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Abstract 
We consider the problem of learning to classify 
partially specified instances i.e., instances that 
are described in terms of attribute values at 
different levels of precision, using user-supplied 
attribute value taxonomies (AVT). We formalize 
the problem of learning from AVT and data and 
present an AVT-guided decision tree learning 
algorithm (AVT-DTL) to learn classification 
rules at multiple levels of abstraction. The 
proposed approach generalizes existing 
techniques for dealing with missing values to 
handle instances with partially missing values. 
We present experimental results that demonstrate 
that AVT-DTL is able to effectively learn robust 
high accuracy classifiers from partially specified 
examples. Our experiments also demonstrate that 
the use of AVT-DTL outperforms standard 
decision tree algorithm (C4.5 and its variants) 
when applied to data with missing attribute 
values; and produces substantially more compact 
decision trees than those obtained by standard 
approach. 

1.  Introduction 
In many pattern classification tasks, it is often the case 
that the instances to be classified are specified at different 
levels of precision. That is, the value of a particular 
attribute, or the class label associated with an instance, or 
both are specified at different levels of precision in 
different instances, leading to partially specified 
instances. To illustrate this phenomenon, an attribute 
value taxonomy (AVT) for the “color” attribute in which 
color takes on several values – blue, red, etc. is shown in 
Figure 1. Now suppose that blue objects can be further 
specified in terms of the precise shade of blue such as sky 
blue, light blue, dark blue and navy blue. In this case, in 
one instance, the color of a particular object may be 
described as navy blue, whereas in another instance, it 
may be specified simply as blue without specifying the 
precise shade of blue. 

 Partially specified instances are encountered quite often 
in practice. For example, in a medical diagnosis task, 
different cases may be described in terms of symptoms or 
results of diagnostic tests at different levels of precision 
e.g., a patient may be described as having cardiac 
arrhythmia without specifying the precise type of 
arrhythmia. In an intrusion detection task, the activity to 
be classified may be specified in terms of events 
described at different levels of precision.    This problem 
can be exacerbated when data are gathered by multiple, 
autonomous entities (e.g., physicians, hospitals) each with 
its own local AVT. Hence, algorithms for learning from 
AVT and data are of significant practical interest. 

Figure 1.  Simple Illustrative Taxonomies on Color and Shape 

A second motivation for considering algorithms for 
learning from AVT and data arises from the preference 
for comprehensible and simple, yet accurate and robust 
classifiers in many practical applications of data mining. 
The availability of AVT presents an opportunity to learn 
classification rules that are expressed in terms of abstract 
attribute values (e.g., color=blue instead of color=navy 
blue) leading to simpler, easier-to-comprehend rules. 

A third motivation for considering algorithms for learning 
from AVT and data arises from the need to learn from 
relatively small data sets where there is a greater chance 
of generating classifiers that overfit the training data. A 
common approach used by statisticians when estimating 
from small samples involves shrinkage (Duda et al, 2000) 
or using abstract attribute values which correspond to 
sets of the original attribute values grouped according to 
an AVT (or abstract class labels from a class taxonomy) 
when there are too few instances that match any specific 
attribute value or class label to estimate the relevant 
statistics with adequate confidence. Learning algorithms 
that exploit AVT can automatically perform shrinkage 
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thereby yielding robust classifiers. Hence, such 
algorithms can perform a simple form of regularization or 
pruning so as to minimize over-fitting. 

A fourth motivation for exploring algorithms that can 
exploit user-supplied AVT to analyze a data stems from 
the significance of interaction between data and 
knowledge (Zhang et al., 2002) – in particular, knowledge 
that is in the form of an ontology  available to the learner. 
An ontology consists of a set of concepts and relations 
among concepts. In many data-driven knowledge 
acquisition tasks, there is a need to explore data from 
multiple points of view that reflect different ontological 
commitments on the part of the learner. This is 
particularly important in scientific applications in which 
specific ontological and representational commitments 
often reflect prior knowledge and working assumptions of 
scientists. In such a setting, there is no single universal 
ontology that can serve all users in every context. Hence, 
methods for learning from ontologies and data are needed 
to support knowledge discovery. AVTs constitute an 
especially interesting and commonly encountered type of 
ontologies. Therefore, the exercise of designing 
algorithms for learning from AVT can offer useful 
insights into the more general problem of learning from 
ontologies and data. 

Against this background, this paper explores the problem 
of learning from AVT and data. We present an AVT-
guided decision tree learning algorithm (AVT-DTL) to 
learn classification rules at multiple levels of abstraction. 
The proposed approach generalizes a principled approach 
to dealing with missing values to handle instances with 
partially missing values. We present experimental results 
that demonstrate that AVT-DTL is able to effectively 
learn robust high accuracy classifiers from partially 
specified examples. Our experiments also demonstrate 
that AVT-DTL outperforms standard decision tree 
algorithms (C4.5) when applied to data with missing 
attribute values; and produces substantially more compact 
decision trees than those obtained by C4.5 and its 
variants. 

2.  Attribute Value Taxonomies, Partially 
Specified Attribute Values and Partially 
Specified Instances 

Taxonomies (also known as concept hierarchies) are 
among particularly common and useful class of 
ontologies. A taxonomy is specified by a collection of 
names (types or concepts) and a set of type-subtype 
relations. We focus on taxonomies defined over values of 
an attribute, namely attribute-value taxonomies (AVT). In 
what follows, we define AVT, introduce the notions of a 
partially missing value (relative to an AVT), and a 
partially specified instance (relative to the AVTs 
associated with the attributes used to describe instances).  

An Attribute Value Taxonomy (AVT) associated with an 
attribute A, AVT(A) is a tree rooted at A. The set of leaves 

of the tree, Leaves(AVT(A)), corresponds to the set of 
possible primitive values of A. The internal nodes of the 
tree correspond to abstract values of attribute A. The arcs 
of the tree correspond to ISA relationships between 
attribute values that appear in adjacent levels in the tree. 
Figure 1 shows an example of an AVT for the color 
attribute. The set of abstract values at any given level in 
the tree form a partition of the set of values at the next 
level (and hence, the set of primitive values of A). More 
generally, it is possible to define cuts through the tree that 
correspond to a partition of Leaves(AVT(A)).  For 
example, in Figure 1, the nodes at level 1 i.e., red, green, 
blue define a partition of attribute values that correspond 
to nodes at level 2 (and hence, a partition of all primitive 
values of the `color’ attribute). Similarly, the cut 
corresponding to {red, green, sky blue, dark blue, navy 
blue, light blue} defines a partition of the primitive values 
of the `color’ attribute. 

When each attribute has a single AVT, we will use 
T={T1, T2, …, Tn} (where Ti =  AVT ( Ai)) to represent the 
set of the corresponding AVTs. 

To make the notion of partially specified instances more 
precise, we define several operations on an AVT 
taxonomy Ti associated with an attribute Ai. 

(1) prim (Ti)=Leaves(AVT(Ai)); 

(2) depth(Ti , v(Ai)) returns the length of the path 
from root to an attribute value v(Ai) in the 
taxonomy; 

(3) leaf(Ti , v(Ai)) return a Boolean value indicating if 
v(Ai) is a leaf node in Ti =AVT(Ai), that is if   
v(Ai) ∈ Leaves(Ti). 

With respect to an AVT, a (completely) missing value of 
an attribute A corresponds to the root of AVT(A). We say 
that an attribute A is fully specified in an instance with 
respect to AVT(A) when the value of attribute A is a 
primitive value of A, that is, A∈ Leaves(AVT(A)). We say 
that the value of an attribute A is partially specified (or 
equivalently, partially missing) when its value is not one 
of the primitive values of A. Thus, we can have instances 
specified at different levels of precision resulting in 
partially specified instances. 

An instance j is expressed as a tuple Ij=(v1
(j), v2

(j),…, vn
 (j)) 

where each attribute Ai has a corresponding AVT Ti. Ij is: 

 a completely specified instance, when 
( ) ( )i

j
i Tprimvi ∈∀   

 a partially specified instance when one or more of its 
attribute values are not primitive: 

,)(
j

j
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j
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Thus, a partially specified instance is an instance in which 
at least one of the attributes is partially specified. For 
example, consider a set of objects described in terms of 
the attributes color and shape which have the AVTs 



 

 

shown in Figure 1. The instance (Light Blue, Triangle), is 
fully specified with respect to the corresponding AVTs. 
Some examples of partially specified instances are (Blue, 
Polygon), (Dark Blue, Polygon), and (Blue, Square). 

3.  AVT-guided Decision Tree Learning  
Learning from partially specified instances can be viewed 
as a more general case of the problem of learning from 
instances that have missing attribute values.  Hence, we 
consider approaches to learning from partially specified 
instances based on techniques for handling missing 
attribute values  (Quinlan, 1992) and learning from AVT 
and fully specified instances (Zhang et al., 2002). The 
proposed algorithm accepts as input, a user-supplied AVT 
and a data set of (possibly) partially specified instances, 
and produces as output, a classifier for assigning partially 
specified instances to one of several mutually exclusive 
classes.  

The proposed AVT-guided Decision Tree Learning 
algorithm (AVT-DTL) is a top-down multi-level AVT-
guided search in decision tree hypothesis space. AVT-
DTL has a bias in favor of splits based on more abstract 
attribute values (i.e., those that appear closer to the roots 
of the corresponding AVTs). Thus, AVT-DTL has to 
choose not just a particular attribute, but also an 
appropriate level of abstraction in the AVT. To facilitate 
description of AVT-DTL, we introduce the following 
notations: 

 A={A1, A2, …, An} is an ordered sequence of 
attribute names. Let T={T1, T2, …, Tn} be the 
corresponding set of AVTs.   

 C={C1, C2, …, Cm} is a set of mutually disjoint class 
labels. 

 ψ(v, Ti) is the set of  descendents of a node 
corresponding to value v in a taxonomy Ti 

 Children (v, Ti) is the set of all children – that is, 
direct descendents of a node corresponding to value 
v in a taxonomy Ti 

  Λ(v, Ti) is a list of ancestors, including the root, for 
v in Ti 

 σi(v, S) is the frequency count of value v of attribute 
Ai in a training set S 

 Counts(Ti ) is a tree of counts corresponding to nodes 
in Ti 

 PS={p1
(S), p2

(S), …, pn
(S)} is a pointing vector (also 

called AVT frontier), for a set of instances S where 
pi

(S)
 is a pointer to a value in Ti of attribute Ai 

 Φ(PS)= true if and only if ∀pi
(S) ∈ PS , and ψ( pi

(S), 
Ti) = {} 

During learning, if the candidate split is based on a node 
in the AVT taxonomy that is a descendent of the value of 
the attribute in an instance, the fractional counts 

corresponding to the different branches are computed 
from statistics gathered from the rest of the data set. 
Otherwise, the partially specified instance is treated as 
though it is a fully specified instance. 

AVT-DTL works top-down starting at the root of each 
AVT and builds a decision tree that uses the most abstract 
attribute values that are sufficiently informative for 
classifying the training set consisting of partially specified 
instances. The AVT-DTL algorithm performs a AVT-
guided hill-climbing search in a decision tree hypothesis 
space. It is straightforward to extract classification rules 
from the set of pointing vectors associated with the leaf 
nodes of the decision tree constructed by AVT-DTL.  

The AVT-DTL algorithm consists of the following steps: 

(a) Computation of the counts based on the given AVT 
(Figure 2a) 

(b) Construction of the decision Tree based on the 
Counts (Figure 2b) 

 Figure 2a: Computation of counts based on AVT 

1. Create a root node, set sample set to S, and set 
PS={A1, A2, …, An} so that elements of PS point to  
the roots of the corresponding AVTs  T1, T2, …, Tn. 

2. Initialize frequency counts for AVT by scanning 
training samples: 

a) Accumulate the frequency counts associated with 
each value of each attribute based on the values that 
appear in instances in S. Thus for each Ti ∈ T, we 
compute   σi(v, S) associated with all attribute values  
v that correspond to nodes in Ti. 

b) For each Ti ∈ T update the counts associated with 
ancestors of nodes in Ti which received non-zero 
counts as a result of step (a) by propagating the 
counts up from each such node v to its ancestors. Let 
Counts(Ti) be the resulting counts. 

c) For each Ti ∈ T, and each partially specified attribute 
value v in each instance Ij ∈ S, calculate the 
fractional counts recursively for all descendents of v 
in Ti based on Counts(Ti ) and update Counts(Ti ). 
That is, for each d in  ψ (v, Ti),  update σi(d, S) as 
follows: 
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For example, Figure 3 shows a pointing vector that points 
to two high-level attribute values blue and polygon in the 
two taxonomies of color and shape. If this pointing vector 
appears in the leaf node with class label + in the decision 
tree, the corresponding rule will be: If (Color=blue & 
Shape=polygon &…) then Class =+. 



 

 

Figure 2b: Constructing the decision tree    

  Tree-Build(S, PS) 

1. If each instance in S has same label Ci , return(Ci) 
else if Φ(Ps) is true then assign majority label to 
generate a leaf node in decision tree (Stopping 
Criterion). 

2. For each pointer pi
(S)

  in PS do: 

(a) Check each partially specified instance with 
partially specified value v for attribute Ai with 
the pointer pi

(S). If depth(Ti  , pi
(S))<depth(Ti  , v),  

then the partially specified instance is treated as 
though it were a fully specified instance and 
sent along the appropriate branch of the 
decision tree rooted at  pi.

(S). Otherwise (that is, 
if depth(Ti , pi

(S))≥depth(Ti , v)), replace  v 
probabilistically with d  (an element of 
Children(v, Ti)) according to the distribution of 
counts associated with Children(v, Ti).  

∑
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(b) Calculate the entropy of the set S based on the 
partition by Children( pi

(S), Ti ) in S. 

3. Choose the best pointer pa
(S) in PS to partition S that 

yields the maximum information gain. 

4. Partition the sample set S into 
subsets

),(21 )( ... ,,
i

S
a TpChildren

SSS by using attribute 

values in Children( pa
(S), Ti ). 

5. Extend PS to obtain a new pointing vector 
corresponding to each of the subsets 

),(21 )( ... ,,
i

S
a TpChildren

SSS by replacing the pointer pa
(S) 

with the value of attribute      Ai in the corresponding 
subset Sj   (1≤j≤ |Children( pa

(S), Ti )|). 

6. For each 1≤j≤ |Children( pa
(S), Ti )|, Do 

),(
jSj PSBuildTree − . 

 

 

 

 

 

 

 

Figure 3. Illustrations of a Pointer Vector P 

 

4.  Experiments and Results 

4.1  Experiments 
Several experiments were performed to explore the 
performance of AVT-DTL on two data sets from UC 
Irvine Repository - the Mushroom Toxicology data set, 
and Nursery data set.  

The Mushroom Toxicology dataset consists of 8124 
instances, described in terms of 22 nominal attributes. Of 
the 8124 instances, 4208 are labeled edible (E) and the 
remaining 3916 are labeled poisonous (P).  The twelfth 
attribute value is missing in 2480 of the 8124 instances. 
We adopted the AVT for this data set from Taylor et al. 
(1997). Of the 22 attributes, 17 attributes have AVTs with 
more than 3 levels in depth. 

The Nursery dataset contains 12960 instances. Instances 
are described in term of 8 nominal attributes. Each 
instance belongs to one of 5 classes.  Fairly obvious 
groupings of values yield AVT for 6 of the 8 attributes. 1 

In each case, the error rate of the resulting decision tree 
was estimated using 10-fold cross-validation. The 
reported size of the decision tree corresponds to the 
average size computed from the 10 experiments. The 
experiments compare the decision trees constructed using  

a) AVT-DTL with and without pruning, 

b) C4.5 with and without pruning, and 

c) C4.5 with ‘subsetting’ (option ‘-s’) with and without 
pruning. 

The `subsetting’  option allows C4.5 to consider splits 
based on subsets of attribute values (as opposed to single 
values) along each branch.  

In the case of C4.5, an instance with a missing attribute 
value at a node in the tree is converted into a set of 
fractional instances corresponding to possible values of 
the attribute. The weight of the fractional instance 
assigned to a branch is set equal to the estimated 
probability of observing the corresponding value at that 
branch (Quinlan, 1993). Note that the approach used by 
AVT-DTL to deal with partially specified attribute values 
is a natural generalization of this method for dealing with 
missing values.  

Whenever pruning was used with C4.5, it involved sub-
tree raising with the default setting of the confidence level 
at 25%. Pruning in AVT-DTL involves pre-pruning which 
simply avoids splitting a node further if all the candidate 
splits are not significantly different from random splits at 
a confidence level of 95%. 

In order to explore the performance of AVT-DTL on data 
sets with different percentage of totally missing or 

————— 
1 The AVTs used in our experiments have been submitted to the UC-
Irvine repository  
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partially missing attribute values, data sets with a pre-
specified percentage (0%, 5%, 10%, 20%, 30%, 40%, or 
50%, excluding the missing values in the original data set) 
of (totally) missing attribute values were generated by 
assuming that the missing values are uniformly 
distributed on the attributes as well as instances. Datasets 
were generated for each choice of percentage of missing 
values. From a data set Dm with totally missing values, a 
data set Dp of partially missing values was generated as 
follows: Let (nl nl-1 … n0) be the path from the leaf node nl 
to the root n0 of the AVT corresponding to a (totally) 
missing attribute value; Select one of the nodes along this 
path, excluding nl (with uniform probability); Read the 
corresponding attribute value from the AVT and assign it 
as the value of the corresponding attribute. Note that the 
selection of the root of the AVT would result in a totally 
missing attribute value. Thus, corresponding to every 
instance I∈Dm that has a missing value for some attribute 
(say the jth attribute), there is a corresponding instance in 
Dp in which the jth attribute is partially missing. 

4.2  Results 

AVT-DTL yields significantly lower error rates than 
C4.5 on data sets with substantially large percentage 
of partially missing attribute values. 

Table 1 shows the resulting error estimates along with the 
corresponding 90% confidence intervals. Note that all 
algorithms except for AVT-DTL treat a partially missing 
attribute value as a totally missing attribute value during 
decision tree construction because they do not utilize 
AVTs.  

In the case of Mushroom Toxicology data, the error rate of 
AVT-DTL (5.58% without pruning and 6.51% with 
pruning) is substantially smaller than error rates of each 
of the variants of C4.5 (which range from 15.92% in the 
case of C4.5 with subsetting but no pruning to 24.04% in 
the case of C4.5 with pruning) when half (50%) of the 
attribute values (excluding the attribute values that were 
originally totally missing in the data set) are partially

Table 1: The error rate estimates for AVT-DTL and C4.5 (with different options) with different percentages of partially and totally 
missing values. We use the following abbreviations: C4.5 – standard decision tree learning algorithm without  pruning; C4.5P – C4.5 
with pruning; C4.5S – C4.5 with subsetting; C4.5SP – C4.5 with subsetting and pruning; AVT-DTL(T) – AVT-DTL without applied to 
data sets with totally missing values; AVT-DTL(TP) – AVT-DTL with pruning applied to data sets with totally missing values. AVT-
DTL(Y) – AVT-DTL without pruning applied to data sets with partially missing values; AVT-DTL(YP) – AVT-DTL with pruning 
applied to data sets with partially missing values. 

Percentage of totally or 
partially missing values 

0% 5% 10% 20% 30% 40% 50% 

 % Error rates  estimated using 10-fold cross validation with 90% confidence interval 
C4.5 0 0.99 ± 0.64 2.01±0.90 4.22±1.27 8.08±1.73 14.21±2.21 22.95±2.69 

C4.5P 0 1.03±0.62 2.16±0.91 5.31±1.42 12.46±2.09 16.26±2.33 24.04±2.70 

C4.5S 0 0.99±0.64 1.68±0.81 2.87±1.06 7.14±1.63 10.75±1.96 15.92±2.32 

C4.5SP 0 0.99±0.64 1.90±0.86 3.70±1.19 8.90±1.80 12.60±2.11 18.80±2.48 

AVT-DTL(T) 0 0.94±0.6 1.72±0.82 2.99±1.08 8.73±1.79 12.08±2.07 20.36±2.55 

AVT-DTL(TP) 0 0.95±0.61 1.97±0.87 3.84±1.21 9.78±1.88 13.62±2.17 22.45±2.64 

AVT-DTL(Y) 0 0.47±0.43 1.42±0.75 2.18±0.91 3.19±1.11 4.09±1.24 5.58±1.45 
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AVT-DTL(YP) 0 0.52±0.45 1.72±0.82 2.59±1.00 3.94±1.23 4.87±1.36 6.51±1.56 

C4.5 3.34±0.90 10.03±1.51 14.77±1.78 22.11±2.08 30.01±2.30 36.32±2.41 41.79±2.47 

C4.5P 5.51±1.14 11.12±1.58 16.27±1.85 24.61±2.16 32.64±2.35 38.49±2.44 43.72±2.49 

C4.5S 0.96±0.49 5.75±1.17 11.08±1.57 20.67±2.03 28.59±2.27 34.87±2.39 41.12±2.47 

C4.5SP 1.84±0.68 7.93±1.35 13.65±1.72 22.96±2.11 30.61±2.31 36.92±2.42 43.37±2.49 

AVT-DTL(T) 1.21±0.55 5.86±1.18 11.85±1.62 21.34±2.05 29.14±2.28 34.69±2.39 42.26±2.48 

AVT-DTL(TP) 2.89±0.84 7.94±1.35 13.35±1.70 23.01±2.11 30.17±2.30 36.18±2.41 43.32±2.49 

AVT-DTL(Y) 1.21±0.55 3.10±0.87 6.32±1.22 10.89±1.56 20.17±2.01 27.11±2.23 32.75±2.35 

N
ur

se
ry

 D
at

a 

AVT-DTL(YP) 2.89±0.84 3.62±0.93 7.38±1.31 12.70±1.67 21.93±2.08 27.69±2.25 33.17±2.36 

 



 

 

missing. Qualitatively similar results are obtained in the 
case of Nursery data as well. This is consistent with the 
fact that AVT-DTL constructs decision trees that favor 
tests on abstract attributes that appear close to the roots of 
the AVTs. Consequently, the partially missing attribute 
values which correspond to nodes in the AVT that are 
further away from the root than the attribute tests chosen 
in the decision tree have no adverse impact on error rate.  

AVT-DTL (either with or without pruning) slightly 
outperforms C4.5 with or without pruning (but no 
subsetting), with respect to estimated error rates over a 
broad range of percentage of totally missing attribute 
values. However, C4.5 with subsetting sometimes yields 
slightly lower error rates than AVT-DTL. This may be 
explained by the fact that C4.5 with subsetting is less 
constrained than AVT-DTL in its choice of tests.  

AVT-DTL produces compact, easy-to-comprehend 
classifiers 

Table 2 summarizes the results of experiments comparing 
AVT-DTL with several variants of C4.5 on the original 
MushroomToxicology and Nursery data (without any 
partially missing values). AVT-DTL even without 
pruning yields substantially smaller trees compared to 
standard C4.5 (with or without pruning) and C4.5 with 
subsetting but no pruning. Furthermore, the smaller tree 
size is achieved by AVT-DTL without any deterioration 
in predictive accuracy. C4.5 (with or without pruning) 
yields a tree with 31 nodes which correspond to 26 rules 
each of which includes tests on attribute values 
corresponding to the lowest levels of the AVTs. In 
contrast, AVT-DTL produces a decision tree with 16 
nodes which corresponds to 10 rules in which tests 
correspond to attribute values at the higher levels of the 
AVTs. C4.5 with ‘subsetting’ but without pruning 
produces trees that are substantially larger than those 
obtained by AVT-DTL. It is only when C4.5 uses both 
subsetting and pruning that the resulting trees are 
comparable in size (as measured by the number of nodes 

or the number of leaves) or smaller than those obtained by 
AVT-DTL. 

Table 2. Comparison of tree size and number of leaves in 
decision trees built by variants of C4.5 and AVT-DTL (with 
pruning) in original data set. C4.5 – standard decision tree 
learning algorithm without  pruning; C4.5P – C4.5 with pruning; 
C4.5S – C4.5 with subsetting; C4.5SP – C4.5 with subsetting and 
pruning;. AVT-DTL(Y) – AVT-DTL without pruning.   

MUSHROOM NURSERY  

TREE  
SIZE 

NUMBER
OF 

LEAVES 

TREE  
SIZE 

NUMBER
OF 

LEAVES 

C4.5 31 26 944 680 

C4.5P 31 26 511 359 

C4.5S 20 12 455 272 

C4.5SP 15 9 327 168 

AVT-DTL(Y) 16 10 298 172 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. A decision tree learned by AVT-DTL for the 
Mushroom Toxicology data. 
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Figure 5. Comparison of the sizes of the induced decision trees with different percentages of partially missing values. Note that the Y axis shows the logarithm of 
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C4.5 with subsetting; C4.5SP – C4.5 with subsetting and pruning;. AVT-DTL(Y) and AVT-DTL(YP) – AVT-DTL  without and with pruning respectively.  
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This can be explained by the fact that C4.5 with 
subsetting is less constrained in the choice of splits at 
each node compared to AVT-DTL (whose splits are 
constrained by the AVT). The results are qualitatively 
similar in the case of the Nursery data as well. 

A representative decision tree generated by AVT-DTL is 
shown in the Figure 4. AVT-DTL is quite effective in 
selecting tests based on attribute values    from the higher 
levels of AVT (and hence correspond to more abstract 
attribute values) e.g.,            if (Odor=none) & 
(Spore_print_color = dark) then edible, and dark is an 
abstract attribute value corresponding to a set of colors: 
{black, brown, chocolate} (See Figure 4). Examination of 
decision trees generated using C4.5 shows that this rule in 
fact summarizes three separate rules generated using 
C4.5.  

Figure 5 compares AVT-DTL with C4.5 variants in terms 
of the size of the decision trees generated from data with 
different percentages of partially missing attribute values. 
AVT-DTL without pruning generates trees that are 
smaller than those generated by C4.5 (with or without 
pruning) and C4.5 with subsetting but no pruning. 
Decision trees generated by AVT-DTL with pruning are 
comparable to those generated by C4.5 with subsetting 
and pruning. 

5.  Summary and Discussion 
5.1  Summary 

In this paper, we have presented AVT-DTL, an algorithm 
for learning decision trees using attribute value 
taxonomies from partially specified data in which 
different instances have attribute values specified at 
different levels of precision. Our approach extends the 
ontology-based decision tree algorithm proposed in 
(Zhang et al., 2002) to learn from, and classify partially 
specified instances. The technique used in AVT-DTL for 
handling partially specified attribute values is a 
generalization of an existing approach to dealing with 
missing attribute values in decision tree construction and 
classification.  

Experimental results presented in the paper show that: 

(1) AVT-DTL algorithm is able to learn robust high 
accuracy classifiers from data sets consisting of 
relatively high percentage of partially specified 
instances.  

(2) AVT-DTL algorithm yields substantially more 
compact yet high accuracy decision trees than 
standard decision tree learning algorithm (C4.5) and 
its variants that do not use subsetting or utilize 
attribute value taxonomies to guide decision tree 
construction when applied to data sets with fully 
specified instances as well as data sets with relatively 
high percentage of missing attribute values.  

5.2  Related Work  

Learning from AVT and data has  received some attention 
in the machine learning literature (Núñez, 1991; Quinlan, 
1992; Dhar & Tuzilin, 1993; Almuallim, et al., 1995; 
Taylor et al., 1997; Han & Fu, 1996; Cheung et al., 2000; 
Chen et al., 2002; desJardins et al., 2000; Zhang et al., 
2002). However, this work has not resulted in AVT-based 
algorithms for learning classifiers from partially specified 
data.  

There has been some work on methods for handling 
partially specified data in the context of data integration 
from distributed databases (DeMichiel, 1989; Chen & 
Tseng, 1996; McClean et al., 2001). However, this work 
has not addressed the problem of learning classifiers from 
partially specified data.  

Attribute value taxonomies allow the use of a hierarchy of 
abstract attribute values (corresponding to nodes in an 
AVT) in building classifiers. Each abstract value of an 
attribute corresponds to a set of primitive values of the 
corresponding attribute. The classification rules 
constructed by the RIPPER rule learning algorithm 
proposed by Cohen (1996) utilize tests for membership in 
attribute-value sets. C4.5 with subsetting option can also 
be seen as working with set-valued attributes. However, 
the attribute value sets considered by these algorithms are 
not constrained by any AVT (other than the default single 
level taxonomy with a “don’t care” value as the root and 
primitive values at the leaves). An unconstrained search 
through candidate subsets of values of each attribute 
during the learning phase might, at first glance, result in 
more compact classifiers (e.g. when compactness is 
measured in terms of the number of nodes in a decision 
tree) than those produced by AVT-guided learning 
algorithms such as AVT-DTL.   However, in the absence 
of the structure imposed over sets of attribute values used 
in constructing the classifier, specifying the outcome of 
each test (outgoing branch from a node in the decision 
tree) requires enumerating the members of the set of 
values corresponding to that branch. Thus, each rule 
extracted from a decision tree produced by C4.5 with 
subsetting is a conjunction of disjunctions, making the 
resulting classifiers difficult to interpret. This is also true 
of rules generated by RIPPER using set-valued attributes. 
In contrast, the rules that utilize abstract attribute values 
from an AVT are much more compact because each 
attribute value subset has a name that needs to be 
specified only once – in the AVT, and the attribute value 
sets considered are constrained by the tree structure of the 
AVT. Consequently, the rules generated from trees 
produced by AVT-DTL are compact, and easy to interpret 
because each rule is a simple conjunction of conditions of 
the form (attribute=value).  Because algorithms like 
RIPPER and C4.5 with subsetting have to search the set 
of candidate value subsets for each attribute under 
consideration while adding conditions to a rule or a node 
to trees, they are computationally more demanding than 
AVT-DTL. Furthermore, neither C4.5 with subsetting nor 



 

 

RIPPER is equipped to build classifiers from partially 
specified data. Lastly, many scientific applications require 
users to be able to explore a given data set using 
alternative AVTs which reflect different ontological 
commitments or different ways of conceptualizing a 
domain. Unlike C4.5 with subsetting and RIPPER, AVT-
DTL can utilize a user-supplied AVT to construct 
classification rules that are expressed in terms of abstract 
attribute values that are specified by the AVT.  

5.3  Future Work  
Some directions for future work include: 

(1) Development AVT-based variants of other machine 
learning including Bayesian networks and Support 
Vector Machines, and multi-relational data mining 
algorithms for construction of classifiers from 
partially specified data. 

(2) Development of algorithms that exploit other types of 
ontologies over attribute values and class labels 
including ontologies that capture part-of relations,  
combinations of ISA and part-of relations between 
attribute values, and multiple competing attribute 
value taxonomies defined for each attribute. 

(3) Further experimental evaluation of AVT-DTL and 
related learning algorithms on a broad range of data 
sets in scientific knowledge discovery applications 
e.g., computational biology. 

(4) Integration of AVT-DTL with approaches to 
automated construction of AVT e.g., (Pereira et al., 
1993; Yamazaki et al., 1995). 
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