

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Learning Decision Tree Classifiers from Attribute Value Taxonomies and
Partially Specified Data

Jun Zhang JZHANG@CS.IASTATE.EDU
Vasant Honavar HONAVAR@CS.IASTATE.EDU
Artificial Intelligence Research Laboratory, Department of Computer Science, Iowa State University
Ames, IA 50011 USA

Abstract
We consider the problem of learning to classify
partially specified instances i.e., instances that
are described in terms of attribute values at
different levels of precision, using user-supplied
attribute value taxonomies (AVT). We formalize
the problem of learning from AVT and data and
present an AVT-guided decision tree learning
algorithm (AVT-DTL) to learn classification
rules at multiple levels of abstraction. The
proposed approach generalizes existing
techniques for dealing with missing values to
handle instances with partially missing values.
We present experimental results that demonstrate
that AVT-DTL is able to effectively learn robust
high accuracy classifiers from partially specified
examples. Our experiments also demonstrate that
the use of AVT-DTL outperforms standard
decision tree algorithm (C4.5 and its variants)
when applied to data with missing attribute
values; and produces substantially more compact
decision trees than those obtained by standard
approach.

1. Introduction
In many pattern classification tasks, it is often the case
that the instances to be classified are specified at different
levels of precision. That is, the value of a particular
attribute, or the class label associated with an instance, or
both are specified at different levels of precision in
different instances, leading to partially specified
instances. To illustrate this phenomenon, an attribute
value taxonomy (AVT) for the “color” attribute in which
color takes on several values – blue, red, etc. is shown in
Figure 1. Now suppose that blue objects can be further
specified in terms of the precise shade of blue such as sky
blue, light blue, dark blue and navy blue. In this case, in
one instance, the color of a particular object may be
described as navy blue, whereas in another instance, it
may be specified simply as blue without specifying the
precise shade of blue.

 Partially specified instances are encountered quite often
in practice. For example, in a medical diagnosis task,
different cases may be described in terms of symptoms or
results of diagnostic tests at different levels of precision
e.g., a patient may be described as having cardiac
arrhythmia without specifying the precise type of
arrhythmia. In an intrusion detection task, the activity to
be classified may be specified in terms of events
described at different levels of precision. This problem
can be exacerbated when data are gathered by multiple,
autonomous entities (e.g., physicians, hospitals) each with
its own local AVT. Hence, algorithms for learning from
AVT and data are of significant practical interest.

Figure 1. Simple Illustrative Taxonomies on Color and Shape

A second motivation for considering algorithms for
learning from AVT and data arises from the preference
for comprehensible and simple, yet accurate and robust
classifiers in many practical applications of data mining.
The availability of AVT presents an opportunity to learn
classification rules that are expressed in terms of abstract
attribute values (e.g., color=blue instead of color=navy
blue) leading to simpler, easier-to-comprehend rules.

A third motivation for considering algorithms for learning
from AVT and data arises from the need to learn from
relatively small data sets where there is a greater chance
of generating classifiers that overfit the training data. A
common approach used by statisticians when estimating
from small samples involves shrinkage (Duda et al, 2000)
or using abstract attribute values which correspond to
sets of the original attribute values grouped according to
an AVT (or abstract class labels from a class taxonomy)
when there are too few instances that match any specific
attribute value or class label to estimate the relevant
statistics with adequate confidence. Learning algorithms
that exploit AVT can automatically perform shrinkage

3-D

Primary Color Shape

GreenRed

Navy
blue

Sky
blue

Light
blue

Dark
blue

Polygon

Hexagon Triangle S quare

Ellipse
Blue

thereby yielding robust classifiers. Hence, such
algorithms can perform a simple form of regularization or
pruning so as to minimize over-fitting.

A fourth motivation for exploring algorithms that can
exploit user-supplied AVT to analyze a data stems from
the significance of interaction between data and
knowledge (Zhang et al., 2002) – in particular, knowledge
that is in the form of an ontology available to the learner.
An ontology consists of a set of concepts and relations
among concepts. In many data-driven knowledge
acquisition tasks, there is a need to explore data from
multiple points of view that reflect different ontological
commitments on the part of the learner. This is
particularly important in scientific applications in which
specific ontological and representational commitments
often reflect prior knowledge and working assumptions of
scientists. In such a setting, there is no single universal
ontology that can serve all users in every context. Hence,
methods for learning from ontologies and data are needed
to support knowledge discovery. AVTs constitute an
especially interesting and commonly encountered type of
ontologies. Therefore, the exercise of designing
algorithms for learning from AVT can offer useful
insights into the more general problem of learning from
ontologies and data.

Against this background, this paper explores the problem
of learning from AVT and data. We present an AVT-
guided decision tree learning algorithm (AVT-DTL) to
learn classification rules at multiple levels of abstraction.
The proposed approach generalizes a principled approach
to dealing with missing values to handle instances with
partially missing values. We present experimental results
that demonstrate that AVT-DTL is able to effectively
learn robust high accuracy classifiers from partially
specified examples. Our experiments also demonstrate
that AVT-DTL outperforms standard decision tree
algorithms (C4.5) when applied to data with missing
attribute values; and produces substantially more compact
decision trees than those obtained by C4.5 and its
variants.

2. Attribute Value Taxonomies, Partially
Specified Attribute Values and Partially
Specified Instances

Taxonomies (also known as concept hierarchies) are
among particularly common and useful class of
ontologies. A taxonomy is specified by a collection of
names (types or concepts) and a set of type-subtype
relations. We focus on taxonomies defined over values of
an attribute, namely attribute-value taxonomies (AVT). In
what follows, we define AVT, introduce the notions of a
partially missing value (relative to an AVT), and a
partially specified instance (relative to the AVTs
associated with the attributes used to describe instances).

An Attribute Value Taxonomy (AVT) associated with an
attribute A, AVT(A) is a tree rooted at A. The set of leaves

of the tree, Leaves(AVT(A)), corresponds to the set of
possible primitive values of A. The internal nodes of the
tree correspond to abstract values of attribute A. The arcs
of the tree correspond to ISA relationships between
attribute values that appear in adjacent levels in the tree.
Figure 1 shows an example of an AVT for the color
attribute. The set of abstract values at any given level in
the tree form a partition of the set of values at the next
level (and hence, the set of primitive values of A). More
generally, it is possible to define cuts through the tree that
correspond to a partition of Leaves(AVT(A)). For
example, in Figure 1, the nodes at level 1 i.e., red, green,
blue define a partition of attribute values that correspond
to nodes at level 2 (and hence, a partition of all primitive
values of the `color’ attribute). Similarly, the cut
corresponding to {red, green, sky blue, dark blue, navy
blue, light blue} defines a partition of the primitive values
of the `color’ attribute.

When each attribute has a single AVT, we will use
T={T1, T2, …, Tn} (where Ti = AVT (Ai)) to represent the
set of the corresponding AVTs.

To make the notion of partially specified instances more
precise, we define several operations on an AVT
taxonomy Ti associated with an attribute Ai.

(1) prim (Ti)=Leaves(AVT(Ai));

(2) depth(Ti , v(Ai)) returns the length of the path
from root to an attribute value v(Ai) in the
taxonomy;

(3) leaf(Ti , v(Ai)) return a Boolean value indicating if
v(Ai) is a leaf node in Ti =AVT(Ai), that is if
v(Ai) ∈ Leaves(Ti).

With respect to an AVT, a (completely) missing value of
an attribute A corresponds to the root of AVT(A). We say
that an attribute A is fully specified in an instance with
respect to AVT(A) when the value of attribute A is a
primitive value of A, that is, A∈ Leaves(AVT(A)). We say
that the value of an attribute A is partially specified (or
equivalently, partially missing) when its value is not one
of the primitive values of A. Thus, we can have instances
specified at different levels of precision resulting in
partially specified instances.

An instance j is expressed as a tuple Ij=(v1
(j), v2

(j),…, vn
 (j))

where each attribute Ai has a corresponding AVT Ti. Ij is:

 a completely specified instance, when
() ()i

j
i Tprimvi ∈∀

 a partially specified instance when one or more of its
attribute values are not primitive:

,)(
j

j
i Iv ∈∃),(0),()()(j

ii
j

ii vTleafvTdepth ¬∧≥

Thus, a partially specified instance is an instance in which
at least one of the attributes is partially specified. For
example, consider a set of objects described in terms of
the attributes color and shape which have the AVTs

shown in Figure 1. The instance (Light Blue, Triangle), is
fully specified with respect to the corresponding AVTs.
Some examples of partially specified instances are (Blue,
Polygon), (Dark Blue, Polygon), and (Blue, Square).

3. AVT-guided Decision Tree Learning
Learning from partially specified instances can be viewed
as a more general case of the problem of learning from
instances that have missing attribute values. Hence, we
consider approaches to learning from partially specified
instances based on techniques for handling missing
attribute values (Quinlan, 1992) and learning from AVT
and fully specified instances (Zhang et al., 2002). The
proposed algorithm accepts as input, a user-supplied AVT
and a data set of (possibly) partially specified instances,
and produces as output, a classifier for assigning partially
specified instances to one of several mutually exclusive
classes.

The proposed AVT-guided Decision Tree Learning
algorithm (AVT-DTL) is a top-down multi-level AVT-
guided search in decision tree hypothesis space. AVT-
DTL has a bias in favor of splits based on more abstract
attribute values (i.e., those that appear closer to the roots
of the corresponding AVTs). Thus, AVT-DTL has to
choose not just a particular attribute, but also an
appropriate level of abstraction in the AVT. To facilitate
description of AVT-DTL, we introduce the following
notations:

 A={A1, A2, …, An} is an ordered sequence of
attribute names. Let T={T1, T2, …, Tn} be the
corresponding set of AVTs.

 C={C1, C2, …, Cm} is a set of mutually disjoint class
labels.

 ψ(v, Ti) is the set of descendents of a node
corresponding to value v in a taxonomy Ti

 Children (v, Ti) is the set of all children – that is,
direct descendents of a node corresponding to value
v in a taxonomy Ti

 Λ(v, Ti) is a list of ancestors, including the root, for
v in Ti

 σi(v, S) is the frequency count of value v of attribute
Ai in a training set S

 Counts(Ti) is a tree of counts corresponding to nodes
in Ti

 PS={p1
(S), p2

(S), …, pn
(S)} is a pointing vector (also

called AVT frontier), for a set of instances S where
pi

(S)
 is a pointer to a value in Ti of attribute Ai

 Φ(PS)= true if and only if ∀pi
(S) ∈ PS , and ψ(pi

(S),
Ti) = {}

During learning, if the candidate split is based on a node
in the AVT taxonomy that is a descendent of the value of
the attribute in an instance, the fractional counts

corresponding to the different branches are computed
from statistics gathered from the rest of the data set.
Otherwise, the partially specified instance is treated as
though it is a fully specified instance.

AVT-DTL works top-down starting at the root of each
AVT and builds a decision tree that uses the most abstract
attribute values that are sufficiently informative for
classifying the training set consisting of partially specified
instances. The AVT-DTL algorithm performs a AVT-
guided hill-climbing search in a decision tree hypothesis
space. It is straightforward to extract classification rules
from the set of pointing vectors associated with the leaf
nodes of the decision tree constructed by AVT-DTL.

The AVT-DTL algorithm consists of the following steps:

(a) Computation of the counts based on the given AVT
(Figure 2a)

(b) Construction of the decision Tree based on the
Counts (Figure 2b)

 Figure 2a: Computation of counts based on AVT

1. Create a root node, set sample set to S, and set
PS={A1, A2, …, An} so that elements of PS point to
the roots of the corresponding AVTs T1, T2, …, Tn.

2. Initialize frequency counts for AVT by scanning
training samples:

a) Accumulate the frequency counts associated with
each value of each attribute based on the values that
appear in instances in S. Thus for each Ti ∈ T, we
compute σi(v, S) associated with all attribute values
v that correspond to nodes in Ti.

b) For each Ti ∈ T update the counts associated with
ancestors of nodes in Ti which received non-zero
counts as a result of step (a) by propagating the
counts up from each such node v to its ancestors. Let
Counts(Ti) be the resulting counts.

c) For each Ti ∈ T, and each partially specified attribute
value v in each instance Ij ∈ S, calculate the
fractional counts recursively for all descendents of v
in Ti based on Counts(Ti) and update Counts(Ti).
That is, for each d in ψ (v, Ti), update σi(d, S) as
follows:

() ()
















+←
∑

∈),(
),(

11,,

iTvChildrend
i

ii Sd
SdSd

σ
σσ

For example, Figure 3 shows a pointing vector that points
to two high-level attribute values blue and polygon in the
two taxonomies of color and shape. If this pointing vector
appears in the leaf node with class label + in the decision
tree, the corresponding rule will be: If (Color=blue &
Shape=polygon &…) then Class =+.

Figure 2b: Constructing the decision tree

 Tree-Build(S, PS)

1. If each instance in S has same label Ci , return(Ci)
else if Φ(Ps) is true then assign majority label to
generate a leaf node in decision tree (Stopping
Criterion).

2. For each pointer pi
(S)

 in PS do:

(a) Check each partially specified instance with
partially specified value v for attribute Ai with
the pointer pi

(S). If depth(Ti , pi
(S))<depth(Ti , v),

then the partially specified instance is treated as
though it were a fully specified instance and
sent along the appropriate branch of the
decision tree rooted at pi.

(S). Otherwise (that is,
if depth(Ti , pi

(S))≥depth(Ti , v)), replace v
probabilistically with d (an element of
Children(v, Ti)) according to the distribution of
counts associated with Children(v, Ti).

∑
∈

σ
σ

=

),(
),(

),()Pr(

iTvChildrene
i

i

Te
Td

d
.

(b) Calculate the entropy of the set S based on the
partition by Children(pi

(S), Ti) in S.

3. Choose the best pointer pa
(S) in PS to partition S that

yields the maximum information gain.

4. Partition the sample set S into
subsets

),(21)(... ,,
i

S
a TpChildren

SSS by using attribute

values in Children(pa
(S), Ti).

5. Extend PS to obtain a new pointing vector
corresponding to each of the subsets

),(21)(... ,,
i

S
a TpChildren

SSS by replacing the pointer pa
(S)

with the value of attribute Ai in the corresponding
subset Sj (1≤j≤ |Children(pa

(S), Ti)|).

6. For each 1≤j≤ |Children(pa
(S), Ti)|, Do

),(
jSj PSBuildTree − .

Figure 3. Illustrations of a Pointer Vector P

4. Experiments and Results

4.1 Experiments
Several experiments were performed to explore the
performance of AVT-DTL on two data sets from UC
Irvine Repository - the Mushroom Toxicology data set,
and Nursery data set.

The Mushroom Toxicology dataset consists of 8124
instances, described in terms of 22 nominal attributes. Of
the 8124 instances, 4208 are labeled edible (E) and the
remaining 3916 are labeled poisonous (P). The twelfth
attribute value is missing in 2480 of the 8124 instances.
We adopted the AVT for this data set from Taylor et al.
(1997). Of the 22 attributes, 17 attributes have AVTs with
more than 3 levels in depth.

The Nursery dataset contains 12960 instances. Instances
are described in term of 8 nominal attributes. Each
instance belongs to one of 5 classes. Fairly obvious
groupings of values yield AVT for 6 of the 8 attributes. 1

In each case, the error rate of the resulting decision tree
was estimated using 10-fold cross-validation. The
reported size of the decision tree corresponds to the
average size computed from the 10 experiments. The
experiments compare the decision trees constructed using

a) AVT-DTL with and without pruning,

b) C4.5 with and without pruning, and

c) C4.5 with ‘subsetting’ (option ‘-s’) with and without
pruning.

The `subsetting’ option allows C4.5 to consider splits
based on subsets of attribute values (as opposed to single
values) along each branch.

In the case of C4.5, an instance with a missing attribute
value at a node in the tree is converted into a set of
fractional instances corresponding to possible values of
the attribute. The weight of the fractional instance
assigned to a branch is set equal to the estimated
probability of observing the corresponding value at that
branch (Quinlan, 1993). Note that the approach used by
AVT-DTL to deal with partially specified attribute values
is a natural generalization of this method for dealing with
missing values.

Whenever pruning was used with C4.5, it involved sub-
tree raising with the default setting of the confidence level
at 25%. Pruning in AVT-DTL involves pre-pruning which
simply avoids splitting a node further if all the candidate
splits are not significantly different from random splits at
a confidence level of 95%.

In order to explore the performance of AVT-DTL on data
sets with different percentage of totally missing or

—————
1 The AVTs used in our experiments have been submitted to the UC-
Irvine repository

 Color Shape Made

P=(blue, polygon, …)

 blue
 polygon

partially missing attribute values, data sets with a pre-
specified percentage (0%, 5%, 10%, 20%, 30%, 40%, or
50%, excluding the missing values in the original data set)
of (totally) missing attribute values were generated by
assuming that the missing values are uniformly
distributed on the attributes as well as instances. Datasets
were generated for each choice of percentage of missing
values. From a data set Dm with totally missing values, a
data set Dp of partially missing values was generated as
follows: Let (nl nl-1 … n0) be the path from the leaf node nl
to the root n0 of the AVT corresponding to a (totally)
missing attribute value; Select one of the nodes along this
path, excluding nl (with uniform probability); Read the
corresponding attribute value from the AVT and assign it
as the value of the corresponding attribute. Note that the
selection of the root of the AVT would result in a totally
missing attribute value. Thus, corresponding to every
instance I∈Dm that has a missing value for some attribute
(say the jth attribute), there is a corresponding instance in
Dp in which the jth attribute is partially missing.

4.2 Results

AVT-DTL yields significantly lower error rates than
C4.5 on data sets with substantially large percentage
of partially missing attribute values.

Table 1 shows the resulting error estimates along with the
corresponding 90% confidence intervals. Note that all
algorithms except for AVT-DTL treat a partially missing
attribute value as a totally missing attribute value during
decision tree construction because they do not utilize
AVTs.

In the case of Mushroom Toxicology data, the error rate of
AVT-DTL (5.58% without pruning and 6.51% with
pruning) is substantially smaller than error rates of each
of the variants of C4.5 (which range from 15.92% in the
case of C4.5 with subsetting but no pruning to 24.04% in
the case of C4.5 with pruning) when half (50%) of the
attribute values (excluding the attribute values that were
originally totally missing in the data set) are partially

Table 1: The error rate estimates for AVT-DTL and C4.5 (with different options) with different percentages of partially and totally
missing values. We use the following abbreviations: C4.5 – standard decision tree learning algorithm without pruning; C4.5P – C4.5
with pruning; C4.5S – C4.5 with subsetting; C4.5SP – C4.5 with subsetting and pruning; AVT-DTL(T) – AVT-DTL without applied to
data sets with totally missing values; AVT-DTL(TP) – AVT-DTL with pruning applied to data sets with totally missing values. AVT-
DTL(Y) – AVT-DTL without pruning applied to data sets with partially missing values; AVT-DTL(YP) – AVT-DTL with pruning
applied to data sets with partially missing values.

Percentage of totally or
partially missing values

0% 5% 10% 20% 30% 40% 50%

 % Error rates estimated using 10-fold cross validation with 90% confidence interval
C4.5 0 0.99 ± 0.64 2.01±0.90 4.22±1.27 8.08±1.73 14.21±2.21 22.95±2.69

C4.5P 0 1.03±0.62 2.16±0.91 5.31±1.42 12.46±2.09 16.26±2.33 24.04±2.70

C4.5S 0 0.99±0.64 1.68±0.81 2.87±1.06 7.14±1.63 10.75±1.96 15.92±2.32

C4.5SP 0 0.99±0.64 1.90±0.86 3.70±1.19 8.90±1.80 12.60±2.11 18.80±2.48

AVT-DTL(T) 0 0.94±0.6 1.72±0.82 2.99±1.08 8.73±1.79 12.08±2.07 20.36±2.55

AVT-DTL(TP) 0 0.95±0.61 1.97±0.87 3.84±1.21 9.78±1.88 13.62±2.17 22.45±2.64

AVT-DTL(Y) 0 0.47±0.43 1.42±0.75 2.18±0.91 3.19±1.11 4.09±1.24 5.58±1.45

M
us

hr
oo

m
 to

xi
co

lo
gy

 D
at

a

AVT-DTL(YP) 0 0.52±0.45 1.72±0.82 2.59±1.00 3.94±1.23 4.87±1.36 6.51±1.56

C4.5 3.34±0.90 10.03±1.51 14.77±1.78 22.11±2.08 30.01±2.30 36.32±2.41 41.79±2.47

C4.5P 5.51±1.14 11.12±1.58 16.27±1.85 24.61±2.16 32.64±2.35 38.49±2.44 43.72±2.49

C4.5S 0.96±0.49 5.75±1.17 11.08±1.57 20.67±2.03 28.59±2.27 34.87±2.39 41.12±2.47

C4.5SP 1.84±0.68 7.93±1.35 13.65±1.72 22.96±2.11 30.61±2.31 36.92±2.42 43.37±2.49

AVT-DTL(T) 1.21±0.55 5.86±1.18 11.85±1.62 21.34±2.05 29.14±2.28 34.69±2.39 42.26±2.48

AVT-DTL(TP) 2.89±0.84 7.94±1.35 13.35±1.70 23.01±2.11 30.17±2.30 36.18±2.41 43.32±2.49

AVT-DTL(Y) 1.21±0.55 3.10±0.87 6.32±1.22 10.89±1.56 20.17±2.01 27.11±2.23 32.75±2.35

N
ur

se
ry

 D
at

a

AVT-DTL(YP) 2.89±0.84 3.62±0.93 7.38±1.31 12.70±1.67 21.93±2.08 27.69±2.25 33.17±2.36

missing. Qualitatively similar results are obtained in the
case of Nursery data as well. This is consistent with the
fact that AVT-DTL constructs decision trees that favor
tests on abstract attributes that appear close to the roots of
the AVTs. Consequently, the partially missing attribute
values which correspond to nodes in the AVT that are
further away from the root than the attribute tests chosen
in the decision tree have no adverse impact on error rate.

AVT-DTL (either with or without pruning) slightly
outperforms C4.5 with or without pruning (but no
subsetting), with respect to estimated error rates over a
broad range of percentage of totally missing attribute
values. However, C4.5 with subsetting sometimes yields
slightly lower error rates than AVT-DTL. This may be
explained by the fact that C4.5 with subsetting is less
constrained than AVT-DTL in its choice of tests.

AVT-DTL produces compact, easy-to-comprehend
classifiers

Table 2 summarizes the results of experiments comparing
AVT-DTL with several variants of C4.5 on the original
MushroomToxicology and Nursery data (without any
partially missing values). AVT-DTL even without
pruning yields substantially smaller trees compared to
standard C4.5 (with or without pruning) and C4.5 with
subsetting but no pruning. Furthermore, the smaller tree
size is achieved by AVT-DTL without any deterioration
in predictive accuracy. C4.5 (with or without pruning)
yields a tree with 31 nodes which correspond to 26 rules
each of which includes tests on attribute values
corresponding to the lowest levels of the AVTs. In
contrast, AVT-DTL produces a decision tree with 16
nodes which corresponds to 10 rules in which tests
correspond to attribute values at the higher levels of the
AVTs. C4.5 with ‘subsetting’ but without pruning
produces trees that are substantially larger than those
obtained by AVT-DTL. It is only when C4.5 uses both
subsetting and pruning that the resulting trees are
comparable in size (as measured by the number of nodes

or the number of leaves) or smaller than those obtained by
AVT-DTL.

Table 2. Comparison of tree size and number of leaves in
decision trees built by variants of C4.5 and AVT-DTL (with
pruning) in original data set. C4.5 – standard decision tree
learning algorithm without pruning; C4.5P – C4.5 with pruning;
C4.5S – C4.5 with subsetting; C4.5SP – C4.5 with subsetting and
pruning;. AVT-DTL(Y) – AVT-DTL without pruning.

MUSHROOM NURSERY

TREE
SIZE

NUMBER
OF

LEAVES

TREE
SIZE

NUMBER
OF

LEAVES

C4.5 31 26 944 680

C4.5P 31 26 511 359

C4.5S 20 12 455 272

C4.5SP 15 9 327 168

AVT-DTL(Y) 16 10 298 172

Figure 4. A decision tree learned by AVT-DTL for the
Mushroom Toxicology data.

0

3

6

9

12

lo
g

2(
T

re
e

Si
ze

)

5% 10% 20% 30% 40% 50%
Missin g Valu e Ratio

0

3

6

9

12

lo
g

2(
Tr

ee
 S

iz
e)

5% 10% 20% 30% 40% 50%
Missin g Value Ratio

C4.5
C4.5P
C4.5S
C4.5SP
AVT -DT L(Y)
AVT -DT L(YP)

Tree Sizes for Mushroom data Tree Sizes for Nursery Data

Figure 5. Comparison of the sizes of the induced decision trees with different percentages of partially missing values. Note that the Y axis shows the logarithm of
the tree size to base 2. We use the following abbreviations: C4.5 – standard decision tree learning algorithm without pruning; C4.5P – C4.5 with pruning; C4.5S –
C4.5 with subsetting; C4.5SP – C4.5 with subsetting and pruning;. AVT-DTL(Y) and AVT-DTL(YP) – AVT-DTL without and with pruning respectively.

Odor

P Bruises Spore_print_color

Stalk_surface_below_ring

Cap_color

Gill_size E P E P

E

E P

E P

bad
pleasant

none

dark dim light

dark dim

nobruises

narrow broad

smoothH
ibrous

scaly

This can be explained by the fact that C4.5 with
subsetting is less constrained in the choice of splits at
each node compared to AVT-DTL (whose splits are
constrained by the AVT). The results are qualitatively
similar in the case of the Nursery data as well.

A representative decision tree generated by AVT-DTL is
shown in the Figure 4. AVT-DTL is quite effective in
selecting tests based on attribute values from the higher
levels of AVT (and hence correspond to more abstract
attribute values) e.g., if (Odor=none) &
(Spore_print_color = dark) then edible, and dark is an
abstract attribute value corresponding to a set of colors:
{black, brown, chocolate} (See Figure 4). Examination of
decision trees generated using C4.5 shows that this rule in
fact summarizes three separate rules generated using
C4.5.

Figure 5 compares AVT-DTL with C4.5 variants in terms
of the size of the decision trees generated from data with
different percentages of partially missing attribute values.
AVT-DTL without pruning generates trees that are
smaller than those generated by C4.5 (with or without
pruning) and C4.5 with subsetting but no pruning.
Decision trees generated by AVT-DTL with pruning are
comparable to those generated by C4.5 with subsetting
and pruning.

5. Summary and Discussion
5.1 Summary

In this paper, we have presented AVT-DTL, an algorithm
for learning decision trees using attribute value
taxonomies from partially specified data in which
different instances have attribute values specified at
different levels of precision. Our approach extends the
ontology-based decision tree algorithm proposed in
(Zhang et al., 2002) to learn from, and classify partially
specified instances. The technique used in AVT-DTL for
handling partially specified attribute values is a
generalization of an existing approach to dealing with
missing attribute values in decision tree construction and
classification.

Experimental results presented in the paper show that:

(1) AVT-DTL algorithm is able to learn robust high
accuracy classifiers from data sets consisting of
relatively high percentage of partially specified
instances.

(2) AVT-DTL algorithm yields substantially more
compact yet high accuracy decision trees than
standard decision tree learning algorithm (C4.5) and
its variants that do not use subsetting or utilize
attribute value taxonomies to guide decision tree
construction when applied to data sets with fully
specified instances as well as data sets with relatively
high percentage of missing attribute values.

5.2 Related Work

Learning from AVT and data has received some attention
in the machine learning literature (Núñez, 1991; Quinlan,
1992; Dhar & Tuzilin, 1993; Almuallim, et al., 1995;
Taylor et al., 1997; Han & Fu, 1996; Cheung et al., 2000;
Chen et al., 2002; desJardins et al., 2000; Zhang et al.,
2002). However, this work has not resulted in AVT-based
algorithms for learning classifiers from partially specified
data.

There has been some work on methods for handling
partially specified data in the context of data integration
from distributed databases (DeMichiel, 1989; Chen &
Tseng, 1996; McClean et al., 2001). However, this work
has not addressed the problem of learning classifiers from
partially specified data.

Attribute value taxonomies allow the use of a hierarchy of
abstract attribute values (corresponding to nodes in an
AVT) in building classifiers. Each abstract value of an
attribute corresponds to a set of primitive values of the
corresponding attribute. The classification rules
constructed by the RIPPER rule learning algorithm
proposed by Cohen (1996) utilize tests for membership in
attribute-value sets. C4.5 with subsetting option can also
be seen as working with set-valued attributes. However,
the attribute value sets considered by these algorithms are
not constrained by any AVT (other than the default single
level taxonomy with a “don’t care” value as the root and
primitive values at the leaves). An unconstrained search
through candidate subsets of values of each attribute
during the learning phase might, at first glance, result in
more compact classifiers (e.g. when compactness is
measured in terms of the number of nodes in a decision
tree) than those produced by AVT-guided learning
algorithms such as AVT-DTL. However, in the absence
of the structure imposed over sets of attribute values used
in constructing the classifier, specifying the outcome of
each test (outgoing branch from a node in the decision
tree) requires enumerating the members of the set of
values corresponding to that branch. Thus, each rule
extracted from a decision tree produced by C4.5 with
subsetting is a conjunction of disjunctions, making the
resulting classifiers difficult to interpret. This is also true
of rules generated by RIPPER using set-valued attributes.
In contrast, the rules that utilize abstract attribute values
from an AVT are much more compact because each
attribute value subset has a name that needs to be
specified only once – in the AVT, and the attribute value
sets considered are constrained by the tree structure of the
AVT. Consequently, the rules generated from trees
produced by AVT-DTL are compact, and easy to interpret
because each rule is a simple conjunction of conditions of
the form (attribute=value). Because algorithms like
RIPPER and C4.5 with subsetting have to search the set
of candidate value subsets for each attribute under
consideration while adding conditions to a rule or a node
to trees, they are computationally more demanding than
AVT-DTL. Furthermore, neither C4.5 with subsetting nor

RIPPER is equipped to build classifiers from partially
specified data. Lastly, many scientific applications require
users to be able to explore a given data set using
alternative AVTs which reflect different ontological
commitments or different ways of conceptualizing a
domain. Unlike C4.5 with subsetting and RIPPER, AVT-
DTL can utilize a user-supplied AVT to construct
classification rules that are expressed in terms of abstract
attribute values that are specified by the AVT.

5.3 Future Work
Some directions for future work include:

(1) Development AVT-based variants of other machine
learning including Bayesian networks and Support
Vector Machines, and multi-relational data mining
algorithms for construction of classifiers from
partially specified data.

(2) Development of algorithms that exploit other types of
ontologies over attribute values and class labels
including ontologies that capture part-of relations,
combinations of ISA and part-of relations between
attribute values, and multiple competing attribute
value taxonomies defined for each attribute.

(3) Further experimental evaluation of AVT-DTL and
related learning algorithms on a broad range of data
sets in scientific knowledge discovery applications
e.g., computational biology.

(4) Integration of AVT-DTL with approaches to
automated construction of AVT e.g., (Pereira et al.,
1993; Yamazaki et al., 1995).

Acknowledgements
This research was supported in part by a grant from the
National Science Foundation (IIS 0219699) and a BISTI
award from the National Institutes of Health. The authors
wish to thank members of the Iowa State University
Artificial Intelligence Laboratory and anonymous referees
for their helpful comments on earlier drafts of this paper.

References
Almuallim H., Akiba, Y. & Kaneda, S. (1995). On

Handling Tree-Structured Attributes. In: Proceedings of
the Twelfth International Conference on Machine
Learning. pp. 12-20. Morgan Kaufmann.

Chen, A.L.P. & Tseng, F.S.C. (1996). Evaluating
aggregate operations over imprecise data. IEEE
Transactions on Knowledge and Data Engineering, 8,
273-284.

Chen, J., Shapcott, M., McClean, S.I. & Adamson, K.
(2002). Learning with Concept Hierarchies in
Probabilistic Relational Data Mining. In: Proceedings of
the Third International Conference on Web Age
Information Management. Lecture Notes in Artificial
Intelligence 2419: 104-115. Springer-Verlag.

Cheung D., Hwang, H.Y., Fu, A. & Han, J. (2000). An
Efficient Rule-based Attribute-Oriented Induction for
Data Mining. J. Intelligent Information Systems 15:
175-200

Cohen, W. (1996). Learning Trees and Rules with Set-
valued Features. In. Proceedings of the Thirteenth
National Conference on Artificial Intelligence. pp. 709-
716. AAAI Press.

DeMichiel, L.G. (1989). Resolving database
incompatibility: an approach to performing relational
operations over mismatched domains. IEEE
Transactions on Knowledge and Data Engineering, 4,
485-493.

desJardins, M., Getoor, L. & Koller, D. (2000). Using
Feature Hierarchies in Bayesian Network Learning. In:
Proceedings of the Symposium on Abstraction,
Reformulation, Approximation. Lecture Notes in
Artificial Intelligence 1864: 260-270. Springer-Verlag

Dhar, V. & Tuzhilin, A. (1993). Abstract-Driven Pattern
Discovery in Databases. IEEE Transactions on
Knowledge and Data Engineering 5: 926-938.

Duda, R., Hart, P. & Stork, D. (2000). Pattern
Classification New York: Wiley.

Han, J. & Fu, Y. (1996). Exploration of the Power of
Attribute-Oriented Induction in Data Mining. U.M.
Fayyad, et. al. (eds.), Advances in Knowledge
Discovery and Data Mining. MIT Press.

McClean, S.I., Scotney, B.W. & Shapcott, M. (2001).
Aggregation of Imprecise and Uncertain Information in
Databases. IEEE Transcactions on Knowledge and Data
Engineering 13: 902-912

Núñez, M. (1991). The Use of Background Knowledge in
Decision Tree Induction. Machine Learning 6:231-250.

Pereira, F., Tishby, N. & Lee, L. (1993). Distributional
clustering of English words. In: Proceedings of the
Thirty-first Annual Meeting of the Association for
Computational Linguistics, pp. 183-190.

Quinlan, J. R. (1992). C4.5: Programs for machine
learning. San Mateo, CA: Morgan Kaufmann (1992)

Taylor, M., Stoffel, K. & Hendler, J. (1997). Ontology-
based Induction of High Level Classification Rules. In:
SIGMOD Workshop on Research Issues on Data
Mining and Knowledge Discovery.

Yamazaki, T., Pazzani, M. & Merz, C. (1995). Learning
Hierarchies from Ambiguous Natural Language Data.
In: Proceedings of the Twelfth International Conference
on Machine Learning. pp. 329-342. Morgan-Kaufmann.

Zhang, J., Silvescu, A. & Honavar, V. (2002). Ontology-
Driven Induction of Decision Trees at Multiple Levels
of Abstraction. In: Proceedings of the Symposium on
Abstraction, Reformulation, and Approximation.
Lecture Notes in Artificial Intelligence 2371: 316-323
Springer-Verlag.

