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Abstract

Recently, the Isomap algorithm has been pro-
posed for learning a nonlinear manifold from
a set of unorganized high-dimensional data
points. It is based on extending the classical
multidimensional scaling method for dimen-
sion reduction. In this paper, we present a
continuous version of Isomap which we call
continuum isomap and show that manifold
learning in the continuous framework is re-
duced to an eigenvalue problem of an integral
operator. We also show that the continuum
isomap can perfectly recover the underlying
natural parametrization if the nonlinear man-
ifold can be isometrically embedded onto an
Euclidean space. Several numerical examples
are given to illustrate the algorithm.

1. Introduction

The continuous increase in computing power and stor-
age technology makes it possible for us to collect and
analyze ever larger amount of data. In many real-
world applications, the data are of high-dimension,
those applications include computational genomics,
image analysis and computer vision, document anal-
ysis in information retrieval and text mining. Fortu-
nately, in many of those applications, all of the com-
ponents of those high-dimensional data vectors are
not independent of each other and in many cases the
data points can be considered as lying on or close to
a low-dimensional nonlinear manifold embedded in a
high-dimensional space. Learning the nonlinear low-
dimensional structures hidden in a set of unorganized
high-dimensional data points known as manifold learn-
ing represents a very useful and challenging unsuper-
vised learning problem.

Traditional dimension reduction techniques such as
principal component analysis and factor analysis usu-
ally work well when the data points lie close to a linear
(affine) subspace of the high-dimensional data space
[5]. They can not, in general, discover nonlinear struc-
tures embedded in the set of data points. Recently,
two novel methods for manifold learning, the locally
linear embedding method (LLE) in [7] and the Isomap
method in [11], have drawn great interests. Unlike
other nonlinear dimension reduction methods, both
LLE and Isomap methods emphasize simple algorith-
mic implementation and avoid nonlinear optimization
formulations that are prone to local minima. The focus
of this paper is on analyzing the Isomap method which
extends the classical multidimensional scaling (MDS)
method by exploiting the use of geodesic distances of
the underlying nonlinear manifold (details of Isomap
will be presented in section 2). Regarding the Isomap
method, a fundamental question of great theoretical
as well as practical interest is the following:

What is the low-dimensional nonlinear struc-
ture that Isomap tries to discover and for
what type of nonlinear manifolds, can Isomap
perfectly recover the low-dimensional nonlin-
ear structure?

Since a nonlinear manifold can be parametrized in in-
finitely many different ways, it is not apparent what
is actually being discovered by those nonlinear dimen-
sion reduction methods, and relying on experimental
verification will tend to be very unreliable as we will
show later.

The general question of when Isomap performs well is
first addressed in [1, 11] where asymptotic convergence
results are derived for Isomap, highlighting the impor-
tance of geodesic convexity of the underlbdng manifold
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and isometry for the success of Isomap at recovering
the low-dimensional nonlinear structure. Extensions
to conformal mappings is also discussed in [8]. Some
of the aspects of the question has further been ana-
lyzed in [4] under the framework of continuum Isomap
emphasizing nonlinear manifolds constructed from col-
lections of images. In [4] it is defined that continuum
Isomap obtains a perfect recovery of the natural pa-
rameter space of the nonlinear manifold in question
if the geodesic distance on the nonlinear manifold is
proportional to the Euclidean distance in the param-
eter space. Unfortunately, no continuous version of
the Isomap is given and in all the work we have just
mentioned the reason why (continuum) Isomap should
work perfectly is explained using the discrete frame-
work of the classical MDS. The purpose of this paper
is to fill the gap by presenting a continuous version
of Isomap using integral operators. In particular, we
show that for a nonlinear manifold that can be isomet-
rically embedded onto an open and convex subset of
an Euclidean space, the continuum Isomap computes
a set of eigenfunctions which forms the canonical co-
ordinates of the Euclidean space up to a rigid motion.
For non-flat manifolds, we argue that certain infor-
mation will be lost if the Isomap only makes use of
a finite number of the eigenfunctions. More impor-
tantly, we emphasize that isometry is a more funda-
mental property than geodesic distance with regard to
manifold learning. A global method such as Isomap
can not make full use of isometry which is basically
a local property between two manifolds. Local mani-
fold learning methods such as LLE [7] and LTSA [13]
are called for when global methods such as Isomap fail.
The rest of the paper is organized as follows: In section
2 we review both the classical MDS and its generaliza-
tion Isomap proposed in [11]. In section 3, we recall
several basic concepts from differential geometry such
as isometric embedding and geodesic distances. In sec-
tion 4, we derive the continuum Isomap and show that
the continuum Isomap can perfect recover the natural
parameter space of the nonlinear manifold in question
if the geodesic distance on the nonlinear manifold is
proportional to the Euclidean distance in the param-
eter space. We also illustrate the role played by an
Isometry. Section 5 contains several concluding re-
marks.

2. Classical Multidimensional Scaling
and Isomap

{xi}i=l,xi E withSuppose for a set of N points g 7~,~

N > m, we are given the set of pairwise Euclidean

distances

m
/~) d(z.xj)=llxi_xjll==_ zk)_= ) ,

where x~k) denotes the k-th component of xi, and we
axe asked to reconstruct the {xi}’s from the above set
of pairwise distances. We can proceed as follows: with-
out loss of generality, we can assume that the {xi}’s
axe centered, i.e.,

N

i=I

Notice that the squared pairwise distance

Let the N-dimensional vector ¢ be

¢ =
Then the
squared-distance matrix D -- [d2(xi,xj)]N=l can 
written as

D = ~beT -- 2xTx -{’- e¢T,

where e is the N-dimensional vector of all ones, and
X = Ix1,..., xN]. Let J = I- eeT/N. Then it follows
that

H - -JDJ/2 = xTx. (2.1)

To recover X, let the eigendecomposition of H be

H = Udiag(A1,..., Am)UT

with U E 7~Nxm. Then we can set

.... i/2 )I/2~TTTi----- olag(A 1 ,’’’,"m /~ ¯

It is easy to see that the set of x{’s can be recovered
up to a rigid motion, i.e., a composition of a transla-
tion and an orthogonal transformation. More details of
multidimensional scaling (MDS) and connection with
eigendecomposition can be found in [2, 12].

When the set of data points xi’s lie on or close to a low-
dimensional nonlinear manifold embedded in a high-
dimensional space and the nonlinear structure can not
be adequately represented by a linear approximation,
classical MDS as discussed above usually fails to re-
cover the low-dimensional structure of the nonlinear
manifold. We illustrate this issue using a set of ex-
amples. On the top row of Figure 1, we plot two
sets of sample points from 1D curves represented as
xi = .f(’ri) + ei,i = 1,...,N, is thetotal number
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Figure 1. 2D point sets and their 1D projections: (left) points on a straight line, projections using MDS, (middle) points
on a parabola, projections using MDS, (right) points on a parabola, projections using Isomap

of points plotted, the ri’s are chosen uniformly from a
finite interval and ei represents noise. The first curve
is a straight line and the second and the third curves
are the same and both are parabola. Each figures in
the second row plots the T[s against the 1D projec-
tions computed by the classical MDS discussed above
and the Isomap method presented in the next para-
graph. If the T~S are perfectly recovered, we should see
a straight line in the figures of the second row with a
slope either ~r/4 or -r/4. We see that for the straight
line example in the left panel of Figure 11 the classical
MDS can recover the underlying 1D parametrization,
but it fails for the nonlinear curve in the middle panel.
However, Isomap can still recover the 1D parametriza-
tion for the same nonlinear curve as is shown in the
right panel of Figure 1.

Isomap was proposed as a general technique for nonlin-
ear dimension reduction (i.e., uncovering the natural
parameter space of a nonlinear manifold): the pair-
wise Euclidean distance d(Xil xj) in classical MDS is
replaced by the geodesic distance between xi and xj
on the manifold (defined as the length of the short-
est path between two points) [11]. In particular, 1)
a so-called neighborhood graph G of the data points
xi’s is constructed with an edge connecting points xi
and xj if xi is one of the k nearest neighbors of xj, for
example) The edge (xi,xj) is then assigned a weight
[[xi-xj [[2 which equals the Euclidean distance between
xi and xj; 2) the geodesic distance between xi and
xj is then approximated by the shortest path within

1The number of nearest neighbors k is a parameter of
the algorithm that needs to be pre-set. One can also choose
an e-neighborhoad, i.e., considering xl and xj as connected
if [[x~ --xj[[2 ~ e (see [11] for details).

the weighted graph G, call it o~(xi, xj); 3) the classical
MDS is then applied to the squared-geodesic-distance
matrix/) [d~ (xi, = Xj)]ij= 1. As we can see that the
key difference between the classical MDS and Isomap
is that in the classical MDS pairwise Euclidean dis-
tance is used while in Isomap it is the pairwise geodesic
distance. Empirical success of Isomap for discovering
nonlinear structures of high-dimensional data sets has
been demonstrated in [4, 11].

From both a practical as well as a theoretical view-
point, one is naturally led to the following questions:
What is the low-dimensional nonlinear structure that
Isomap tries to discover? And for what type of nonlin-
ear manifolds, can Isomap perfectly recover the low-
dimensional nonlinear structure? With issues such
as discretization errors, sampling density of the data
points and errors due to noise, it is not easy to an-
swer those questions in a clear way using the current
framework of Isomap based on a discrete set of data
points. It is generally agreed, however, that reasoning
in a continuous framework can sometimes crystalize
the real issue of the problem and provide intuition for
further development. This is the viewpoint taken in
[4] and the same we will follow in this paper as well.
Before we discuss Isomap in a continuous framework,
we need to first introduce some basic notions from dif-
ferential geometry.

3. Isometric Embedding of Manifolds

In this section, we recall several basic facts of differen-
tial geometry [3, 6, 9, 10]. The general theory of man-
ifold learning can be cast in the framework of Rieman-
nian geometry, but to avoid unnecessary abstraction1
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we consider manifolds represented as hypersurfaces in
Euclidean spaces. First, we introduce the concept of a
tangent map.

DEFINITION. Let f : ~ ~ A4 be a mapping between
two manifolds. The tangent map f. of f assigns to
each tangent vector v to ~ the tangent vector f. (v) 
.hi such that if v is the initial velocity of a curve a in
12, then f. (v) is the initial velocity of the image curve
f(a) in 
When ~ is an open set of the d-dimensional Euclidean
space T~d and A4 is embedded in T~"~, and assume that
we can write f as

then

&1fOr1 ... O/fiOrd
Js(~) = : : :

Ofm/OT1 "" Ofm/OTd

gives the Jacobian matrix of f, and the tangent map
f.(v) is simply f.(v) = Jlv, here r = [T1,... , rd]T.

DEFINITION. The mapping f : ~ -+ .hal is an isome-
try if f is one-to-one and onto and f preserves inner
products in the tangent spaces, i.e., for the tangent
map f.,

f, (v)T f, (W) = 

for any two vectors v and w that are tangent to ~.

In the case that fl is an open set of ~d, it is easy to
see that f is an isometry if and only if f is one-to-one
and onto, and the Jacobian matrix Jf is orthonormai,
i.e., Jf Jl -- Id.

The geodesic distance between two points on a man-
ifold is defined as the length of the shortest path be-
tween the two points in question. For an isometry f
defined on an open convex set of T~d, is is easy to show
that the geodesic distance between two points f(T1)
and f(T2) on A4 is given by

d(f(TJ, f(T2)) I1 1 - T2II2. (3.2)

In fact, let ~ : [0, 1] -~ A4 be a curve on Ad such that
(T(0) ----- 7"1 and a(1) = r2, i.e., f(a(0)) = f(T1) and
f(a(1)) = f(r2). The length of the curve a is 

fL(a) = dt
JO 2

/0 /01= IIJf(~(t))~’(t)ll= dt = Ila’(t)ll2 dr.

Geodesic curves on Rd are straight lines, and we can
choose a minimizer of L(a) as ~(t) = T1 + t(v~ -- 
The corresponding minimum value of L(a) is ][vl 
T2]]2, and a geodesic curve on .h4 is given by f(rl 
t(r2 - rJ). We next give two examples to illustrate
the concepts we have introduced.

EXAMPLE. First we consider the set of scaled 2-by-2
rotations of the form

1 [ cose sing]
R(e) = ~ -sing cose ’ e E (-co, oo).

We embed {R(e)} into 4 by

R(e)--+ f(e)=--~=2~_2[cose, sing, -sing, cose]T.

It is easy to check that ]]Jl(e)[]2 = 1, and the geodesic
distance between R(el) and R(e2) is ]81 -e2[.

REMARK. If d = 1, and f14 represents a regular
curve, i.e., f’(r) # 0 for all T E ~2, we can al-
ways reparametrize .h4 by its arc-length s to obtain
g : s -+ J~4 and IIg’(s)ll= = 1, i.e., g is an isometry.

EXAMPLE. Next, we consider the 2-dimensional
swiss-roll surface in 3-dimensional Euclidean space
pazametrized as for u > 02

f(u,v) = [__~2ucos(logu)’ 1
T.V, ~U sin(10gu)]

It can be verified that Jl(u,v) is orthonormal, i.e.,
(Jl(u,v))Tjl(u, v) = I2, and the swiss-roll surface is
isometric to {(u, v)]u > 0}.

4. Continuum Isomap

With the above preparation, we axe now ready to
present a continuous version of Isomap. Let d(x, y)
define the geodesic distance between two points x and
y on the manifold At. We define a continuous version
of the matrix H defined in (2.1) in the form of a contin-
uous kernel K(x, y) as follows ( this can be considered
as the case when the sample points are uniformly con-
centrated on A4),

K(x,y)

We will restrict ourselves to the case: f : ~ --+ At,
and ~ C Rd is an open convex subset. Consequences

~A different swiss-roll surface was used in [7, 11] and
will be discussed in the next section.
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of nonconvexity of (] has been discussed in [1, 4] and
will also be mentioned at the end of this section. By
the formula for change of variables from multi-variate
calculus, the integral of a function F defined on :~4
can be expressed as

/ F(x)dx=~F(S(T))h(T)dT,

where h(T) = v/det(JTJ/). Define for short and with
an abuse of notation,

d/(T1, T2) =-- d(/(rl), f(r2)),

and
Ks(n, r2) - K(/(n), I(r2)),

then the kernel can be represented as

K:(n,7-~)

fn h(7-)dT-

I fn dT-fn aeI(r,~)h(7-)h(~)dl-

More generally, we can also consider data points sam-
pled from an arbitrary density function p concentrated
on £~ to obtain

K:(7-,, 7-2)

I So 7-)+ 7-2)- H(7-)eT-
fn H (7-)dT-

I f, dT- f, ~(7-, ÷)H(OH(÷)d+

where H(7-) p(7-)h(7-).

Parallel to the development in the classical MDS, we
consider the eigenvalue problem of the integral opera-
tor with kernel KI (7-1, 7-2 ). Let ¢(x) be an eigenfunc-
tion of the kernel K(x, y), i.e.,

/K(x,y)p(y)¢(y)dy= ,~¢(x), e 3zt, (4.3)x

or equivalently on £~,

gtgf(7-1,7-2)H(7-2)¢(f(7-2))dT-2 A¢ (,f(7-1)), E 
T1

It is not difficult to verify that ¢(x) has zero mean,
i.e.,

We now show that if S is an isometry, then the first d
largest eigenfunctions form the canonical coordinates
of £~ up to a rigid motion.

Theorem 4.1 Let S : ~ C ~d ~ .hi be an isometry,
i.e.,

d:(Tl,~=) Il u - 7-2112

with £1 open and convex. Let the mean vector c be

Assume that ¢,(x),..., Ca(X) are the d eigenfunctions
of the kernel K(x,y) co~’responding to the d largest
eigenvalues )~j,j = 1,...,d, and

f p(x)¢~ (x)dx = (4.4),~ .

Then the vector function

0 _= [¢,,.-., (d]T = P(7- - e),

where P E ~-~dxd iS a constant orthogonal matrix. Fur-
thermore, )~j,j = 1,... ,d are the eigenvalues and P is
the eigenvector matrix o] the d-by-d symmetric positive
definite matrix,

A - ~(7- - c)H(7-)(7- - c)TdT-,

respectively.

PaOOF. With the assumption d/(7-1, T2) ) = ]17-1 -- 7-2112,
we have

K! (7-,, 7-5)1 $. (117_ 1 __TII2 ._~ lIT- 7-2112-- 117-1--T2112)H(T)dT

fn H(T)dr

-l fn×n lff - +ll2dT-d+/ ( fnH(OdT-) 

(7-, - c)T(7-2 -- C) -- (T1 + 7-2 -- T $~(7- -- c)H(T)dT-

fn H(7-)dT-

+ ~(7--c)H(7-)dT-/~H(r)dr2¯

By the definition of c, we have fn(7- - c)H(7-)dT 
Therefore after some algebraic manipulations,

El(7-1,72) ~-~ (TI -- c)T(7-2 -- 
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Let tj(x), j = 1,-.., d, be the d eigenfunctions corre-
sponding to the largest d eigenvalues Aj of the integral
operator with kernel K](rl, r2),

jr(T1 -- c)T(T2 -- c)H(T2)¢j (f(’r2))d’r2 : Ajtj (f(vl)).

Defining

pj = (~- - e)H(r)¢j(f(~-))d~-, (4.5)

we have

(4.6)

Therefore

o = [¢1(=),-’-, td(=)]r = [Pl,’’’,Pd]T(r--C) =

To prove the orthogonality of P, let us substitute (4.6)
into (4.5) and obtain

Alp t = ~ (T -- c)H(T)(T -- c)T dr . Apt,

where

A = £(T -- c)H(T)(7" -- 

is a positive definite matrix. It clearly shows that Pt
is the eigenvector of A corresponding to the eigenvalue
At. Therefore pl,"’,Pd can chosen to be orthogonal
to each other. Furthermore, by the normalization con-
ditions (4.4) and (4.6),

Hence [[Pt[[2 = 1 and P is aa orthogonal matrix. |

Now if f(T) and f(~) axe two different parametriza-
tions of the same manifold A~ and both f(T) and
f(’~) are isometrics, then clearly 7 and "~ only dif-
fer by a rigid motion. Now suppose V is a different
parametrization of 34 and is related to ~- by ~- -- T(V).
What is the 0 function computed by the continuum
Isomap in terms of 7? The following corollary answers
this question.

Corollary 4.2 Let f : T E n --~ .hi be an isometry,
and 71 is a parametrization of V4 such that T = T(~).
Then the vector function 0 computed by the continuum
Isomap considered as a function of ~ is given by

0 = [¢1,.-., td] = - c).

We now look at an application of this Corollary. In
[7, 11], a 2-dimensional swiss-roll surface embedded in
3-dimensional space is parametrized as

f(u,v) = [ucosu, v, usinu]T.

It is easy to see that

Jl(u, v)TJI(u, V) = diag(x/1 + u2,1),

hence f is not an isometry for the given parametriza-
tion. However, the experimental data given in [7, 11]
seem to indicate that data points sampled uniformly
from a square in the parameter space are mapped back
to a set of points uniformly distributed in a square by
Isomap. How to explain this phenomenon? The an-
swer lies in Corollary 4.2. Now assume that f has the
following property,

Jf(~’)T JI(T) = diag(Pl(’rl),...,pd(Tk)).

Assuming that all the pi’s are positive, and define the
following d one-variable functions

Vi(n) = Pi (Ti)aT~, i= l,...,d,

based on indefinite integrals. Since the pi’s are posi-
tive, the ~i are strictly monotonically increasing, and
therefore the mapping ~1 --+ 7- is one-to-one. It is easy
to verify that

d OViOTk i,j=l,...,d,
5~ = ~ Ork O~t ’

k=l

where ~it is the Kronecker & Define

Jr(q) = [0T//0vtldt=t, J,(~’) [O~ilOTt]dt=l,

it follows that
J,(n)J,(r) = 

¯ 1/2 1/2Since J,(7-) = dmg(p1 (T1),...,pd (~’d)), hence we
have

J~(V) = diag(Pl-U2(Tt),-.. , pdl/2(rd)),

and furthermore

jf(~?)Tjf(~) = 

i.e., the manifold parametrized by V is an isometry. It
follows from Corollary 4.2 that, up to a rigid motion,
the 0 function computed by the continuum Isomap has
the form

[fr, 1/2, ,"

rd 1/2 T

Pl tT1)aT1, . . . , / Pl (Td)dTd] 
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Figure 2. Deformation function for the swiss-roll surface

Notice that the geodesic distances are not preserved
in the T space, but the deformation only occurs along
the individual Ti directions.

Now going back to the swiss-roll surface

/(u,v) [ucosu, v,usinu]
we see that up to a rigid motion, the 0 function com-
puted by the continuum Isomap has the form

[(uvff+ us + arcsinh (u))/2, 
Hence no deformation (stretching and compressing)
occurs in the v direction, but there is certain defor-
mation in the u direction. However, in [7, 11], the
data points are sampled uniformly from the interval
[37r/2,97r/2] along the u-direction. Within this inter-
val, the function ux/1 + u2+arcsinh (u))/2 is very close
to a straight line as is illustrated in Figure 2. This ex-
plains why the points computed by Isomap seem to be
uniformly distributed in a square.

Recall that we have assumed that fZ is a convex open
set. The convexity is crucial for the continuum Isomap
to work correctly, this was clearly pointed out in [1, 4].
The reason is also quite simple, if there is a hole in the
manifold, the geodesic curve needs to move around the
hole and the relationship d/(Tl,’C2) [[TI -r~ll~, will
no longer hold even if Jf(T)TJ/(T) ---- sti ll hol ds
true. This is actually a drawback of methods such
as Isomap that depend on global pairwise distances.
As we have mentioned before, geodesic distance is a
global property of a manifold while isometry is de-
fined locally, i.e., property of the tangent spaces at
each point. Proportionality of geodesic distances to
Euclidean distances in the parameter space is a conse-
quence of isometry. In the nonconvex case, however,

isometry can still hold but proportionality of geodesic
distances to Euclidean distances will fail to be true.
Global method such as Isomap can no longer handle
this case and local method is called for. In fact if you
roll a piece of paper into a swiss-roll shape, you can
flatten it back without regard to whether the shape
of the piece of paper is convex or not. Local meth-
ods such as the local tangent space alignment (LTSA)
method proposed in [13] can still perfectly recover the
low-dimensional structure as is illustrated in Figure 3,
where the original data form a broken ring which is
clearly nonconvex, Isomap fails to recover the original
coordinates while LTSA does very well.

REMARK. The final remark we want to make is that if
cur is not isometric to a fiat space, then the number of
nonzero eigenvalues of the integral operator with ker-
nel K(x, y) defined at the beginning of the section will
be infinite. If we select a finite number of the eigen-
functions, we can not expect them to fully represent
the low-dimensional structure of the given nonlinear
manifold, certain information has been lost going from
infinite to finite.

5. Conclusions

Isomap is a generalization of the classical multidi-
mension scaling method for nonlinear dimension re-
duction. We proposed a continuous version of the
Isomap method and showed that for a nonlinear man-
ifold that can be isometrically embedded onto an Eu-
clidean space, the continuum Isomap computes a set
of eigenfunctions that form the canonical coordinates
of the Euclidean space up to a rigid motion. This an-
swers the questions of what the low-dimensional non-
linear structure is that Isomap tries to discover and
when it can perfectly discover it.
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F/gure 3. Broken ring data set: (left) the original data set, (middle) reconstruction using Isomap, (right) reconstruction
using orthogonal LTSA
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