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Abstract

The minimal-length encoding approach is applied to
define concept of sequence similarity. A sequence is
defined to be similar to another sequence or to a set
of keywords if it can be encoded in a small number
of bits by taking advantage of common subwords.
Minimal-length encoding of a sequence is computed
in linear time, using a data compression algorithm
that is based on a dynamic programming strategy
and the directed acyclic word graph data structure.
No assumptions about common word ("k-tuple")
length are made in advance, and common words
of any length are considered. The newly proposed
algorithmic significance method provides an exact
upper bound on the probability that sequence sim-
ilarity has occurred by chance, thus eliminating the
need for any arbitrary choice of similarity thresh-
olds. Preliminary experiments indicate that a small
number of keywords can positively identify a DNA
sequence, which is extremely relevant in the context
of partial sequencing by hybridization.

1 Introduction

The search for sequence similarity based on subword
composition is a common concept now. Pevzner [12]
recently reviewed many different methods based on
this concept. In the following, we present several
improvements over current methods that are based
on the minimal length encoding approach.

Subword similarity searching is typically based
on words ("k-tuples") that do not exceed a speci-
fied length. The word length is restricted in order to

limit the time needed for straightforward counting
of occurrences of words or to limit the size of the
Markov model for the sequence. (Both variables
grow exponentially with the length of the words
considered.) In this paper, we eliminate the as-
sumption about fixed word length by applying the
directed acyclic word graph [3] data structure and
a linear-time data compression algorithm that em-
ploys a dynamic programming strategy.

The significance of sequence similarity is typically
determined by more or less ad-hoc methods that are
valid only under oversimplified assumptions about
the distributional properties of the occurrences of
words in sequences [13]. Indeed, the overall sub-
word similarity of two sequences is a very complex
statistic having distributional properties that are
hard to determine, except in the most restricted
cases. In this paper, we show that significance of se-
quence similarity can be rigorously determined un-
der very few assumptions by applying the recently
introduced algorithmic significance method [11].

Massive hybridization experiments that are per-
formed as part of the partial sequencing by hy-
bridization project [5] are producing information
about presence of particular words within a huge
number of cloned DNA sequences. A partial se-
quence consisting of a set of keywords can be used
to recognize the similarity of clones to known DNA
sequences without having to sequence the clones
completely. In this paper we propose a method to
discover sequences that may be similar not only to
another complete sequence but also to a set of key-
words that may come from a partially sequenced
clone.
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2 Minimal Encoding Length and
Similarity

The main idea behind the approach presented in
this paper is that similarity canbe defined via min-
imal encoding length. We ask whether or not a
particular sequence which we call the target can be
concisely encoded using another sequence or a set
of keywords, which we call the source. If there is no
similarity, then the knowledge of the source does
not help, but if we succeed in using the source to
find an encoding of the target sequence that is much
shorter than is likely by chance, then we can prove
at a high significance level that the source and the
target are related. For a broader introduction to
minimal length encoding see [4].

A target sequence is defined to be similar to a
source sequence if it can be encoded concisely by
replacing some words in it by pointers to the oc-
currences of the same words in the source. This
is a standard technique in data compression [14].
Consider an example where the target sequence is

GATTACCGATGAGCTAAT

and the source sequence is

ATTACATGAGCATAAT

The occurrences of some words in the target may be
replaced by pointers indicating the beginning and
the length of the occurrences of the same words in
the source. In the following, a pointer is denoted
by a pair of integers in parentheses, the first indi-
cating the position of occurrence in the source and
the second the length of the common word. For
example,

G(1,4)CCG(6,6)(13,4)

One can think of the encoded sequence as being
parsed into words that are replaced by pointers and
into the letters that do not belong to such words.
One may then represent the encoding of a sequence
by inserting dashes to indicate the parsing. For the
encoding above, the parsing is indicated as follows:

G-ATTA-C-C-G-ATGAGC-TAAT

Let us now count the exact number of bits needed
to encode letters and pointers. We may assume
that the encoding of a sequence consists of units,
each of which corresponds either to a letter or to a
pointer. Every unit contains a (log 5)-bit field that
either indicates a letter or announces a pointer. A
unit representing a pointer contains two additional
fields with positive integers indicating the position
and length of a word. These two integers do not
exceed n, the length of the source sequence. Thus,
a unit can be encoded in log 5 bits in case of a letter
or in log 5 -t- 2 log n bits in case of a pointer.

If it takes more bits to encode a pointer then
to encode the word letter by letter, then it does
not pay off to use the pointer. Thus, the encoding
length of a pointer determines the minimum length
of common words replaced by pointers. In order to
take advantage of shorter common words, we must
encode the pointers more concisely.

The pointers can be encoded more concisely un-
der two plausible assumptions. The first assump-
tion is that the common words occur in similar or-
der in the target as in the source, in which case
the position of the common word in the source can
be indicated relative to the previous common word;
this relative distance may fall into a smaller range
than the absolute position and thus it may be repre-
sented in fewer bits. The second assumption is that
the lengths of the common words fall into a smaller
range. Under these two assumptions, one may en-
code a pointer in much less than log 5-)-2 log n bits.

If a word to be replaced by a pointer occurs more
than once in the source, then the information about
the particular occurrence contained in the pointer
may be more than is necessary. If the pointer could
specify only the set of occurrences and not any par-
ticular occurrence, then the pointer itself would re-
quire fewer bits. We will come back to the problem
of pointer size later in the experimental section.

Consider the case of a target sequence that is en-
coded using a set of keywords as the source. A
sequence is in this case encoded using a pointer
that consists of three numbers: an index of the key-
word and the beginning and the end of the subword
within the keyword.

Consider the following target sequence:

GATTACCGATGAGCTAAT



and the source keywords:

I AAAAGGGGGG

2 ATTACATG

3 AGCATAAT

4 ATGAGCATA

The following is an encoding of the target sequence
relative to the source keywords:

G(2,1,4)CCG(4,1,6)(3,5,4)

It is easy to see from these two examples that one
can construct a decoding algorithm that within it
contains a source sequence or source keywords and
that reconstructs the target sequence from its en-
coding.

3 Algorithmic Significance
Method

Let A denote a decoding algorithm that can recon-
struct the target sequence. We may assume that the
source (sequence or set of keywords) is part of the
algorithm A so that only the encoded target needs
to be supplied. We expect that the targets that are
similar to the source will have short encodings. By
IA(t) we denote the length of the encoded target t.

Let P0 denote the null hypothesis, i.e., the distri-
bution of probabilities under the assumption that
the target isequence is independent from the source.
Let po(t) be the probability assigned to a target 
by the null hypothesis. For example, if we assume
that every letter is generated independently with
probability px, where z E {A, G, C, T} denotes the
letter, then the probability of a target sequence t
is po(t) = I-I~p~~(t), where n~(t) is the number of
occurrences of letter x in t. If we assume a Markov
dependency, then the probability of a sequence can
efficiently be computed for the given Markov model.

The following theorem states that a target se-
quence t is unlikely to have an encoding much
shorter than - log po(t).
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Theorem 1 For any distribution of probabilities
Po over sequences and for any decoding algorithm
A,

P{- log po (t) - IA (t) >_ d} -d

where po(t) is the probability assigned to sequence
t by distribution Po and In(t) is the length of 
encoding of sequence t using algorithm A.

Proof of Theorem 1 can be found in [11]. (Similar
theorems are proven in the context of competitive
encoding [4].)

This theorem enables us to use algorithm A as an
alternative hypothesis to refute the null hypothesis

P0 at the significance level 2-d. Applying the in-
equality above to our example, the probability that
a target sequence t will have an encoding d = 7
bits less than - log po(t) = - ~: n~: log p=(t) is less
than 2-7, which is less than the standard signifi-
cance threshold of 0.01.

The exponential relationship between encoding
length and probability allows us to establish signif-
icance even when very large sequence libraries are
searched. If the sequence library searched contains
sequences of total length L, then to refute the null
hypothesis at the significance level of 0.01 for any
sequence in the library, d = 7 + log L bits would
suffice (but may not be necessary).

The algorithmic significance method is conceptu-
ally very similar to the concept of statistical signif-
icance in the Neyman-Pearson hypothesis testing
framework (see, e.g., [9]). The main difference 
that the alternative hypothesis is now represented
by a decoding algorithm instead by an explicit dis-
tribution of probabilities.

In contrast to the concept of statistical signifi-
cance that is based on the approximate (asymp-
totic) estimation of tails of distributions ("p-value’)
of statistics like length of the longest common word
or number of common words (see, e.g., [8]), the
algorithmic significance method provides an exact
significance value. Moreover, algorithmic signifi-
cance is directly applicable for any null hypothe-
sis for which po(t) can be computed, as opposed 
the statistical significance value which is applicable
only for a specific distribution.



4 Minimal Length Encoding Al-
gorithm

Short encodings are not only significant, but they
can also be computed efficiently. In this section we
present a minimal length encoding algorithm, which
is a slight variant of the algorithm for discovering
simple sequences [11] and which is frequently used
in data compression [14].

The algorithm takes as an input a target sequence
t and the encoding length p > 1 of a pointer and
computes a minimal length encoding of t for a given
source s (here s denotes either a source sequence or
keywords). Since it is only the ratio between the
pointer length and the encoding length of a letter
that matters, we assume, without loss of generality,
that the encoding length of a letter is 1.

Let n be the length of sequence t and let tk denote
the (n - k + 1)-letter suffix of t that starts in the
kth position. Using a suffix notation, we can write
tl instead of t. By I(tk) we denote the minimal
encoding length of the suffix tk. Finally, let l(i),
where 1 < i < n, denote the length of the longest
word that starts at the i th position in target t and
that also occurs in the source s. If the letter at
position i does not occur in the source, then l(i) 
0. Using this notation, we may now state the main
recurrence:

I(t~) = rain(1 + I(ti+l),p+ /(ti+z(O))

Proof of this recurrence can be found in [14].
Based on this recurrence, the minimal encoding

length can now be computed in linear time by the
following two-step algorithm. In the first step, the
values l(i), 1 < i < are computed inlin ear time
by using a directed acyclic word graph data struc-
ture that contains the source s [3]. In the second
step, the minimal encoding length I(t) = I(tl) is
computed in linear time in a right-to left pass using
the recurrence above.

5 Implementation and Experi-
ments

The algorithm above was implemented in C+q- on
a Sun Sparcstation under UNIX. The program was
applied to identify occurrences of Alu sequences in

the Human Tissue Plasminogen Activator (TPA)
gene [6]. Three kinds of sources were used: the
complete Alu consensus sequence [7] and keyword
sets consisting of eight and four 8-mers chosen to
be evenly distributed along the consensus.

The complete TPA gene, GenBank [2] acces-
sion number K03021, containing 36,594 bases was
searched. The sequence was considered one window
at a time, with windows of length 350 and an over-
lap between adjacent windows of 175. The value
of log p0(t) was. computed under the assumption
that letters are generated independently by a uni-
form distribution. An encoding length threshold of
22 > 7+log 36594 bits was chosen so that the prob-
ability of any window having short encoding would
be guaranteed not to exceed the value of 0.01.

The only difference in program input between the
three experiments (except, of course, the source it-
self) was the pointer size. When the source was the
complete Alu consensus sequence, a pointer length
of 8 bits was chosen under the assumption that the
distance between consecutive common words and
common word length can each be encoded using
4 bits on average. In the case of keyword sets,
the pointer size was chosen as the binary logarithm
of the number of keywords plus 2 bits to locate a
subword within a keyword. One may argue that
more bits would be required to locate a subword;
our choice of fewer bits can be justified by the fact
that only the subwords that exceed a certain length
need to be located, and also that short subwords
are likely to have multiple occurrences, so that a
pointer to any particular occurrence would contain
excess information.

The windows that could be encoded in 22 bits less
than postulated by the null hypothesis were merged
to obtain a set of non-overlapping regions. Table 1
contains a comparison of occurrences of Alu and
half-Alu sequences in the TPA gene in direct orien-
tation with the regions identified as Alu-like. There
were no false positive matches.

Figure 1 contains an example of a window parsed
using a complete Alu consensus sequence as a
source, together with an alignment of the Alu con-
sensus with a segment within the window. Figure 2
contains the eight- and four-keyword sets used and
a window parsed using the four-keyword set.
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Parsed window 22226-22575 from the TPA gene:

C-T-CAGTG-C-C-T-G-TCAAAA-G-T-A-T-G-T-GCTGAGGC-T-G-G-A-A-G-GTGGTG-C-A-T
-GCCTGT-G-ATCCCAGCACTTT-A-GGAGGCC-A-A-G-G-TGGGAGG-G-TCGCT-G-G-A-G-CCCG

GGAG-T-T-C-A-AGACCA-A-T-CTGGGC-A-AACAT-A-G-C-A-A-G-T-C-C-C-C-T-GTCTCTA
C-A-AAAAATA-A-AAAAATTAGCC-AGACC-T-G-G-T-A-T-G-T-A-G-TCCCA-A-C-T-A-C-TT

GGGAGG-T-TGAGGCAG-A-A-GGATCAC-T-TGAGCC-CAGGAGTT-GGAGGCTG-C-A-GTAATC-T-
A-C-G-A-T-T-A-T-GCCACTGCA-T-T-T-C-A-A-C-C-T-CAGTGA-C-A-G-G-G-C-A-A-G-C

-C-C-TCACCT-CTAAAA-C-A-A-A-ACAAAA-CAACA-C-A-A-ACAAAAA-CAAAAA-C-ACAGA-A

-A-A-G-C-C-C

Ali~rnment (Alu consensus is on top and a fragment from the parsed window
is on the bottom):

@10 @20 @30 @40 @50 @60 @70

GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACCTGAGG

GGCTGG--AAGGTGGTGCATGCCTGTGATCCCAGCACTTTAGGAGGCCAAGGTGGGAGGGTCGCTGGAGC

@30 @40 @50 @60 ¢70 @80 @90

@80 @90 @I00 @110 @120 @130
TCAGGAGTTCGAGACCAGCCT-GGCCAACATGGTGAAACCCC-GTCTCTACTAAAAATACAAAAATTAGC

CCGGGAGTTCAAGACCAATCTGGGCAAACATAGCAAGTCCCCTGTCTCTACAAAAAATAAAAAAATTAGC
@100 @110 @120 @130 @140 @150 @160

@140 @150 @160 @170 @180 @190 @200

CGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCG

CAGACCTGGTA ......... TGTAGTCCCAACTACTTGGGAGGTTGAGGCAGAAGGATCACTTGAGCCCA
@170 @180 @190 @200 @210

@210 @220 @230 ~240 ~250 @260 @270
GGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCG

GGAGTTGGAGGCTGCAGTAATCTACGATTATGCCACTGCATTTCAACCTCAGTGACAGGGCAAGCCCTCA
@220 @230 @240 @250 @260 @270 @280

@280
TCTCAAAAAAAA

CCTCTAAAACAA
@290

Figure 1: Parsing of window 22226- 22575 from the TPA gene.
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Aiu occurrence

I Alu

identified Alu regions
Eight 8-mers Four 8-mersconsensus

740...1033 526...1225 526...1225 701...1050
8864...9176 8576...9275 875i...9275
10067...10365 9801...10500 9976....10500
16794...17125, 17170...17466 16626...17675 16976...17500 16976...17325
18879...19178 18726...19425 18726...19250 18901...19250
20946...21259,21280...21578 20826...21700 20826...21700 21176...21700
22253...22545 22051...22750 22226...22575
25620...25911 25376...26075 25551...25900
26524...26821,26941...27239 26251...27475 26426...26926,26927...27475 26426...26775
27880,.28145 27651...28350 27826...28350
28804...29100,29297...29431 28526...29575 28701...29575
32921...33220 32726...33425 32726...33425 32901...33250
34234...34525 33951...34650 34126...34650

Table 1: Occurrences of Alu sequences in the TPA gene and the identified Alu regions. Some
rows correspond to pairs of Alu sequences that occur close together. There were no false
positive matches.

A1u keyword sets used in search:

Eight 8-mers: 1GGCCGGGC
2 AGCACTTT
3 CTGAGGTC
4 ACATGGTG

5 AAAAATTA
6 TAATCCCA
7 GAATCGCT
8 GTGAGCCG

Four 8-mers: 1GGCCGGGC
2 CTGAGGTC
3 AAAAATTA
4 GAATCGCT

Window 18901-19250 from the TPA gene parsed using the set of four
8-mers as a source:

T-G-T-AATC-T-C-A-G-C-A-C-T-T-T-GGG-A-GGCCG-AGGT-G-G-GAGG-ATCGCT-TGAG-C
-C-C-AGG-A-G-T-T-G-GAG-A-C-C-A-GTC-T-GGGC-ART-A-T-A-G-TGAG-A-T-GCT-GTC
-T-C-T-A-C-A-AAAAATT-T-AAAAATTA-GCCGGG-T-G-T-A-C-T-A-G-T-A-T-G-C-A-C-C
TG-T-GGTC-C-C-A-GCT-A-C-T-C-A-G-GAGG-CTGAGG-CGGG-AGG-ATCGCT-T-A-A-G-T-
T-C-A-G-GAGGT-T-GGG-A-C-T-T-C-A-G-TGAG-A-T-A-T-G-ATTA-CGC-C-AAT-G-C-A-
C-T-C-C-A-GCC-T-GGG-TGA-C-AAA-CTGAG-ATC-CTG-T-C-T-C-AAAAA-AAAAA-AAAAA-
AAAA-G-AAAAA-GGC-AAT-G-C-A-A-G-T-GCC-A-TGAG-C-C-A-C-A-G-C-A-GAGG-C-AAA
-CTG-C-C-C-T-C-A-T-GGT-GCC-T-A-C-T-C-T-C-T-A-G-CTGA

Figure 2:Alu keyword sets used in the search and an example of a window parsed using the
l~t off our keywords.
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6 Discussion

The experiments indicate that a surprisingly small
number of keywords suffice to identify Alu se-
quences. The exact number of necessary keywords
may depend on the degree of similarity between se-
quences of a particular class, but it seems that 10
or less 8-mers would suffice to identify a similarity
of 80% in sequences about 300 long. This means
that the sequence similarity of many cloned DNA
sequences to known sequences may be determined
without the exact knowledge of their complete se-
quence; a partial sequence consisting of a set of key-
words that have been identified in the clone may
suffice [10] [5].

The method described in this paper has also been
succesfully used for rapid screening for sequence
similarity by the Pythia email server for identifi-
cation of Human repetitive DNA (for more infor-
mation about Pythia, send "help" in Subject-line
to Internet address pythia~anl.gov).

Current methods typically require two arbitrary
assumptions to be made for each similarity search:
one about the length of the longest common word
that is to be considered and the other about the
threshold of similarity for significant matches. At
the same time, the exact significance of the match is
not computed. The method proposed in this paper
removes the need for any restrictions on word length
while keeping the computation time linear, and it
also provides an exact bound on significance, thus
removing need for any arbitrary thresholds. Exper-
iments indicate that this systematic approach can
eliminate false positive matches while retaining sen-
sitivity.

The algorithmic significance method can also be
applied to discover similarity based on sequence
alignment. For this case, the target sequence may
have to be encoded using a set of edit operations.
A minimal length encoding approach to sequence
alignment has been discussed in [1]; the coding tech-
niques presented there can be combined in conjunc-
tion with the algorithmic significance method to ob-
tain exact bounds on significance.

The applications mentioned in this paper are just
a small sample of possible applications of the con-
cept of algorithmic significance. The key feature
of the concept is its applicability in combinatorial

domains like DNA sequence analysis, in contrast
to the more standard statistical approaches which
have mostly been motivated by real-valued mea-
surements. Instead of focusing on a particular pa-
rameter (e.g., length of the longest repeated word),
the algorithmic significance approach enables us to
focus on the information content (as measured by
the encoding length), which is a much more widely
applicable parameter.
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