bound may indeed work well as a model selection
criterion. DataSet || T MS from 10-fold CV MS from bound

Table 2.Model-selection results.

S errors | std S errors | std

The most striking feature in table 1 is the level of 5 oW

Compared with the SVM, the SCM with half-spaces is ;|,q¢
more than 50 times sparser than the SVM on the Pima, it
Bupa, and Credit data sets! The other important fe
ture is that SCMs with half-spaces often provide better

generalization than SCMs with balls and SVMs. The, . ) ) )
difference is substantial on the Credit data set. Henclation error that is achieved by the model selection
it is quite clear that data-dependent half-spaces proitrategy that correctly guesses the best values for
vides an alternative to data-dependent balls for the s&@nds- This model-selection strategy is, in that sense,
of features used by the SCM. Although it is within optimal (but nqt reghzable). Hence, we W|I_I refer to
acceptable boundsthe price to pay is extra computa- the.score obtained in table 1 as those obtained by the
tion time since triples of points needs to be examine@Ptimal model-selection strategy.

to find a half-space but only pairs of points need to beThe results for the model-selection strategy based on
considered for balls. our bound are reported in table 2. Here we have used

We now investigate the extent to which our bound carPUr ound to select the best SCM among those ob-

perform model-selection. More specifically, we wantt@in€éd for various penalty values among a list of fif-
to answer the following question. Given a set of scmseen penalty values (that always contained the optimal

obtained fromBuildSCM for various values of the value) and for all possible sizesAlso shown in these
model-selection parametessand s, is our bound on tables, are the results obtained for the 10-fold cross

the generalization error, evaluated on the training s‘ee{alldatlon model selection method. This latter method

effective at selecting the SCM that will give the best'S Perhaps the most widely used—here, it consists of
generalization? using 10-fold cross validation to find the best stop-

. _ ping points and the best penalty valyeon a given
Note that the results reported in table 1 are, in facttraining set and then use these best values on the full
the 10-fold cross validation estimate of the generaltraining set to find the best SCM. Both model selec-
21t takes less than 20 seconds on a 1.6 GHz PC to train oncHON Methods were tested by 10-fold cross validation.
the SCM with half-spaces on the BreastW data set. Finally, in addition to the error and size (as in the pre-

26|50 | 792549 |73
3 157 17 || 3.5| 162 | 17

c (1223 [47|18|25 |44
sparsity achieved by the SCM in comparison with the ;¢ cl11l9 311 1.0/ 6 28
SVM. This difference is huge. In particular, the SCMs| p; .- cla3l1911921 38181 11
with half-spaces never contained more than 3 halfr . ormanll d | 1.71 73 | 5.0l 38| 74 | 3.8
spacesi(e. a compression set of at most 9 points). Bupa c 23118160l 25! 115| 8.2

c

d




vious tables), we have also reported a rough estimat@eferences

of the standard deviation of the error. This eStimateChvétal V. (1979). A greedy heuristic for the set
was obtained in the following way. We first compute covering problem Mathematics of Operations Re-

the standard deviation of the genergllzanon error (per search 4, 233-235.

example) over the 10 different testing sets and then

divide by /10 (since the variance of the averagerof Floyd, S., & Warmuth, M. (1995). Sample compres-
iid random variables, each with variane®, is o2 /n). sion, learnability, and the Vapnik-Chervonenkis di-
Finally we multiply this estimate by the number of ex- mension.Machine Learning21, 269-304.

amples in the data set. From the results of table 2, we

see that model selection by using our bound is genef®arey, M. R., & Johnson, D. S. (1979)Comput-
ally as effective as using 10-fold cross validation (but €rs and intractability, a guide to the theory of np-
takes substantially less computation time). completenessNew York, NY: Freeman.
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