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Abstract

The algorithm described in this paper dis-
covers one or more motifs in a collection
of DNA or protein sequences by using the
technique of expect~tiou ma.,dmization to
fit a two-component finite mixture model
to the set of sequences. Multiple motifs
are found by fitting a mixture model to
the data, probabilistically erasing tile oc-
currences of the motif thus found, and
repeating the process to find successive
motifs. The algorithm requires only a
set of unaligned sequences and a number
specifying the width of the motifs as in-
put. It returns a model of each motif and
a threshold which together can be used
as a Bayes-optimal classifier for search-
ing for occurrences of the motif in other
databases. The algorithm estimates how
many times each motif occurs in each
sequence in the dataset and outputs an
alignment of the occurrences of the mo-
tif. The algorithm is capable of discov-
ering several different motifs with differ-
ing numbers of occurrences in a single
dataset.

Introduction

Finding a clust.er of numerous: similar sub-
sequences in a set of biopolymer sequences
is evidence that the subsequences occur
not by chance but because they share
some biological function. For exatnple, the
shared biok)gical flmction which accounts
for the similarity of a subset of subse-
quences might be a common protein bind-
ing site or splice junction in the case of
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DNA sequences, or the active site of re-
lated enzymes in the case of protein se-
quences. This paper describes an algo-
rithm called MM which, given a dataset
of unaligned, possibly related biopolymer
sequences, estimates the parameters of
a probabilistic model which could have
generated the dataset.. The probabilistic
model is a two-component finite mixture
model. One component describes a set of
similar subsequences of fixed width (the
"motif"), while the other component de-
scribes all other positions in the sequences
(the "background"). Fitting the model 
the dataset includes estimating the relative
frequency of motif occurrences. This es-
timated frequency determines the thresh-
old for a Bayes-optimal classifier that can
be used to find occurrences of the motif in
other databases. The motifs found by MM
resemble profiles without gaps (Gribskov,
Luthy, & Eisenberg 1990).

The MM algorithm is an extension of
the expectation maxinfizat.ion technique
for fitting finite mixture inodels developed
by Aitkin & l{ubin (1985). It is related
to the algorithm based on expectation
maximization described by Lawrence &
Reilly (1990), but it relaxes the assumption
that each sequence in the dataset contains
one occurrence of the motif. Sequences
containing zero, one or many occurrences
of a motif can be modelled equally well by
the model used by MM. In other words: MM
solves an unsupervised learning problem:
it is intended to be useful for discovering
new motifs in datasets, treating each sub-
sequence of a fixed width in the dataset as
an unlabeled sample.

The MM algorithm has been imple-
Inented as an option to the M EME software
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for discovering multiple motifs in biopoly-
mer sequences (Bailey & Elkan 1993). 
can therefore be used to discover multiple
motifs in a dataset. Briefly, this is done
by repeatedly applying MM to the dataset
and then probabilistically erasing all oc-
currences of the discovered motif. Because
MM estimates the number of occurrences
of each motif, MEME using MM is able to
find motifs with different numbers of occur-
rences in a single dataset. This increases
the usefulness of MEME as a tool for ex-
ploring datasets that contain more than
one motif.

The rest of this paper is organized as fol-
lows. Section 2 explains the finite mixture
model used by MM, and Section 3 sumnaa-
rizes the analysis needed to apply the ex-
pectation maximization idea to this type
of model. Section 4 describes the imple-
mentation of MM in the context of MEME.
Section 5 presents experimental results of
using the MM algorithm to discover mo-
tifs in several DNA and protein datasets.
Finally, Section 6 concludes the paper by
discussing the strengths and limitations of
the MM algorithm.

The finite mixture model
The MM algorithm searches for maximum
likelihood estimates of the parameters of a
finite mixture model which could have gen-
erated a given data.set of biopolymer se-
quences. We will refer to the dataset as
Y : (Y1,}~,.-.}~), where N is the num-
ber of sequences in the dataset. The se-
quences ],] are assumed to be over some
fixed alphabet, say A = <al,a2,...,aL},
which is given as input to the algorithm.
The mixture model used by MM does not
actually model the dataset directly. In-
stead, the dataset is broken up conceptu-
ally into all n (overlapping) subsequences
of length W which it contains. This
new dataset will be referred to as X =
IX1, X2,..., X,~). MM learns a finite mix-
ture model which models the new dataset.
Although this model does not., strictly
speaking, model the original dataset, in
practice it is a good approximation, espe-
cially when care is taken to ensure that
the model does not predict that. two over-
lapping subsequences in the new dataset
both were generated by the motif. This
is done by enforcing a constraint on the
estimated probabilities of overlapping sub-

sequences being motif occurrences. (How
this constraint is enforced is discussed in
Section 4.)

The model for the new dataset consists
of two components which model the motif
and background (non-motif) subsequences
respectively. The motif model used by MM
says that each position in a subsequence
which is an occurrence of the motif is gen-
erated by an independent random variable
describing a multinomial trial with param-
eter fi --- (fil,..., fiL). That is, the prob-
ability of letter aj appearing in position i
in the motif is fli. The parameters fij for
i= 1,...,Wandj = 1 .... ,Lmustbees-
timated from the data. The background
model says that each position in a sub-
sequence which is not part of a motif oc-
currence is generated independently, by a
multinomial trial random variable with a
common parameter f0 = (f01,..., for,). 
other words, MM assumes that a sequence
of length W generated by the background
model is a sequence of W independent
samples from a single background distribu-
tion. The overall model for the new dataset
which MM uses is that the motif model
(with probability A1) or the background
model (with probability A~ = l-A1) is cho-
sen by nature and then a sequence of length
W is generated according to the probabil-
ity distribution governing the model cho-
sen. In summary, the parameters for the
overall model of the data assumed by MM
are the mixing parameter A = (A1,A2),
vectors of letter frequencies for the motif
model 01 = (fl, f2 .... , fw), and a single
vector of letter frequences for the back-
ground model 02 = f0.

Expectation maximization in
finite mixture models

The MM algorithm does maximum likeli-
hood estimation: its objective is to dis-
cover those values of the parameters of the
overall model which maximize the likeli-
hood of the data. To do this, the expec-
tation maximization algorithm (EM) for
finite mixture models of Aitkin & P~u-
bin (1985) is used. This iterative pro-
cedure finds values for A : (A1,),2) 
0 = (01,02) which (locally) maximize 
likelihood of the data given the model.

A finite mixture model assumes that
data X : (Xa,X2,...,Xn} arises from two
or more groups with known distributional
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forms but different, unknown paranleters.
The EM algorithm makes use of the con-
cept of missing data. In this case, the
missing data is the the knowledge of which
group each sample in the data came from.
The following notation is useful:

z : <z~,z.~,...,z,,>,
where n is the number of samples

z~ = (z., zi2),
1 ifXi from group j

Zij = 0 otherwise.

The variable Zi gives the group member-
ship for the ith sample. In other words,
if Z0 = 1 then Xi has the distribution
p(XilOj). The values of the Zij are un-
known, and are treated by EM as missing
information to be estimated along with the
parameters 0 and A of the mixture model.

The likelihood of the model parameters
0 and A given the joint distribution of thc
data X and the missing data Z is defined
as

L(O, AIX, Z) = p(X,Z]O,A). (1)

It can be shown that. the logarithm of the
likelihood (log likelihood) is

log I.(0, AIX, z) 
n 2

y~-~ Z# log(p(X, lOjlAj). (2)
i=1 j=l

The EM algorithm iteratively maximizes
the expected log likelihood over the condi-
tional distribution of the missing data, Z,
given (a) the observed data, X, and (b)
current estimates of parameters 0 and A.
This is done by repeatedly applying tile E-
step and M-step of the algorithm as de-
scribed below.

The E-step of EM finds the expected
value of the log likelihood (2) over the val-
ues of the missing data Z, given (.he ob-
served data, X, and the current parameter
values 0 = 0(°) and A = A(0). This can 
shown to be

E[log L(O, A IX, Z)] 
rt 2 .

S_,
i=1 j=l

i=l j=l

where
(0) (o)

(o) p(XilOj )Aj (4)
ZiJ = 2 (0) (0) ¯

>--i-k=1 p(Xi 01~ )Ak
for i = 1 .... ,n, and j = 1,2.

The M-step of EM maximizes (3) over 
and A in order to find the next estimates for
them, say 0(,1) and A(.1). Tim maximization
over A involves only the second term in (3)

2

i=1 j=l

which has the solution

4.’) : n 1 . .
i=l

"~¥e can maximize over 0 by maximizing the
first term in (3) separately over each Oj. To
So]ve

n

0~1) = argmaxE-u Z!°’)l°gp(Xi[Oj)’ (6)
Oj i=1

for j = 1,2, we need to know the form of
p(XilOj). The MM algorithm assumes that
the distributions for class 1 (the motif) and
class 2 (the background) are

W L

p(Xi[O1). = r[ H aj~¢l(k’X’D and (7)
j=l k=l

W L
fl(k,Xia)v(x, lo2) = II II (s)

j=l k=l

where Xij is the letter in the jth position
of sample Xi and I(k,a) is an indicator
fimction which is I if and only if a = ak.
That is,

1 ifa=ak
I(k,a) = 0 otllerwise

For k = 1,...,L let

~(°)I 
W

c0k = ~/~i2"( ,Xo and (9)
i=1 j=l

cH: = £ E,Z}°)l(k. Xij) (10)
i=1

for j = 1 ..... W. Then c0k is the expected
number of times letter a~ appears in posi-
tions generated by the background modcl
in the data, and cjk for j = l .... , W is the
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expected number of times letter ak appears
at position j in occurrences of the motif in
the data.1 We reestimate t9 by substituting
(7) and (8) into the right-hand side of 
yielding

e(1) = (]o,]l,...,]w)
W L

= a.rgmax E E cjk log fj~ (11)
8 j=O k=l

Therefore
^ cjk

(12)fjk - L
Ek=l CJk

for j = 0,...,W aald k = I,...,L.
Estimating the parameters of a multino-

mial random variable by maximum likeli-
hood is subject to boundary problems. If
any letter frequency ]ij ever becomes 0, as
is prone to happen in small datasets, its
value can never change. Following Brown
et al. (1993) and Lawrence et al. (1993),
the equations above for J~ij are replaced by

cij +/3~
(13)

^

f~J = " L
/3,F-,k=l ci~ +

Li = 0,...,~, j = 1,...,L, t3 = ~k=ll3k.
This turns out to be equivalent to using
the Bayes estimate for the value of 8 un-
der squared-error loss (SEL) (Santner 
Duffy 1989) assuming that the prior dis-
tribution of each 8j, P(Sj), is a so-called
Dirichiet distribution with parameter/3’ =

(/31,...,/3L)- The value of/3’ must be cho-
sen by the user depending on what infor-
mation is available about the distribution
of 8j for motifs and for the background.
The choice of ’fl’ will be discussed in the
next section.

This completes the analysis of how ex-
pecta.tion maximization can be applied to
find the parameters of the mixture model
assumed by MM.

1The factor Ei in the calculation of the mo-
tif counts is the "erasing factor" for that posi-
tion in the data. (Erasing is mentioned in the
introduction and further described in the next
section.) The erasing factors vary between 
and 0 and are set to 1 initially. After each pass,
they are reduced by a factor between 0 and
1 representing the probability that the posi-
tion is contained in aa occurrence of the motif
found on that pass. The counts for the back-
ground are not scaled by the erasing factors to
make the values of the log likelihood function
comparable among passes.

Implementation of MM
The implementation of the MM algorithm
is straightforward. Let li for i = 1,..., N
be the lengths of the individual sequences
in the dataset Y. The motif and back-
ground models are stored as an array of
letter frequency vectors 8 = f0, ¯ ¯., fw.
The overlapping subsequences of length W
in the dataset are numbered left-to-right
and top-to-bottom from 1 to n. The Z~°)

for k = 1,...,n are stored in an array zij
where i = 1,...,N and j = 1,...,ll with

zij holding the value of Z(°l ) corresponding
to the subsequence starting in column j of
sequence 1~ in the dataset. MM repeatedly
applies the E-step and the M-step of EM
to update 8, A and z until the change in
8 (Euclidean distance) falls below a user-
specified threshold (by default 10-6) or a
user-specified maximum number of itera-
tions (by default 1000) is reached.

The E-step updates the z array using
Equation (4) and the mapping just de-
scribed between Zil and zij. The zij val-
ues for each sequence are then normalized
to sum to at most 1 over any window of
size W following Bailey & Elkan (1993):

k+W-1

y~ zij < 1,
j=k

for i = 1,...,N and k = 1,...,li-W.
This is done because otherwise there is a
strong tendency for MM to converge to mo-
tif nmdels that generate repeated strings
of one or two letters like "AAAAAA" or
"ATATAT" because the overlapping sub-
strings in the new dataset are not indepen-
dent.

The M-step reestimates A and 8 us-
ing Equations (5) and (13), respectively.
The pseudo-counts (/31,...,/3L) are set 
/3tti, i = 1 .... , L, where /3 is a user spec-
ified parameter, and tti is the average fre-
quency of letter al in the dataset.

The MM algorithm is implemented as
an option to the MEME software for dis-
covering multiple motifs in biopolymer se-
quences (Bailey & Elkan 1993). The ver-
sion of MEME which uses MM will be be
referred to as MEME+. MEME+ searches
for the best starting point for MM by trying
values of A(°) between V~/n and 1/(2~¥)
and values of 8(0) which are derived from
subsequences in the dataset. To save ex-
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ecution time, the number of different, val-
ues for 0(°) tried by NIEME+ depends on
the value of A(°) being tried, blEME+
uses a heuristic to tell if a potential start-
ing point is "good," runs MM to conver-
gence on the best starting point found, and
"erases" the occurrences of the motif dis-
covered. Erasing is accomplished by’ up-
dating the erasing factors eli, (which are
the Ek mentioned in the previous section,
re-subscripted analogously to Zlk), as fol-
]OWS:

J
e(t) (o)ij = eij 1-[ (1 -- Zik)

k=j-W+l

Since zij is can be viewed as an estimate of
the probability that position j in sequence
}} is the start of an occurrence of the mo-

~11 is an estimate of
tifjust discovered, eij
the probability that the position is not con-
t.ained in an occurrence of any motif found
by the algorithm so far. (See (Bailey’ 
Elkan 1994) for the details of MEME+ and
the heuristics it uses.)

The output of MEME+ includes a log-
odds matrix spec and a threshold value t
for each motif found. Together these form
a Bayes-optimal classifier (Duda & Hart
1973) for the "zero-one" loss function. The
log-odds matrix has L. rows and W columns
and is calculated as spe’c,:j = log(fij/£j)
for i = 1,...,W attd j = l,....L. T’he
threshold t is set. to t = log((1 - A1)/A1).
To use spec and t as a classifier with
a new data.set, each (overlapping) subse-
quence x = (xl, x’2,..., xn) is given a score

= w it ca.
be shown that. s(x) = log(p(x]01 )/p(x]O2)).
Bayesian decision theory says to classiL,
sample x as being an occurrence of the mo-
tif only if

s(x) > log(P(background)/P(motif))
--~ log((1 -- *~1 )/-~1 

1~.

The threshold for any other loss flmction
can easily" be found by scaling t. The scaled
threshoht should be t+log(r12-r~_2)/(r21-
r11), where rij is the loss incurred for de-
ciding class i when the correct class is j,
and class 1 is the motif, class 2 thc back-
ground.

The execution time of MEME+ is dom-
inated by the search for good starting

points. Testing a single starting point
takes time O(NMW), the execution time
of one iteration of EM. Approximately
O(N M) starting points are tested. So find-
ing a good starting point takes execution
t, ime O((Nal)2~V). Running MM to 
vergence tends to take time O((NM)2W)
since the immber of iterations of EM re-
quired tends to depend at worst linearly
on the size of the dataset, NM (data not
shown). Tile overall time complexity of one
pass of MEME+ is thus O((NM)2W), 
ql,adratic in the size of the dataset and lin-
ear in the width of the motif.

Experimental Results

We studied the performance of MEME+
on a number of datasets with different
characteristics. The datasets are sununa-
rized in Table 1. Three of the datasets con-
sist of protein sequences and three consist
of DN A sequences. Three contain a single
known motif. One contains two known mo-
tifs. each of which occurs once in each se-
quence. One contains three known motifs,
each of which occurs multiple times per se-
quence. And one contains two motifs, each
of which occurs in only al)out half of the
se(tlletlces.

The protein datasets, lipocalin, hth, and
farn, are described in (Lawrence c* aL
1993) and were used to test the Gibbs sam-
piing algorithm described there. We reit-
erate briefly here. The lipocalin proteins
bind small, hydrophobic ligands for a wide
range of biological purposes. The dataset
contains the five most divergent lipocalins
with known aD structure. The positions
of the two motifs in each of the sequences
in the lipocalin dataset are known from
structural comparisons. The hth proteins
contain occurrences of DNA-binding struc-
tures involved in gene regulation. The cor-
rect locations of occurrences of the motif
are known from x-ray and nuclear mag-
netic resonance structures, or from sub-
stitntion mutation experiments, or both.
The farn data.set contains isoprenyl-protein
transferases, essential components of the
cytoplasmic signal transduction networks.
No direct structural information is known
for the proteins in the dataset, so we used
the starting positions for the three motifs
reported by" Lawrence el aL (1993). These
starting positions agreed with the results
of earlier sequence analysis work (Boguski
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dataset type number of sequence W
length (avg)

motif I sites
?l a Ilz e sequences nameI provenI total

lipocalin protein 5 182 16 iipA 5 5
lipB 5 5

hth protein 3O 239 18 hth 3O 3O
farn protein 5 380 12 ] farnA none 30

farnB nolle 26
farnL none 28

crp DNA 18 105 2O crp 18 24
lexa DNA 16 200 2O lexa 11 21
crplexa DNA 34 150 2O crp 18 25

lexa ii 21

Table 1: Overview of the contents of the datasets. Proven sites are those which have
been shown to be occurrences of the motif by laboratory experiment (i.e., footprinting,
mutageaesis or structural analysis). Total sites include the proven sites as well as sites
that have been reported in the literature but whose identification was based primarily on
sequence similarity with known sites (i.e., "putative" sites).

el al. 1992), (Boguski, Murray, & Powers
1992).

The three DNA datasets, crp, lexa and
crplexa, are described in (Bailey & Elkan
1993) and were used to test MEME there.
They contain DNA sequences from E. coil
The crp dataset contains known binding
sites for CRP (Lawrence & Reilly 1990),
and a few sites which have been idea-
tiffed by similarity to the known motif.
The lexa dataset sequences contain known
binding sites for LexA (Hertz, Hartzell, III,
&: Stormo 1990), and some that have been
identifed by similarity to known sites. The
crplexa dataset contains all the sequences
in thc crp and lexa datasets.

To evaluate the success of MEME+, we
ran it on each dataset, derived Bayes-
optimal classifiers from the nlotif models
found, and used these classifiers to clas-
sify that dataset. In each dataset, the pre-
dicted occurrences of each discovered motif
were compared with the proven and puta-
tive occurrences of the known motifs. Suc-
cess was measured using recall defined as
tp/p and precision defined as tp/(tp+ fp).
Here, p is the number of occurrences of a
known motif in the dataset ("positives"),
tp is the number of correctly classified pos-
itives ("true positives" ), and fp is the nuln-
ber of non-occurrences cIassiffed as occnr-
rences ("false positives"). These statistics
can be used as estimators of the true pre-
cision and recall of the motif learned by
MEME+ if it is used to find occurrences of

the motif in a different data.set.~-

Table 2 shows the results of running
MEME+ on the datasets and analyzing the
nlotifs produced. MEME+ finds all the
known motifs. The recall and precision
of all the discovered motifs is quite high
except for the lipocalin dataset. With
one exception (farnB), MEME+ finds mo-
tifs with similar or higher likelihood than
the known motifs indicating that MEMP+
is not getting stuck at local optima. This
also indicates that, based on statistical ev-
idence alone, the known motifs may not
always be the most significant patterns in
the datasets. The low precision of the
lipocalin motifs turns out to be because
MEME+ finds a motif on the first pass
which combines the two known motifs and
has nmch higher log likelihood than either
of the known motifs alone. Since MEME+
is doing nlaximum likelihood estimation, if
a combination of two motifs is more sta-
tistically significant than either of the mo-
tifs alone, this behavior is to be expected.
Fortunately, versions of subtle motifs like

2Each discovered motif was compared with
each motif known to occur in the dataset.
recall and precision are relative to the "clos-
est" known motif where "closest" means high-
est recall. The comparison between each dis-
covered motif and each known motif was done
once for each possible shifting of the known
motif a fixed number of positions, i, Ill <
LW/2J. MEME+ was thus credited with find-
ing a motif even if the predicted occurrences
were displaced a small, fixed amount.
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Ouipui of MEME+ Analysis of discovered motifs
dataset pass log likelihood motif recall precision log likelihood di~erence
name of discovered nanle of known (d- ~)

motif ( d) motif (k)
lipocalin t -55013 lipA 1.000 0.357 -55090 77

2 -55057 lipB 0.400 0.200 -55092 35
hth 1 -496332 hth 0.933 0.571 -496346 14
farn 1 -92518 farn L 0.917 0.880 -92525 7

2 -92585 farnB 0.615 0.842 -92517 -68
3 -92569 farnA 0.733 0.647 -92566 -3

crp 1 -60547 crp 0.792 0.905 -60590 43
lexa 1 -109155 lexa 0.842 0.615 -109147 -8
crplexa 1 -169923 lexa 0.842 0.696 -169918 -5

2 -170048 crp 0.667 0.471 -170116 68

Table 2: Overview of results of MEME+ on test datasets. MEME+ was run with W set to
the values shown in Table 1 and/3 = 0.01. The log likelihood values are base-2 logarithms.

those in the lipocalin dataset will still be
found, though they may tend to be over-
general and have poor precision.

It is also notable that the known mo-
tifs tend to be found on the first passes of
MEME+, indicating that it will be a reli-
able tool for discovering unknown motifs.
Additional passes of MEME+ were run on
the datasets, and the log likelihood statistic
tended to be much lower than for the mo-
tifs shown in Table 2 (data not shown). 
searching for unknown motifs, this would
be evidence that motifs discovered in ear-
licr passes are significant from a biological
(or at. least statistical) point of view.

Discussion
The MM algorithm and its implementation
in MEME+ have several important advan-
tages over previously reported algorithms
that perform similar tasks. This section ex-
plains these advantages, and then discusses
several limitations of MM and MEME+ the
lifting of which would increase their useful-
ness for exploring collections of DNA and
protein sequences.

The Gibbs sampling algorithm of
Lawrence et al. (1993) is the most success-
ful existing general algorithm for discover-
ing motifs in sets of biosequences. MM has
two major advantages over this algorithm.
First, MM does not require input sequences
to be classified in advance by a biologist
as known to contain the motif that is be-
ing searched for. Instead, MM estimates
from the data how many times a motif ap-

pears. This capability is quite robust: ex-
periments show that even when only 20~:
of the sequences in a dataset contain a mo-
tif, the motif can still be characterized well
(data not shown). Second, MM uses a for-
mal probabilistie model of the entire input
dataset, and systematically selects values
for the parameters of this model that max-
imize the likelihood of the model. The MM
model allows us to compare in a princi-
pled way the motif characterizations dis-
covered by MEME+ and characterizations
obtained by other methods. In most cases,
the characterizations discovered by M EME
have higher likelihood.

As pointed out by Lawrence el al. (.1993)
and by others, the fundamental practical
difficulty in discovering motifs is the exis-
tence of many local optima in the search
space of alternative motif models. The
MM algorithm, like all expectation max-
imization applications, is a gradient de-
scent method that cannot escN)e from 
local optimum. The MEME+ implementa-
tion of MM uses several heuristics to over-
come the problem of local optima. These
heuristics are all variations on a common
theme, and should be useful in other ap-
plications also. The theme is to search the
space of possible starting points for gra-
dient descent systematically. By contrast,
Gibbs sampling algorithms combine gradi-
ent search steps with random jumps in the
search space. These algorithms can spend
an unpredictable number of iterations on a
"platemf’ before converging, whereas MM
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always converges in a predictable, rela-
tively small number of iterations.

The focus of our current research is to
overcome two significant limitations of MM
and MEME+. The first of thesc is that all
motifs found are constrained to have the
same width, which is a parameter specified
by the user. The main obstacle to estimat-
ing motif width endogenously is that likeli-
hood values are not comparable for models
that assume different motif widths.

The second limitation is that the num-
ber of different motifs present in a dataset
is not estimated by the algorithm. We plan
to overcome this limitation by generalizing
from a two component mixture model to
models with multiple components. A deep
difficulty with multiple component models
is that the induced search space is of even
higher dimensionality than with two com-
ponents, and local optima are even more
pesky. Our current intention is to use the
results of MEME+ as starting points for
fitting models with multiple components.
Doing this should have the additional ben-
efit of allowing similar motifs discovered in
different passes of MEME+ to be merged if
overall likelihood is thereby increased.

Another possible area for enhancement
of the algorithm is to allow the user to
specify a "weight" for each sequence to re-
duce any tendency to find motifs skewed
towards species which may be overrepre-
sented in the input dataset. For example,
if a dataset contained several sequences
known to be closely related evolutionar-
fly, they could be given weights less than
1, while more distantly related sequences
could be given unit weights. These weights
could be used in the EM algorithm when
estimating the letter frequencies of the mo-
tif in such a way to prevent the closely re-
lated sequences from dominating.
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