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Abstract 
This paper presents a new approach for 
identifying and eliminating mislabeled instances 
in large or distributed datasets. We first partition 
a dataset into subsets, each of which is small 
enough to be processed by an induction 
algorithm at one time. We construct good rules 
from each subset, and use the good rules to 
evaluate the whole dataset. For a given instance 
Ik, two error count variables are used to count the 
number of times it has been identified as noise 
by all subsets. The instance with higher error 
values will have a higher probability of being a 
mislabeled example. Two threshold schemes, 
majority and non-objection, are used to identify 
the noise. Experimental results and comparative 
studies from real-world datasets are reported to 
evaluate the effectiveness and efficiency of the 
proposed approach. 

1.  Introduction 

The goal of an inductive learning algorithm is to form a 
generalization from a set of training instances such that its 
classification accuracy on previously unobserved 
instances is maximized. This maximum accuracy is 
determined by two most important factors: (1) the quality 
of the training data; and (2) the inductive bias of the 
learning algorithm. Given a learning algorithm, it’s 
obvious that its classification accuracy depends vitally on 
the quality of the training data. Accordingly, the most 
feasible and direct way to improve the system 
effectiveness is to clean up the noise from the training 
data. Generally, there are two types of noise sources (Wu, 
1995): (a) attribute noise; and (b) class noise. The former 
is the errors that are introduced in the attribute values of 
the instances. There are two possible sources for class 
noise: (1) contradictory examples, i.e., the same examples 
with different class labels; and (2) misclassifications:  
instances labeled with wrong classes. Due to the fact that 
class noise is caused by mislabeling, in this paper, we call 
it mislabeled errors, and will identify this type of noise. 

Quinlan (1986) demonstrated that, for higher levels of 
noise, removing noise from attribute information 
decreases the predictive accuracy of the resulting 
classifier if the same attribute noise is present when the 
classifier is subsequently used. However, for class noise, 
the opposite is true: cleaning the training data will result 
in a classifier with a higher predictive accuracy. The use 
of pruning and learning ensembles partially addresses the 
problem, but noise can still drastically affect the accuracy. 
Hence, many research efforts have been made on 
eliminating mislabeled errors for effective learning. 
Generally, the most challenging task in identifying class 
noise is how to distinguish the mislabeled errors from the 
exceptions to general rules (Srinivasan et al. 1992). When 
an instance is an exception to general cases, it can also 
appear as if it is incorrectly labeled. Guyon et al. (1996) 
provided an approach that uses an information criterion to 
measure an instance’s typicality; and atypical instances 
are then presented to a human expert to determine 
whether they are mislabeled errors or exceptions. The 
noise detection algorithm of Gamberger et al. (2000) is 
based on the observation that the elimination of noisy 
examples reduces the CLCH (Complexity of the Least 
Complex correct Hypothesis) value of the training set. 
They called their noise elimination algorithm the 
Saturation filter since it employs the CLCH measure to 
test whether the training set is saturated. Brodley & Friedl 
(1996; 1999) simplified noise elimination as a filtering 
operation (John, 1995) where multiple classifiers learned 
from a noise corrupted dataset are used to identify noise, 
and the noise is characterized as the instances that are 
incorrectly classified by the multiple classifiers. Similar 
schemes have been widely adopted by others (Gamberger 
et al., 1999; Verbaeten, 2002). Instead of using multiple 
classifiers learned from the same training set for noise 
identification, Gamberger et al. (1999) suggested a 
Classification Filter approach, in which the training set E 
is partitioned into n subsets, a set of classifiers Hy trained 
from the aggregation of any n-1 subsets are used to 
classify the instances in the complementary (excluded) 
subset, and the instances that are incorrectly classified by 
Hy are identified as noise. 



 

 

To perform noise elimination, most approaches above 
make two assumptions: (1) the dataset is relatively small 
for learning at one time; and (2) the dataset is right at 
hand for learning. This is because that most of them adopt 
a major set based strategy: Given a dataset E, it is 
separated into two parts: a major set and a minor set, and 
the major set is used to induce classifiers to identify the 
noise from the minor set. Nevertheless, the machine 
learning community is currently facing the challenge of 
large and distributed datasets, which might be too large to 
be handled at one time. Hence, the above assumptions are 
too strong in realistic situations. One may argue that in 
the case of a large dataset, scaling-up inductive 
algorithms (Provost et al., 1999), e.g., boosting and meta-
learning, could be adopted. Unfortunately, Chan’s (1996) 
research has shown that in general the classification 
accuracy from scaling-up algorithms is worse than the 
accuracy from the whole dataset, especially in noisy 
environments. This is because that scaling-up algorithms 
induce rules from sampled data where many exceptions in 
the sampled data are actually valuable instances in the 
original dataset. Consequently, while dealing with large 
datasets, most noise elimination approaches are 
inadequate.  

For distributed datasets, the problem with existing 
approaches is even more severe. They assume that all data 
is at hand for processing. Unfortunately, in realistic 
situations, it’s either technically infeasible (e.g., 
bandwidth limitations) or forbidden (e.g., for security or 
privacy reasons) to share or download data from other 
sites. One can execute noise elimination algorithms on 
each single site respectively, but it may inevitably 
eliminate some instances that are noise for the current site 
but useful for other sites. 

In this paper, we present a new strategy to eliminate 
mislabeled instances from large datasets, and we also 
analyze its availability for distributed datasets. Because 
it’s a partition-based scheme, we call it Partitioning Filter 
(PF). Our experimental results on real-world datasets will 
demonstrate the effectiveness of our approach: with 
datasets from the UCI repository (Blake and Merz, 1998), 
at any noise level (even 40%), the classifier learned from 
the dataset that has been processed by PF always shows 
remarkably improved classification accuracy.  

2. Noise Elimination from Large Datasets 

The flowchart of our proposed scheme (Partitioning 
Filter) is depicted in Figure 1, and the various procedures 
in Figure 1 are given in Figures 2 and 3. The intuitive 
assumption behind our approach in distinguishing 
exceptions and noise is that once we can select good rules 
from induced classifiers, the behaviors of the exceptions 
and noise would be different with the good rules: 
exceptions are usually not covered by the selected good 
rules, whereas noisy instances are likely covered by the 
good rules but produce a wrong classification. Based on 

this assumption, we first partition the whole dataset E into 
several subsets. Given any subset Pi, we learn a set of 
classification rules Ri, then select a good rule set (GRi) 
from Ri, and use the GRi to evaluate the whole dataset E. 
Given an instance Ik in E, we use two error count 
variables, le

kI (local error count) and ge
kI (global error 

count), to record the behavior of Ik with GRi from Pi: 
(1) If Ik belongs to Pi and Ik’s classification from GRi is 

different from its original label, we increase its local 
error count ( le

kI ) by 1;  
(2) If Ik does not belong to Pi and Ik’s classification from 

GRi is different from its original label, we increase 
its global error count ( ge

kI ) by 1;  
(3) Otherwise, le

kI and ge
kI  remain the same values.  

After we execute the same procedure on all subsets, the 
variables le

kI and ge
kI  of Ik will indicate the possibility that 

Ik is mislabeled. As we stated above, due to the different 
behaviors of exceptions and noise with good rules, 
mislabeled instances will hopefully receive large values 
on le

kI and ge
kI  than exceptions. Then two noise 

identification schemes, majority and non-objection, are 
adopted, as shown in Figure 3. In the majority threshold 
scheme, an instance is identified as noise only if more 
than one half of the subsets identify it as noise. In the 
non-objection scheme, the instance won’t be judged as 
noise until its classification results from all subsets are 
different from its original label. For both schemes, one 
premise to identify Ik as a mislabeled error is that Ik 
should be classified as noise by its host subset (subset Pi 
to which Ik belongs), as shown in Step (1) of Figure 3, 
because a classifier usually has a higher accuracy with the 
instances in its training set. 
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Figure 1. Noise elimination from large datasets 



 

 

Procedure: PartitioningFilter () 

Input: E (training set with S examples) 
Parameters: (1) The scheme and threshold to select good 
rules (default: Best-L rules); (2) β, the rate of good 
examples to be removed in each round (default: β =0.5). 
Output: A (detected noise subset of E) 
(1) B ← Ø, for any instance Ik∈E, le

kS = ge
kS = lused

kS =0; 
(2) Partition E into N subsets. 
(3) For i=1, . . , N do 
(4)   For each subset Pi, learn a rule set Ri from Pi. 
(5)   GoodRulesSelection (GRi, Ri). // See Section 2.1 
(6)   For k=1,.., S do   
(7)        Given instance Ik, Ik∈ E, if Ik ∈ Pi 
(8)     lused

kS ++;  
(9)   If Ik ∈ Pi, Ik fires GRi and its classification 

from GRi is different from its class label,  
(10)     le

kS ++; 
(11)         Else if Ik∉Pi 
(12)   If Ik fires GRi and its classification from 

GRi is different from its class label, 
(13)    ge

kS ++; 
(14)   End for 
(15)  End for 
(16)  For k=1,.., S do 
(17)   Given instance Ik, if  Noise ( lused

kS , le
kS , ge

kS , N) = 1 
(18)    B ← B ∪ {Ik} 
(19)  End for 
(20)  Remove identified noise and a certain portion   

(β·||B||) of good examples (G). 
(21)   E ← E \ {B ∪ G};  A ← A ∪ B;  
(22)  Exit if the stopping criterion has been satisfied. 
(23)  Otherwise: Goto Step (1); // Repeat the procedure 

 
Figure 2. Partitioning Filter 

Procedure: Noise ( lused
kS , le

kS , ge
kS , n) 

(1) If  ( lused
kS  ≥ 1 and le

kS  = lused
kS  ) 

(2)         If Majority Scheme: 
(3)           If ( ge

kS ≥ [(n- lused
kS ) ⁄ 2]), Return (1); 

(4)     Else if Non-objection Scheme: 
(5)    If ( ge

kS ≥ (n- lused
kS )), Return (1); 

(6) Else Return (0); 

Figure 3. Noise identification (with Majority and Non-objection 
schemes) 

2.1 Good Rule Selection 

To select good rules from each subset, a consistency 
check should be adopted. For each rule r learned from 
subset Pi, we compute two factors, SubPrec(r, Pi) and 

SubCov(r, Pi) which indicate the classification precision 
and coverage of r with subset Pi. The criteria we have 
adopted for selecting good rules consist of two parts: 
(1) The estimated SubPrec(r, Pi) has to be significantly 

above the given threshold. This is ensured by Eq.(1).  
SubPrec (r, Pi) −SE {SubPrec(r, Pi)} > α     (1) 

Where α is the threshold to select good rules, 
SE{p}= npp )1( −  is the standard error of 
classification (Breiman et al., 1984).  

(2) A rule that covers very few examples cannot be 
selected to evaluate other subsets. This is ensured by 
Eq.(2). 

SubCov (r, Pi) > µ.   (2) 

With the two criteria above, the parameter α plays an 
important role in selecting good rules for each subset Pi. 
We adopt three schemes to determine this threshold: (1) 
Adaptive Threshold: The user specifies a value that is 
relatively close to the actual noise level (assuming the 
user knows about the noise level in the dataset); (2) Fixed 
Threshold: The system automatically assigns a value for 
α, where possible values of α are specified by 
experiences or empirical results; and (3) Best-L Rules: 
We rank all rules of Pi by their SubPrec(r, Pi) and select 
the best L rules with the highest precisions. Meanwhile, 
all selected rules should have their SubPrec(r, Pi) higher 
than a threshold αw (we set αw = 0.6 in our system). To 
determine L for a given dataset, we calculate the average 
number of rules induced from each subset, and L is 
assigned as θ% of this average number. Our experimental 
results suggest that θ=70 can usually provide a good 
performance on our evaluate datasets. With the Best-L 
Rules scheme, the more complicated the dataset, the 
larger is the number L. 

2.2 Deduction with the Good Rule Set 

Given an instance Ik and a good rule set GRi, deduction 
takes place to evaluate how well GRi classifies Ik as 
follows. If Ik is not covered by any rule in GRi, Ik remains 
unclassified; If Ik is covered by at least one rule in GRi, 
and these rules have the same classification, Ik is 
classified. However, in the case that Ik matches more than 
one rule in GRi, and there are disagreements among these 
rules, the confidence of each rule is used to determine the 
classification of Ik, where the confidence is determined by 
the coverage and accuracy of each rule (Clark & Boswell 
1991; Wu, 1998). 

With the above deduction strategy, the good rule set GRi 
only classifies the instances on which GRi has confidence 
in its classification. Consequently, exceptions and noise 
are likely to be treated in different ways: the exceptions 
are usually not covered by the good rules, but the noisy 
instances would likely deny the good rules (covered but 
with a different classification). The error count variables 
of misclassified examples will receive larger values than 
non-noisy examples.  



 

 

2.3 Multi-Round Execution and Stopping Criterion 

Instead of trying to accomplish noise elimination at one 
time, we identify noise in multiple rounds until the 
following stopping criterion has been satisfied: in T1 
continuous rounds, if the number of identified noisy 
examples in each round is less than T2, noise elimination 
will stop. In our system, we set T1=3 and T2= 01.0⋅X , 
where X is the number of examples in the training set. 
After each round, we remove the identified noisy 
examples, and also remove a certain number of good 
examples (this number is smaller than the number of 
identified noisy examples) from the training set. Our 
experimental results (Zhu et al., 2003) demonstrate that 
when we keep reducing the noise level, eliminating a 
small portion of good examples will not have much 
influence with the system performance. The benefit of 
eliminating good examples is that it can shrink the dataset 
size, and consequently, when executing data partitioning 
in the next round, we can have a smaller number of 
subsets. Therefore, the exceptions in the subsets of the 
last round may form new rules in the next round. While 
removing good examples, the instances with le

kI  and ge
kI  

both equal to zero are selected as good examples.  

3. Noise Elimination from Distributed Datasets 

To eliminate noise from distributed datasets, an intuitive 
way is to apply the mechanism above on the dataset at 
each site separately. However, with this scheme, it may 
not be rare that instances eliminated from one site might 
be useful for other sites. Meanwhile, for various reasons, 
sharing or downloading the data from each site might be 
impossible, but sharing the rules is usually allowable. 
Accordingly, we can treat all datasets from different sites 
as a virtual dataset (E′), and perform the noise 
elimination. In the first stage, the system executes data 
partitioning on each distributed dataset by considering the 
dataset size. After that, the procedure in Section 2 is 
adopted to induce and construct a good rule set from each 
data subset. Then, the good rule sets are used to evaluate 
all data in E′: while using a good rule set GRi from Pi to 
identify noise from other sites, e.g., Pj, only the GRi itself 
is passed to Pj. Therefore, no data from any site would 
leak out. After noise identification on all subsets is 
completed, each data site removes identified noise and a 
small portion of good examples from its own dataset. 
After the same procedure has been executed on all 
datasets, it will repeat the same procedure until the 
stopping criterion has been satisfied. 

With the above strategy, only induced rules are shared, 
the privacy and security of the data are maintained. 
Moreover, the noise is determined by not only the local 
site but also all other distributed datasets.  

4. Experimental Evaluations 

4.1 Experiment Settings 

To construct classification rules and base classifiers, 
C4.5rules (Quinlan, 1993) is adopted in our system. We 
have evaluated our noise elimination strategy extensively 
on both synthetic and realistic datasets, and more details 
can be found in Zhu et al. (2003). Due to size restrictions, 
here we will mainly report the results of two relatively 
large datasets from the UCI data repository, Adult and 
Mushroom. 

To add noise, we adopt a pairwise scheme: given a pair of 
classes (X, Y) and a noise level x, an instance with its label 
X has a x⋅100% chance to be corrupted and mislabeled as 
Y, so does an instance of class Y. We use this method 
because in realistic situations, only certain types of 
classes are likely to be mislabeled. Using this method, the 
percentage of the entire training set that is corrupted will 
be less than x⋅100% because only some pairs of classes 
are considered problematic. In the sections below, we 
corrupt only one pair of classes (usually the pair of classes 
having the highest proportion of instances, except the 
Splice dataset, where we corrupt the classes EI and IE) 
and report only the value x in all tables and figures. 

For each experiment, we perform 10-fold cross-validation 
and use the average accuracy as the final result. In each 
run, the dataset is randomly (with a proportional 
partitioning scheme) divided into a training set and a test 
set, and we corrupt the training set by adding noise with 
the above method, and use the test set to evaluate the 
system performance. In the sections below, the original 
dataset means the noise corrupted training set. 

For a better evaluation, we adopt three factors: ER1, ER2 
and Noise Elimination Precision (NEP). ER1 occurs when 
a non-noisy instance is tagged as noise; and ER2 occurs 
when a noisy example is tagged as a correctly labeled 
instance. Their equational definitions are given by Eq. (3). 

||||
||||)( 1 G

GFERP h=   
||||

||~||)( 2 M
MFERP h=    

||||
||||

F
MFNEP h= (3) 

where ||X|| denotes the number of examples in set X; F is 
the set of examples that are identified as noise and have 
been removed; F~ is F’s complement; G is the set of non-
noisy examples and M is the set of noise.  

4.2 Threshold Schemes for Noise Identification 

In this subsection, we compare the performances of the 
majority and non-objection threshold schemes in noise 
identification. We first split the original dataset into 5 
subsets by using a proportional partitioning scheme (a 
detailed analysis on the number of subsets will be 
provided in Section 4.4). To select good rules, we use an 
adaptive threshold scheme (in Section 2.1): when 
processing a dataset with a noise level of x, we randomly 
select a value for α with the constraint in Eq. (4). 
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We tabulate the results of noise elimination in Tables 1 
and 2 and depict the accuracy improvements in Figure 4. 

From Tables 1 and 2, we can find that the non-objection 
threshold scheme is much safer than the majority scheme, 
and rarely (usually less than 2%) identifies good examples 
as noise (ER1 errors). The noise elimination precision 
(NEP) from the non-objection scheme is much better than 
the majority scheme. However, as a tradeoff, it shows a 
relatively severe problem in preventing too much noise 
from being removed (ER2 errors). One of the serious 
problems with ER2 errors is that they cause the classifier 
learned from the cleaned dataset to still suffer from the 
low accuracy problem. As shown in Figure 4, its 
classification improvement is relatively limited in 
comparison with the majority scheme. These observations 
suggest that we may not always want the NEP to be 
maintained at a high level, and that a more aggressive 
scheme is needed if this scheme can keep its ER1 errors at 
an acceptable level. From Tables 1 and 2, we can find that 
the majority scheme provides a remarkable tradeoff 
between the system performance and the NEP. This 
scheme can remove about 80% noise from most datasets 
at different noise levels (the results from the Adult dataset 
are relatively poor). As a result, it receives more 
improvement on its classification accuracy. From Figure 
4, take the noise level at 20% as an example. Although 
both majority and non-objection schemes receive 
remarkable accuracy improvements compared with the 
original noise corrupted training set, but the majority 
scheme has about 2% and 4% more improvements for the 
Mushroom and Adult datasets respectively. In the sections 
below, unless specified otherwise, we will use the 
majority scheme for noise identification.  

Table 1. Noise identification schemes (Mushroom dataset) 

Majority Scheme Non-objection SchemeNoise 
(%) NEP P(ER1) P(ER2) NEP P(ER1) P(ER2)
5 0.801 0.0131 0.0104 0.873 0.0082 0.0075

15 0.921 0.0231 0.0195 0.945 0.0107 0.0582
25 0.943 0.0358 0.0695 0.965 0.0123 0.1231
35 0.681 0.1584 0.2104 0.867 0.0292 0.5214
40 0.662 0.2289 0.2949 0.833 0.0426 0.6955

Table 2. Noise identification schemes (Adult dataset) 

Majority Scheme Non-objection SchemeNoise 
(%) NEP P(ER1) P(ER2) NEP P(ER1) P(ER2)

5 0.512 0.0335 0.3527 0.795 0.0047 0.6643
15 0.687 0.0563 0.2996 0.891 0.0095 0.5686
25 0.764 0.0738 0.2723 0.918 0.0133 0.5495
35 0.734 0.1488 0.2223 0.943 0.0121 0.6092
40 0.702 0.2629 0.2486 0.946 0.0128 0.6563
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Figure 4. Classification accuracies on Adult and Mushroom 
datasets (5 subsets) 
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Figure 5. Good rule selection schemes (Mushroom dataset, 5 
subsets, Majority scheme) 

4.3 Good Rule Selection Schemes 

In this subsection, we compare the system performance 
with three good rule selection schemes in Section 2.1: (1) 
the adaptive threshold scheme, with Eq. (4) for 
determining the value for α; (2) the fixed threshold 
scheme, with three typical fixed values α=0.9, 0.75 and 
0.6; and (3) the Best-L rules scheme, with θ=70 which 
usually generates L=10 and L=20 for the Mushroom and 
Adult datasets respectively. Figure 5 presents the 
experimental results. 

From Figure 5, one can easily conclude that the adaptive 
threshold scheme is the best in almost all situations. With 
the fixed threshold scheme, when the noise level is less 
than 1-α, its performance is a little worse than the 
performance of the adaptive threshold scheme; however, 
once the noise level is higher than the given threshold, the 
system performance declines rapidly (as demonstrated 
when α=0.9 and 0.75). Our analysis shows that when the 
noise level x is less than 1-α, the system tends to take 
more insignificant rules into the good rule set, and as a 
result, more good examples are identified as noise. On the 
other hand, when the noise level is higher than 1-α, the 
good rules’ precision would tend to be less than 1-α (the 
noise corrupts the good rules’ precision), and most good 
rules would not be taken into the good rule set. Hence, 
less noise is eliminated, which critically affects the 



 

 

system performance. As indicated in Figure 5, the results 
from α=0.6 are acceptable to some degree, even when 
worse performances have been found from the lower 
noise levels. Hence, in the case that the user has no idea 
about the noise level, we may specify a small value for α.   
One can find that the results from the Best-L rules scheme 
are very attractive. Usually, it has a slightly worse 
performance than the adaptive threshold scheme. These 
situations usually happen when the noise level is 
relatively high. For the Mushroom dataset, when L=10 
and the noise level is 30%, the Best-L rules scheme 
receives about 2% less improvement than the adaptive 
scheme and is similar to the fixed threshold scheme, but 
in low noise level environments, it is better than the fixed 
threshold scheme. The same conclusion can be drawn 
from other datasets. One can image that in general 
situations, the user usually has no idea about the noise 
level, and from this viewpoint, the Best-L rules scheme 
might be the best choice to select good rules. In the 
following sections, unless specified otherwise, we use the 
Best-L rules scheme to select good rule for each subset. 

4.4 Number of Subsets on System Performance 

Due to the fact that our approach uses the minor set (one 
single subset) to identify noise from the major set (all 
other subsets), we need to evaluate how the number of 
subsets affects the system performance. If the system 
performance is very sensitive to the number of subsets, it 
would imply that this method might not work well in 
realistic situations. For any given dataset at a certain noise 
level (20%), we use a proportional partitioning scheme to 
construct various numbers of subsets, and use both the 
non-objection and majority threshold schemes to identify 
noise. The results of noise elimination and classification 
accuracy improvements are given in Table 3. 

Table 3 demonstrates that when using more subsets, the 
non-objection scheme prevents more noise from being 
eliminated. One of the worst consequences of keeping 
much noise is that the classifier learned for the dataset 
would have very limited improvement (sometimes no 
improvement). The classification accuracy of the non-
objection scheme decreases rapidly with the increasing 
number of subsets. The majority scheme, on the other 
hand, sacrifices a small portion of ER1 errors but gains 
considerable improvement on ER2 errors. With this 
scheme, the number of subsets has less impact on the 
system performance. Comparing the results with 3 and 39 
subsets respectively, the ER1 errors of the majority 
scheme increases from 5.82% to 14.62%, but we still 
receive remarkable improvement on the classification 
accuracy. Actually, there is a contradiction between the 
number of subsets and the system performance: the more 
the subsets, the larger is the number of decision 
committee members (because we take each subset as a 
decision maker to identify noise), and meanwhile, the 
weaker is the ability of each committee member (because 
with the increase of the subset number, less information is 

contained in each subset). From Table 3, one can 
intuitively conclude that the larger the number of subsets, 
the worse is the system performance. Actually, at the 
beginning, there is a trend that the accuracy increases with 
the increase of the subset number, but after a certain 
number it begins to drop. However, even in the extreme 
case, e.g., 127 subsets, Table 3 indicates that the majority 
scheme can still attain a good performance. In most of our 
experiments, we use 5 subsets. 

Table 3. Noise elimination results with various subset numbers 
(Adult dataset) 

P(ER1) P(ER2) Accuracy (%)  
Sub
sets 

Non-
obj. Maj. Non-

obj. Maj. Org. Non-
obj. Maj. 

3 0.0303 0.0582 0.4265 0.3067 78.3 83.7 84.4 
15 0.0040 0.0700 0.7232 0.2882 78.1 80.3 84.5 
27 0.0009 0.1504 0.8244 0.2355 78.5 79.1 83.3 
39 0.0002 0.1462 0.8916 0.2118 77.9 78.4 83.4 
51 0 0.1726 0.9571 0.2424 78.3 77.9 82.4 
63 0 0.1869 0.9781 0.2947 78.2 78.2 82.1 
95 0 0.1648 0.9971 0.5120 78.2 78.2 80.9 

127 0 0.1729 0.9992 0.6594 78.3 78.3 80.1 

4.5 Multiple Rounds of Execution 

While most existing methods perform noise identification 
in one round, we execute the procedure for multiple 
rounds until the stopping criterion is satisfied. One may 
ask whether it’s necessary to perform multiple rounds if 
one round of execution can attain satisfactory results. We 
have recorded the percentage of eliminated noise after the 
execution of each round (at different noise levels), and 
show the results in Figure 6, where the x-axis denotes the 
number of execution rounds and the y-axis represents the 
percentage of identified noise until this round. Figure 6 
demonstrates that with the Adult dataset, at any noise 
level, the first round can only eliminate about 40% of 
noise; however, running the same procedure for 5 rounds 
will increase this percentage to 60%. Actually, our 
experimental results from other datasets (e.g., Mushroom) 
indicate that when the noise level is relatively low (less 
than 30%), the results from one round of execution are 
basically good enough (about 90% of the noise could be 
eliminated). However, when the noise level goes higher, 
it’s necessary to execute the same procedure more than 
once. Generally, since the Adult dataset contains many 
exceptions, its classification accuracy is relatively low 
(85%) even without any mislabeled error. Hence, we 
believe the results from the Adult dataset are 
representative for large datasets. 

More experiments show that in most situations, the first 
five rounds usually eliminate most noise (over 85%) that 
the system can identify. Accordingly, instead of using the 
stopping criterion in Section 2.3, another possible 
empirical operation to stop the program is to execute the 
procedure for a certain number of rounds. 
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Figure 6. Noise elimination from multiple rounds (Adult dataset, 
5 subsets, Majority and Best-20 Rules schemes) 

4.6 More Experimental Results 

In addition to the results from the Mushroom and Adult 
datasets, Table 5 shows more experiments on 7 other 
datasets. More details can be found in Zhu et al., (2003). 
Also, for comparative studies, we have implemented the 
Classification Filter proposed by Gamberger et al. (1999) 
(with 10 subsets, as recommended by these authors). In 
Table 5, the first column indicates the noise level and the 
other columns present accuracies from different datasets, 
where OG indicates the classification accuracy of the 
classifier learned from the original dataset, CF represents 
the accuracy from the Classification Filter, and PF 
denotes the results from our approach (Partitioning Filter).  

From the results in Table 5, the system performance can 
always improve with noise elimination. With all seven 
datasets, noise elimination can contribute from 1% to over 
20% to the system performance improvment, varying 
from noise levels and datasets. One can also find that 
when the noise level is relatively low (less than 15%), the 
CF method outperforms the PF scheme on 4 out of 7 
datasets. However, when the noise level becomes higher, 
the performance of CF decreases rapidly. When the noise 
level is at 35%, for example, CF outperforms PF on only 
1 out of 7 datasets. Actually, this only dataset is Splice, in 
which the instances of the corrupted classes occupy only 
50% of the instances in the whole dataset, i.e., the actual 
noise in the dataset is one half of the noise level x. Further 
analysis provides an answer for this phenomenon: since 
CF learns its classifiers from the major sets and uses them 
to identify noise in the minor sets, when the noise level is 
low, the learned base classifiers would behave well and 
have relatively good performances in identifying noise; 

but when the noise level increases, the learned classifiers 
tend to make more mistakes, which will in turn either 
wrongly identify some good instances as noise or keep 
noisy examples as good instances. Our approach selects 
good rules, and the increase of noise has less impact on 
the system performance. Moreover, instead of fully 
relying on any single classifier (as the CF scheme does), 
we perform noise identification from all subsets, and our 
scheme is more robust in noisy environments.  

In addition to the classification accuracy, we also 
compare the efficiency between CF and PF. Table 4 
shows the execution times of the two methods at different 
noise levels. We used a PC with Pentium 4, a 2GHz 
processor, and 512 MB memory to implement both 
methods. The PF scheme is much better than the CF 
approach in terms of time efficiency. When the noise 
level is 0 and 40%, PF is about 3.4 and 40 times faster 
than CF respectively. Our results from other datasets 
indicate that on average, PF is about 10 times faster than 
CF. Actually, the larger the dataset, and the higher the 
noise level, the more efficient is PF compared to CF. Part 
of the reason is that the time complexity of C4.5rules 
nonlinearly increases with the noise level and the number 
of instances. If adopting different inductive algorithms, 
the impact of noise might be less significant, but we 
believe PF will still be much more efficient than CF.   

Table 4. Execution times in seconds (Mushroom dataset) 

Execution time at different noise levelsMethods 
0% 10% 20% 30% 40% 

CF 18.2 159.3 468.6 868.4 1171.2 
PF 5.3 12.8 19.8 22.8 29.6

4.7 Discussion 

Our approach is related to the Classification Filter (CF) 
proposed in Gamberger et al. (1999). However, there are 
three key distinctions between them even though they 
both adopt a partitioning scheme: (1) CF learns the base 
classifier from the aggregation of any n-1 subsets (the 
major set) to identify noise from the complementary 
(excluded) subset, while our approach learns a classifier 
from each single subset (the minor set) to evaluate the 
whole dataset; (2) when identifying noisy examples, CF 
fully trusts each base classifier, i.e., the instances 

Table 5. Experimental results and comparisons from seven datasets of UCI data repository 

Krvskp (%) Car (%) Nursery (%) WDBC (%) Splice (%) Credit-app (%) Connect-4 (%)Noise 
(%) OG CF PF OG CF PF OG CF PF OG CF PF OG CF PF OG CF PF OG CF PF

5 96.6 98.5 97.9 91.5 91.8 91.3 95.8 96.9 96.2 92.6 92.2 93.9 89.1 92.6 91.8 81.9 85.3 85.6 73.2 75.8 75.7
15 88.1 97.5 96.3 82.7 88.7 88.6 90.4 96.5 94.3 90.6 91.5 92.4 85.6 92.1 91.4 73.7 84.6 86.7 68.2 74.7 75.1
25 76.7 96.4 95.2 76.8 83.8 86.4 83.5 94.9 93.3 88.3 90.1 91.1 82.1 91.2 89.7 66.7 83.4 85.2 61.6 71.8 72.5
35 68.3 93.1 93.6 67.5 78.1 82.7 77.5 90.4 92.7 82.7 84.7 84.9 77.6 89.1 86.4 61.5 80.5 83.9 55.8 68.8 69.7
40 60.7 83.1 84.8 61.8 69.7 81.8 72.7 83.1 92.3 78.6 79.2 79.7 75.5 87.4 80.9 58.2 79.1 81.4 51.6 66.5 67.9



 

 

incorrectly classified by the base classifier are directly 
identified as noise, but our approach takes each base 
classifier as a committee member for noise identification; 
and (3) the base classifier in our approach processes only 
instances on which it has the confidence. Consequently, 
our approach is more efficient in handling large and very 
noisy datasets. Meanwhile, one can find that the result of 
the CF scheme critically depends on the performance of 
adopted learning algorithms. Assuming an inductive 
algorithm has a ω% classification accuracy with a noise-
free dataset E″, the CF scheme will inevitably identify 
about 100%-ω% of the instances as noise, even if there is 
no noise in E″. This is because it unconditionally trusts 
each base classifier. This strategy obviously neglects the 
fact that inductive algorithms cannot work perfectly, even 
with noise-free datasets. Our experimental results (Zhu et 
al., 2003) indicate that the CF scheme is usually more 
aggressive than our approach, eliminates more instances, 
and makes more ER1 errors. This might be another reason 
that it occasionally works better than PF when the noise 
level is low, because removing a certain portion of 
exceptions likely increases the classification accuracy of 
some datasets.  

5. Conclusions 

An inherent disadvantage of existing approaches in 
identifying class noise is that they are less efficient in 
handling large, distributed datasets. In this paper, we have 
presented a Partitioning Filter approach for noise 
identification from large, distributed datasets. Given a 
dataset E, we first partition it into N subsets. For any 
subset Pi, a set of good rules are induced and selected to 
evaluate all instances in E. For any instance Ik in E, two 
error count variables are used to record how this instance 
behaves with the good rule sets from all subsets. Due to 
the fact that exceptions usually do not fire the good rules 
and noise more likely denies the good rules, the noise has 
a higher probability of receiving large error values in 
comparison with non-noisy examples. We have adopted 
different threshold schemes to identify noise. After each 
round, the identified noise and a certain portion of good 
examples are removed, and the same procedure is 
repeated until the stopping criterion is satisfied. 
Experimental evaluations and comparative studies have 
shown that our proposed approach is effective and robust 
in identifying noise and improving the classification 
accuracy.   
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