
Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Eliminating Class Noise in Large Datasets

Xingquan Zhu XQZHU@CS.UVM.EDU
Xindong Wu XWU@CS.UVM.EDU
Qijun Chen QCHEN@CS.UVM.EDU
Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Abstract
This paper presents a new approach for
identifying and eliminating mislabeled instances
in large or distributed datasets. We first partition
a dataset into subsets, each of which is small
enough to be processed by an induction
algorithm at one time. We construct good rules
from each subset, and use the good rules to
evaluate the whole dataset. For a given instance
Ik, two error count variables are used to count the
number of times it has been identified as noise
by all subsets. The instance with higher error
values will have a higher probability of being a
mislabeled example. Two threshold schemes,
majority and non-objection, are used to identify
the noise. Experimental results and comparative
studies from real-world datasets are reported to
evaluate the effectiveness and efficiency of the
proposed approach.

1. Introduction

The goal of an inductive learning algorithm is to form a
generalization from a set of training instances such that its
classification accuracy on previously unobserved
instances is maximized. This maximum accuracy is
determined by two most important factors: (1) the quality
of the training data; and (2) the inductive bias of the
learning algorithm. Given a learning algorithm, it’s
obvious that its classification accuracy depends vitally on
the quality of the training data. Accordingly, the most
feasible and direct way to improve the system
effectiveness is to clean up the noise from the training
data. Generally, there are two types of noise sources (Wu,
1995): (a) attribute noise; and (b) class noise. The former
is the errors that are introduced in the attribute values of
the instances. There are two possible sources for class
noise: (1) contradictory examples, i.e., the same examples
with different class labels; and (2) misclassifications:
instances labeled with wrong classes. Due to the fact that
class noise is caused by mislabeling, in this paper, we call
it mislabeled errors, and will identify this type of noise.

Quinlan (1986) demonstrated that, for higher levels of
noise, removing noise from attribute information
decreases the predictive accuracy of the resulting
classifier if the same attribute noise is present when the
classifier is subsequently used. However, for class noise,
the opposite is true: cleaning the training data will result
in a classifier with a higher predictive accuracy. The use
of pruning and learning ensembles partially addresses the
problem, but noise can still drastically affect the accuracy.
Hence, many research efforts have been made on
eliminating mislabeled errors for effective learning.
Generally, the most challenging task in identifying class
noise is how to distinguish the mislabeled errors from the
exceptions to general rules (Srinivasan et al. 1992). When
an instance is an exception to general cases, it can also
appear as if it is incorrectly labeled. Guyon et al. (1996)
provided an approach that uses an information criterion to
measure an instance’s typicality; and atypical instances
are then presented to a human expert to determine
whether they are mislabeled errors or exceptions. The
noise detection algorithm of Gamberger et al. (2000) is
based on the observation that the elimination of noisy
examples reduces the CLCH (Complexity of the Least
Complex correct Hypothesis) value of the training set.
They called their noise elimination algorithm the
Saturation filter since it employs the CLCH measure to
test whether the training set is saturated. Brodley & Friedl
(1996; 1999) simplified noise elimination as a filtering
operation (John, 1995) where multiple classifiers learned
from a noise corrupted dataset are used to identify noise,
and the noise is characterized as the instances that are
incorrectly classified by the multiple classifiers. Similar
schemes have been widely adopted by others (Gamberger
et al., 1999; Verbaeten, 2002). Instead of using multiple
classifiers learned from the same training set for noise
identification, Gamberger et al. (1999) suggested a
Classification Filter approach, in which the training set E
is partitioned into n subsets, a set of classifiers Hy trained
from the aggregation of any n-1 subsets are used to
classify the instances in the complementary (excluded)
subset, and the instances that are incorrectly classified by
Hy are identified as noise.

To perform noise elimination, most approaches above
make two assumptions: (1) the dataset is relatively small
for learning at one time; and (2) the dataset is right at
hand for learning. This is because that most of them adopt
a major set based strategy: Given a dataset E, it is
separated into two parts: a major set and a minor set, and
the major set is used to induce classifiers to identify the
noise from the minor set. Nevertheless, the machine
learning community is currently facing the challenge of
large and distributed datasets, which might be too large to
be handled at one time. Hence, the above assumptions are
too strong in realistic situations. One may argue that in
the case of a large dataset, scaling-up inductive
algorithms (Provost et al., 1999), e.g., boosting and meta-
learning, could be adopted. Unfortunately, Chan’s (1996)
research has shown that in general the classification
accuracy from scaling-up algorithms is worse than the
accuracy from the whole dataset, especially in noisy
environments. This is because that scaling-up algorithms
induce rules from sampled data where many exceptions in
the sampled data are actually valuable instances in the
original dataset. Consequently, while dealing with large
datasets, most noise elimination approaches are
inadequate.

For distributed datasets, the problem with existing
approaches is even more severe. They assume that all data
is at hand for processing. Unfortunately, in realistic
situations, it’s either technically infeasible (e.g.,
bandwidth limitations) or forbidden (e.g., for security or
privacy reasons) to share or download data from other
sites. One can execute noise elimination algorithms on
each single site respectively, but it may inevitably
eliminate some instances that are noise for the current site
but useful for other sites.

In this paper, we present a new strategy to eliminate
mislabeled instances from large datasets, and we also
analyze its availability for distributed datasets. Because
it’s a partition-based scheme, we call it Partitioning Filter
(PF). Our experimental results on real-world datasets will
demonstrate the effectiveness of our approach: with
datasets from the UCI repository (Blake and Merz, 1998),
at any noise level (even 40%), the classifier learned from
the dataset that has been processed by PF always shows
remarkably improved classification accuracy.

2. Noise Elimination from Large Datasets

The flowchart of our proposed scheme (Partitioning
Filter) is depicted in Figure 1, and the various procedures
in Figure 1 are given in Figures 2 and 3. The intuitive
assumption behind our approach in distinguishing
exceptions and noise is that once we can select good rules
from induced classifiers, the behaviors of the exceptions
and noise would be different with the good rules:
exceptions are usually not covered by the selected good
rules, whereas noisy instances are likely covered by the
good rules but produce a wrong classification. Based on

this assumption, we first partition the whole dataset E into
several subsets. Given any subset Pi, we learn a set of
classification rules Ri, then select a good rule set (GRi)
from Ri, and use the GRi to evaluate the whole dataset E.
Given an instance Ik in E, we use two error count
variables, le

kI (local error count) and ge
kI (global error

count), to record the behavior of Ik with GRi from Pi:
(1) If Ik belongs to Pi and Ik’s classification from GRi is

different from its original label, we increase its local
error count (le

kI) by 1;
(2) If Ik does not belong to Pi and Ik’s classification from

GRi is different from its original label, we increase
its global error count (ge

kI) by 1;
(3) Otherwise, le

kI and ge
kI remain the same values.

After we execute the same procedure on all subsets, the
variables le

kI and ge
kI of Ik will indicate the possibility that

Ik is mislabeled. As we stated above, due to the different
behaviors of exceptions and noise with good rules,
mislabeled instances will hopefully receive large values
on le

kI and ge
kI than exceptions. Then two noise

identification schemes, majority and non-objection, are
adopted, as shown in Figure 3. In the majority threshold
scheme, an instance is identified as noise only if more
than one half of the subsets identify it as noise. In the
non-objection scheme, the instance won’t be judged as
noise until its classification results from all subsets are
different from its original label. For both schemes, one
premise to identify Ik as a mislabeled error is that Ik
should be classified as noise by its host subset (subset Pi
to which Ik belongs), as shown in Step (1) of Figure 3,
because a classifier usually has a higher accuracy with the
instances in its training set.

Data partitioning scheme

Good Rule Set
GR1

Good Rule Set
GR2

Good Rule Set
GRi

Good Rule Set
GRn

Large example set E

Subset P1 Subset P2 Subset Pi Subset Pn

Evaluate dataset E

Noise identification, removing
identified noise and good examples

Instances of E that are evaluated
 by all subsets

Partially cleaned set E
E ← E \ {A∪G}

Noise set A

Good example set GStop criterion
satisfied?

Cleaned example set E
E ← E ∪ G

 • • • • • •

 • • • • • •

 • • • •

Yes

No

Evaluate dataset E Evaluate dataset E Evaluate dataset E

Figure 1. Noise elimination from large datasets

Procedure: PartitioningFilter ()

Input: E (training set with S examples)
Parameters: (1) The scheme and threshold to select good
rules (default: Best-L rules); (2) β, the rate of good
examples to be removed in each round (default: β =0.5).
Output: A (detected noise subset of E)
(1) B ← Ø, for any instance Ik∈E, le

kS = ge
kS = lused

kS =0;
(2) Partition E into N subsets.
(3) For i=1, . . , N do
(4) For each subset Pi, learn a rule set Ri from Pi.
(5) GoodRulesSelection (GRi, Ri). // See Section 2.1
(6) For k=1,.., S do
(7) Given instance Ik, Ik∈ E, if Ik ∈ Pi
(8) lused

kS ++;
(9) If Ik ∈ Pi, Ik fires GRi and its classification

from GRi is different from its class label,
(10) le

kS ++;
(11) Else if Ik∉Pi
(12) If Ik fires GRi and its classification from

GRi is different from its class label,
(13) ge

kS ++;
(14) End for
(15) End for
(16) For k=1,.., S do
(17) Given instance Ik, if Noise (lused

kS , le
kS , ge

kS , N) = 1
(18) B ← B ∪ {Ik}
(19) End for
(20) Remove identified noise and a certain portion

(β·||B||) of good examples (G).
(21) E ← E \ {B ∪ G}; A ← A ∪ B;
(22) Exit if the stopping criterion has been satisfied.
(23) Otherwise: Goto Step (1); // Repeat the procedure

Figure 2. Partitioning Filter

Procedure: Noise (lused
kS , le

kS , ge
kS , n)

(1) If (lused
kS ≥ 1 and le

kS = lused
kS)

(2) If Majority Scheme:
(3) If (ge

kS ≥ [(n- lused
kS) ⁄ 2]), Return (1);

(4) Else if Non-objection Scheme:
(5) If (ge

kS ≥ (n- lused
kS)), Return (1);

(6) Else Return (0);

Figure 3. Noise identification (with Majority and Non-objection
schemes)

2.1 Good Rule Selection

To select good rules from each subset, a consistency
check should be adopted. For each rule r learned from
subset Pi, we compute two factors, SubPrec(r, Pi) and

SubCov(r, Pi) which indicate the classification precision
and coverage of r with subset Pi. The criteria we have
adopted for selecting good rules consist of two parts:
(1) The estimated SubPrec(r, Pi) has to be significantly

above the given threshold. This is ensured by Eq.(1).
SubPrec (r, Pi) −SE {SubPrec(r, Pi)} > α (1)

Where α is the threshold to select good rules,
SE{p}= npp)1(− is the standard error of
classification (Breiman et al., 1984).

(2) A rule that covers very few examples cannot be
selected to evaluate other subsets. This is ensured by
Eq.(2).

SubCov (r, Pi) > µ. (2)

With the two criteria above, the parameter α plays an
important role in selecting good rules for each subset Pi.
We adopt three schemes to determine this threshold: (1)
Adaptive Threshold: The user specifies a value that is
relatively close to the actual noise level (assuming the
user knows about the noise level in the dataset); (2) Fixed
Threshold: The system automatically assigns a value for
α, where possible values of α are specified by
experiences or empirical results; and (3) Best-L Rules:
We rank all rules of Pi by their SubPrec(r, Pi) and select
the best L rules with the highest precisions. Meanwhile,
all selected rules should have their SubPrec(r, Pi) higher
than a threshold αw (we set αw = 0.6 in our system). To
determine L for a given dataset, we calculate the average
number of rules induced from each subset, and L is
assigned as θ% of this average number. Our experimental
results suggest that θ=70 can usually provide a good
performance on our evaluate datasets. With the Best-L
Rules scheme, the more complicated the dataset, the
larger is the number L.

2.2 Deduction with the Good Rule Set

Given an instance Ik and a good rule set GRi, deduction
takes place to evaluate how well GRi classifies Ik as
follows. If Ik is not covered by any rule in GRi, Ik remains
unclassified; If Ik is covered by at least one rule in GRi,
and these rules have the same classification, Ik is
classified. However, in the case that Ik matches more than
one rule in GRi, and there are disagreements among these
rules, the confidence of each rule is used to determine the
classification of Ik, where the confidence is determined by
the coverage and accuracy of each rule (Clark & Boswell
1991; Wu, 1998).

With the above deduction strategy, the good rule set GRi
only classifies the instances on which GRi has confidence
in its classification. Consequently, exceptions and noise
are likely to be treated in different ways: the exceptions
are usually not covered by the good rules, but the noisy
instances would likely deny the good rules (covered but
with a different classification). The error count variables
of misclassified examples will receive larger values than
non-noisy examples.

2.3 Multi-Round Execution and Stopping Criterion

Instead of trying to accomplish noise elimination at one
time, we identify noise in multiple rounds until the
following stopping criterion has been satisfied: in T1
continuous rounds, if the number of identified noisy
examples in each round is less than T2, noise elimination
will stop. In our system, we set T1=3 and T2= 01.0⋅X ,
where X is the number of examples in the training set.
After each round, we remove the identified noisy
examples, and also remove a certain number of good
examples (this number is smaller than the number of
identified noisy examples) from the training set. Our
experimental results (Zhu et al., 2003) demonstrate that
when we keep reducing the noise level, eliminating a
small portion of good examples will not have much
influence with the system performance. The benefit of
eliminating good examples is that it can shrink the dataset
size, and consequently, when executing data partitioning
in the next round, we can have a smaller number of
subsets. Therefore, the exceptions in the subsets of the
last round may form new rules in the next round. While
removing good examples, the instances with le

kI and ge
kI

both equal to zero are selected as good examples.

3. Noise Elimination from Distributed Datasets

To eliminate noise from distributed datasets, an intuitive
way is to apply the mechanism above on the dataset at
each site separately. However, with this scheme, it may
not be rare that instances eliminated from one site might
be useful for other sites. Meanwhile, for various reasons,
sharing or downloading the data from each site might be
impossible, but sharing the rules is usually allowable.
Accordingly, we can treat all datasets from different sites
as a virtual dataset (E′), and perform the noise
elimination. In the first stage, the system executes data
partitioning on each distributed dataset by considering the
dataset size. After that, the procedure in Section 2 is
adopted to induce and construct a good rule set from each
data subset. Then, the good rule sets are used to evaluate
all data in E′: while using a good rule set GRi from Pi to
identify noise from other sites, e.g., Pj, only the GRi itself
is passed to Pj. Therefore, no data from any site would
leak out. After noise identification on all subsets is
completed, each data site removes identified noise and a
small portion of good examples from its own dataset.
After the same procedure has been executed on all
datasets, it will repeat the same procedure until the
stopping criterion has been satisfied.

With the above strategy, only induced rules are shared,
the privacy and security of the data are maintained.
Moreover, the noise is determined by not only the local
site but also all other distributed datasets.

4. Experimental Evaluations

4.1 Experiment Settings

To construct classification rules and base classifiers,
C4.5rules (Quinlan, 1993) is adopted in our system. We
have evaluated our noise elimination strategy extensively
on both synthetic and realistic datasets, and more details
can be found in Zhu et al. (2003). Due to size restrictions,
here we will mainly report the results of two relatively
large datasets from the UCI data repository, Adult and
Mushroom.

To add noise, we adopt a pairwise scheme: given a pair of
classes (X, Y) and a noise level x, an instance with its label
X has a x⋅100% chance to be corrupted and mislabeled as
Y, so does an instance of class Y. We use this method
because in realistic situations, only certain types of
classes are likely to be mislabeled. Using this method, the
percentage of the entire training set that is corrupted will
be less than x⋅100% because only some pairs of classes
are considered problematic. In the sections below, we
corrupt only one pair of classes (usually the pair of classes
having the highest proportion of instances, except the
Splice dataset, where we corrupt the classes EI and IE)
and report only the value x in all tables and figures.

For each experiment, we perform 10-fold cross-validation
and use the average accuracy as the final result. In each
run, the dataset is randomly (with a proportional
partitioning scheme) divided into a training set and a test
set, and we corrupt the training set by adding noise with
the above method, and use the test set to evaluate the
system performance. In the sections below, the original
dataset means the noise corrupted training set.

For a better evaluation, we adopt three factors: ER1, ER2
and Noise Elimination Precision (NEP). ER1 occurs when
a non-noisy instance is tagged as noise; and ER2 occurs
when a noisy example is tagged as a correctly labeled
instance. Their equational definitions are given by Eq. (3).

||||
||||)(1 G

GFERP h=
||||

||~||)(2 M
MFERP h=

||||
||||

F
MFNEP h= (3)

where ||X|| denotes the number of examples in set X; F is
the set of examples that are identified as noise and have
been removed; F~ is F’s complement; G is the set of non-
noisy examples and M is the set of noise.

4.2 Threshold Schemes for Noise Identification

In this subsection, we compare the performances of the
majority and non-objection threshold schemes in noise
identification. We first split the original dataset into 5
subsets by using a proportional partitioning scheme (a
detailed analysis on the number of subsets will be
provided in Section 4.4). To select good rules, we use an
adaptive threshold scheme (in Section 2.1): when
processing a dataset with a noise level of x, we randomly
select a value for α with the constraint in Eq. (4).





<−+−
≥−+−−

=
0)1.0()]};1.0(,0{[1
0)1.0()]};1.0(),1.0{[(1

xxRandom
xxxRandom

α (4)

We tabulate the results of noise elimination in Tables 1
and 2 and depict the accuracy improvements in Figure 4.

From Tables 1 and 2, we can find that the non-objection
threshold scheme is much safer than the majority scheme,
and rarely (usually less than 2%) identifies good examples
as noise (ER1 errors). The noise elimination precision
(NEP) from the non-objection scheme is much better than
the majority scheme. However, as a tradeoff, it shows a
relatively severe problem in preventing too much noise
from being removed (ER2 errors). One of the serious
problems with ER2 errors is that they cause the classifier
learned from the cleaned dataset to still suffer from the
low accuracy problem. As shown in Figure 4, its
classification improvement is relatively limited in
comparison with the majority scheme. These observations
suggest that we may not always want the NEP to be
maintained at a high level, and that a more aggressive
scheme is needed if this scheme can keep its ER1 errors at
an acceptable level. From Tables 1 and 2, we can find that
the majority scheme provides a remarkable tradeoff
between the system performance and the NEP. This
scheme can remove about 80% noise from most datasets
at different noise levels (the results from the Adult dataset
are relatively poor). As a result, it receives more
improvement on its classification accuracy. From Figure
4, take the noise level at 20% as an example. Although
both majority and non-objection schemes receive
remarkable accuracy improvements compared with the
original noise corrupted training set, but the majority
scheme has about 2% and 4% more improvements for the
Mushroom and Adult datasets respectively. In the sections
below, unless specified otherwise, we will use the
majority scheme for noise identification.

Table 1. Noise identification schemes (Mushroom dataset)

Majority Scheme Non-objection SchemeNoise
(%) NEP P(ER1) P(ER2) NEP P(ER1) P(ER2)
5 0.801 0.0131 0.0104 0.873 0.0082 0.0075

15 0.921 0.0231 0.0195 0.945 0.0107 0.0582
25 0.943 0.0358 0.0695 0.965 0.0123 0.1231
35 0.681 0.1584 0.2104 0.867 0.0292 0.5214
40 0.662 0.2289 0.2949 0.833 0.0426 0.6955

Table 2. Noise identification schemes (Adult dataset)

Majority Scheme Non-objection SchemeNoise
(%) NEP P(ER1) P(ER2) NEP P(ER1) P(ER2)

5 0.512 0.0335 0.3527 0.795 0.0047 0.6643
15 0.687 0.0563 0.2996 0.891 0.0095 0.5686
25 0.764 0.0738 0.2723 0.918 0.0133 0.5495
35 0.734 0.1488 0.2223 0.943 0.0121 0.6092
40 0.702 0.2629 0.2486 0.946 0.0128 0.6563

50
55
60
65
70
75
80
85
90
95

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Noise Level

A
cc

ur
ac

y

Original
Mushroom

Majority
Mushroom

Non-objection
Mushroom

Original Adult

Majority Adult

Non-objection
Adult

Figure 4. Classification accuracies on Adult and Mushroom
datasets (5 subsets)

50

55

60

65

70

75

80

85

90

95

100

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Noise Level

A
cc

ur
ac

y

Original Dataset

Adaptive
Threshold

Best 10 Rules

Fixed Threshold
0.9

Fixed Threshold
0.75

Fixed Threshold
0.6

Figure 5. Good rule selection schemes (Mushroom dataset, 5
subsets, Majority scheme)

4.3 Good Rule Selection Schemes

In this subsection, we compare the system performance
with three good rule selection schemes in Section 2.1: (1)
the adaptive threshold scheme, with Eq. (4) for
determining the value for α; (2) the fixed threshold
scheme, with three typical fixed values α=0.9, 0.75 and
0.6; and (3) the Best-L rules scheme, with θ=70 which
usually generates L=10 and L=20 for the Mushroom and
Adult datasets respectively. Figure 5 presents the
experimental results.

From Figure 5, one can easily conclude that the adaptive
threshold scheme is the best in almost all situations. With
the fixed threshold scheme, when the noise level is less
than 1-α, its performance is a little worse than the
performance of the adaptive threshold scheme; however,
once the noise level is higher than the given threshold, the
system performance declines rapidly (as demonstrated
when α=0.9 and 0.75). Our analysis shows that when the
noise level x is less than 1-α, the system tends to take
more insignificant rules into the good rule set, and as a
result, more good examples are identified as noise. On the
other hand, when the noise level is higher than 1-α, the
good rules’ precision would tend to be less than 1-α (the
noise corrupts the good rules’ precision), and most good
rules would not be taken into the good rule set. Hence,
less noise is eliminated, which critically affects the

system performance. As indicated in Figure 5, the results
from α=0.6 are acceptable to some degree, even when
worse performances have been found from the lower
noise levels. Hence, in the case that the user has no idea
about the noise level, we may specify a small value for α.
One can find that the results from the Best-L rules scheme
are very attractive. Usually, it has a slightly worse
performance than the adaptive threshold scheme. These
situations usually happen when the noise level is
relatively high. For the Mushroom dataset, when L=10
and the noise level is 30%, the Best-L rules scheme
receives about 2% less improvement than the adaptive
scheme and is similar to the fixed threshold scheme, but
in low noise level environments, it is better than the fixed
threshold scheme. The same conclusion can be drawn
from other datasets. One can image that in general
situations, the user usually has no idea about the noise
level, and from this viewpoint, the Best-L rules scheme
might be the best choice to select good rules. In the
following sections, unless specified otherwise, we use the
Best-L rules scheme to select good rule for each subset.

4.4 Number of Subsets on System Performance

Due to the fact that our approach uses the minor set (one
single subset) to identify noise from the major set (all
other subsets), we need to evaluate how the number of
subsets affects the system performance. If the system
performance is very sensitive to the number of subsets, it
would imply that this method might not work well in
realistic situations. For any given dataset at a certain noise
level (20%), we use a proportional partitioning scheme to
construct various numbers of subsets, and use both the
non-objection and majority threshold schemes to identify
noise. The results of noise elimination and classification
accuracy improvements are given in Table 3.

Table 3 demonstrates that when using more subsets, the
non-objection scheme prevents more noise from being
eliminated. One of the worst consequences of keeping
much noise is that the classifier learned for the dataset
would have very limited improvement (sometimes no
improvement). The classification accuracy of the non-
objection scheme decreases rapidly with the increasing
number of subsets. The majority scheme, on the other
hand, sacrifices a small portion of ER1 errors but gains
considerable improvement on ER2 errors. With this
scheme, the number of subsets has less impact on the
system performance. Comparing the results with 3 and 39
subsets respectively, the ER1 errors of the majority
scheme increases from 5.82% to 14.62%, but we still
receive remarkable improvement on the classification
accuracy. Actually, there is a contradiction between the
number of subsets and the system performance: the more
the subsets, the larger is the number of decision
committee members (because we take each subset as a
decision maker to identify noise), and meanwhile, the
weaker is the ability of each committee member (because
with the increase of the subset number, less information is

contained in each subset). From Table 3, one can
intuitively conclude that the larger the number of subsets,
the worse is the system performance. Actually, at the
beginning, there is a trend that the accuracy increases with
the increase of the subset number, but after a certain
number it begins to drop. However, even in the extreme
case, e.g., 127 subsets, Table 3 indicates that the majority
scheme can still attain a good performance. In most of our
experiments, we use 5 subsets.

Table 3. Noise elimination results with various subset numbers
(Adult dataset)

P(ER1) P(ER2) Accuracy (%)
Sub
sets

Non-
obj. Maj. Non-

obj. Maj. Org. Non-
obj. Maj.

3 0.0303 0.0582 0.4265 0.3067 78.3 83.7 84.4
15 0.0040 0.0700 0.7232 0.2882 78.1 80.3 84.5
27 0.0009 0.1504 0.8244 0.2355 78.5 79.1 83.3
39 0.0002 0.1462 0.8916 0.2118 77.9 78.4 83.4
51 0 0.1726 0.9571 0.2424 78.3 77.9 82.4
63 0 0.1869 0.9781 0.2947 78.2 78.2 82.1
95 0 0.1648 0.9971 0.5120 78.2 78.2 80.9

127 0 0.1729 0.9992 0.6594 78.3 78.3 80.1

4.5 Multiple Rounds of Execution

While most existing methods perform noise identification
in one round, we execute the procedure for multiple
rounds until the stopping criterion is satisfied. One may
ask whether it’s necessary to perform multiple rounds if
one round of execution can attain satisfactory results. We
have recorded the percentage of eliminated noise after the
execution of each round (at different noise levels), and
show the results in Figure 6, where the x-axis denotes the
number of execution rounds and the y-axis represents the
percentage of identified noise until this round. Figure 6
demonstrates that with the Adult dataset, at any noise
level, the first round can only eliminate about 40% of
noise; however, running the same procedure for 5 rounds
will increase this percentage to 60%. Actually, our
experimental results from other datasets (e.g., Mushroom)
indicate that when the noise level is relatively low (less
than 30%), the results from one round of execution are
basically good enough (about 90% of the noise could be
eliminated). However, when the noise level goes higher,
it’s necessary to execute the same procedure more than
once. Generally, since the Adult dataset contains many
exceptions, its classification accuracy is relatively low
(85%) even without any mislabeled error. Hence, we
believe the results from the Adult dataset are
representative for large datasets.

More experiments show that in most situations, the first
five rounds usually eliminate most noise (over 85%) that
the system can identify. Accordingly, instead of using the
stopping criterion in Section 2.3, another possible
empirical operation to stop the program is to execute the
procedure for a certain number of rounds.

35

40

45

50

55

60

65

1 2 3 4 5

Execution Round

El
im

in
at

ed
 N

oi
se

Noise 0.05

Noise 0.10

Noise 0.15

Noise 0.20

Noise 0.25

Noise 0.30

Noise 0.35

Noise 0.40

Figure 6. Noise elimination from multiple rounds (Adult dataset,
5 subsets, Majority and Best-20 Rules schemes)

4.6 More Experimental Results

In addition to the results from the Mushroom and Adult
datasets, Table 5 shows more experiments on 7 other
datasets. More details can be found in Zhu et al., (2003).
Also, for comparative studies, we have implemented the
Classification Filter proposed by Gamberger et al. (1999)
(with 10 subsets, as recommended by these authors). In
Table 5, the first column indicates the noise level and the
other columns present accuracies from different datasets,
where OG indicates the classification accuracy of the
classifier learned from the original dataset, CF represents
the accuracy from the Classification Filter, and PF
denotes the results from our approach (Partitioning Filter).

From the results in Table 5, the system performance can
always improve with noise elimination. With all seven
datasets, noise elimination can contribute from 1% to over
20% to the system performance improvment, varying
from noise levels and datasets. One can also find that
when the noise level is relatively low (less than 15%), the
CF method outperforms the PF scheme on 4 out of 7
datasets. However, when the noise level becomes higher,
the performance of CF decreases rapidly. When the noise
level is at 35%, for example, CF outperforms PF on only
1 out of 7 datasets. Actually, this only dataset is Splice, in
which the instances of the corrupted classes occupy only
50% of the instances in the whole dataset, i.e., the actual
noise in the dataset is one half of the noise level x. Further
analysis provides an answer for this phenomenon: since
CF learns its classifiers from the major sets and uses them
to identify noise in the minor sets, when the noise level is
low, the learned base classifiers would behave well and
have relatively good performances in identifying noise;

but when the noise level increases, the learned classifiers
tend to make more mistakes, which will in turn either
wrongly identify some good instances as noise or keep
noisy examples as good instances. Our approach selects
good rules, and the increase of noise has less impact on
the system performance. Moreover, instead of fully
relying on any single classifier (as the CF scheme does),
we perform noise identification from all subsets, and our
scheme is more robust in noisy environments.

In addition to the classification accuracy, we also
compare the efficiency between CF and PF. Table 4
shows the execution times of the two methods at different
noise levels. We used a PC with Pentium 4, a 2GHz
processor, and 512 MB memory to implement both
methods. The PF scheme is much better than the CF
approach in terms of time efficiency. When the noise
level is 0 and 40%, PF is about 3.4 and 40 times faster
than CF respectively. Our results from other datasets
indicate that on average, PF is about 10 times faster than
CF. Actually, the larger the dataset, and the higher the
noise level, the more efficient is PF compared to CF. Part
of the reason is that the time complexity of C4.5rules
nonlinearly increases with the noise level and the number
of instances. If adopting different inductive algorithms,
the impact of noise might be less significant, but we
believe PF will still be much more efficient than CF.

Table 4. Execution times in seconds (Mushroom dataset)

Execution time at different noise levelsMethods
0% 10% 20% 30% 40%

CF 18.2 159.3 468.6 868.4 1171.2
PF 5.3 12.8 19.8 22.8 29.6

4.7 Discussion

Our approach is related to the Classification Filter (CF)
proposed in Gamberger et al. (1999). However, there are
three key distinctions between them even though they
both adopt a partitioning scheme: (1) CF learns the base
classifier from the aggregation of any n-1 subsets (the
major set) to identify noise from the complementary
(excluded) subset, while our approach learns a classifier
from each single subset (the minor set) to evaluate the
whole dataset; (2) when identifying noisy examples, CF
fully trusts each base classifier, i.e., the instances

Table 5. Experimental results and comparisons from seven datasets of UCI data repository

Krvskp (%) Car (%) Nursery (%) WDBC (%) Splice (%) Credit-app (%) Connect-4 (%)Noise
(%) OG CF PF OG CF PF OG CF PF OG CF PF OG CF PF OG CF PF OG CF PF

5 96.6 98.5 97.9 91.5 91.8 91.3 95.8 96.9 96.2 92.6 92.2 93.9 89.1 92.6 91.8 81.9 85.3 85.6 73.2 75.8 75.7
15 88.1 97.5 96.3 82.7 88.7 88.6 90.4 96.5 94.3 90.6 91.5 92.4 85.6 92.1 91.4 73.7 84.6 86.7 68.2 74.7 75.1
25 76.7 96.4 95.2 76.8 83.8 86.4 83.5 94.9 93.3 88.3 90.1 91.1 82.1 91.2 89.7 66.7 83.4 85.2 61.6 71.8 72.5
35 68.3 93.1 93.6 67.5 78.1 82.7 77.5 90.4 92.7 82.7 84.7 84.9 77.6 89.1 86.4 61.5 80.5 83.9 55.8 68.8 69.7
40 60.7 83.1 84.8 61.8 69.7 81.8 72.7 83.1 92.3 78.6 79.2 79.7 75.5 87.4 80.9 58.2 79.1 81.4 51.6 66.5 67.9

incorrectly classified by the base classifier are directly
identified as noise, but our approach takes each base
classifier as a committee member for noise identification;
and (3) the base classifier in our approach processes only
instances on which it has the confidence. Consequently,
our approach is more efficient in handling large and very
noisy datasets. Meanwhile, one can find that the result of
the CF scheme critically depends on the performance of
adopted learning algorithms. Assuming an inductive
algorithm has a ω% classification accuracy with a noise-
free dataset E″, the CF scheme will inevitably identify
about 100%-ω% of the instances as noise, even if there is
no noise in E″. This is because it unconditionally trusts
each base classifier. This strategy obviously neglects the
fact that inductive algorithms cannot work perfectly, even
with noise-free datasets. Our experimental results (Zhu et
al., 2003) indicate that the CF scheme is usually more
aggressive than our approach, eliminates more instances,
and makes more ER1 errors. This might be another reason
that it occasionally works better than PF when the noise
level is low, because removing a certain portion of
exceptions likely increases the classification accuracy of
some datasets.

5. Conclusions

An inherent disadvantage of existing approaches in
identifying class noise is that they are less efficient in
handling large, distributed datasets. In this paper, we have
presented a Partitioning Filter approach for noise
identification from large, distributed datasets. Given a
dataset E, we first partition it into N subsets. For any
subset Pi, a set of good rules are induced and selected to
evaluate all instances in E. For any instance Ik in E, two
error count variables are used to record how this instance
behaves with the good rule sets from all subsets. Due to
the fact that exceptions usually do not fire the good rules
and noise more likely denies the good rules, the noise has
a higher probability of receiving large error values in
comparison with non-noisy examples. We have adopted
different threshold schemes to identify noise. After each
round, the identified noise and a certain portion of good
examples are removed, and the same procedure is
repeated until the stopping criterion is satisfied.
Experimental evaluations and comparative studies have
shown that our proposed approach is effective and robust
in identifying noise and improving the classification
accuracy.

Acknowledgements

This research is supported by the U.S. Army Research
Laboratory and the U.S. Army Research Office under
grant number DAAD19-02-1-0178. The authors would
like to thank the anonymous reviewers for their
constructive comments on an earlier version of this paper.

References
Blake, C.L. & Merz, C.J. (1998). UCI Repository of

machine learning databases.
Breiman, L., Friedman, J.H., Olshen, R., & Stone, C.

(1984). Classification and Regression Trees.
Wadsworth & Brooks, CA.

Brodley, C.E. & Friedl, M.A. (1996). Identifying and
eliminating mislabeled training instances, Proc. of 13th
National conf. on artificial intelligence, pp.799-805.

Brodley, C.E. & Friedl, M.A. (1999). Identifying
mislabeled training data, Journal of Artificial
Intelligence Research, vol. 11: 131-167.

Chan, P. K.-W. (1996). An extensive meta-learning
approach for scalable and accurate inductive learning,
Ph.D Thesis, Columbia University.

Clark, P., & Boswell, R. (1991). Rule induction with
CN2: some recent improvement, Proc. of 5th ECML,
Berlin, Springer-Verlag.

Gamberger, D., Lavrac, N., & Groselj C. (1999).
Experiments with noise filtering in a medical domain,
Proc. of 16th ICML, pp. 143-151, San Francisco, CA.

Gamberger, D., Lavrac, N., & Dzeroski, S. (2000) Noise
detection and elimination in data preprocessing:
experiments in medical domains. Applied Artificial
Intellig., vol. 14: 205-223.

Guyon, I., Matic, N., & Vapnik, V. (1996). Discovering
information patterns and data cleaning. Advances in
Knowledge Discovery and Data Mining, pp.181-203.
AAAI/MIT Press.

John, G. H. (1995). Robust decision trees: Removing
outliers from databases. Proc. of 1st international conf.
on knowledge discovery and data mining, pp.174-179.

Quinlan, J.R. (1986). Induction of decision trees. Machine
Learning, 1(1): 81-106.

Quinlan, J.R. (1993). C4.5: programs for machine
learning, Morgan Kaufmann, San Mateo, CA.

Provost, F., & Kolluri, V. (1999). A Survey of Methods
for Scaling Up Inductive Algorithms. Data mining and
knowledge discovery, 3(2):131-169.

Srinivasan, A., Muggleton, S., & Bain, M. (1992).
Distinguishing exception from noise in non-monotonic
learning. Proc. of 2th ILP Workshop, pp.97-107.

Verbaeten, S. (2002). Identifying mislabeled training
examples in ILP classification problems, Proc. of
Machine learning conf. of Belgium and the
Netherlands.

Wu, X. (1995), Knowledge acquisition from database,
Ablex Pulishing Corp., USA.

Wu, X. (1998), Rule Induction with Extension Matrices,
American Society for Inform. Science, 49(5):435-454.

Zhu, X., Wu, X. & Chen Q. (2003). Identifying class
noise in large, distributed datasets, Technical Report,
http://www.cs.uvm.edu/tr/CS-03-12.shtml.

