
Genetic Map Construction with Constraints

Dominic A. Clark, Christopher J. Rawlings and Sylvie Doursenot

Biomedical Informatics Unit
Imperial Cancer Research Fund

P.O. Box 123, Lincoln’s Inn Fields
London, WC2A 3PX, UK.

{dac,cjr} @biu.icnet.uk

Abstract
A pilot program, CME, is described for generating a physical
genetic map from hybridization fingerprinting data. CME is
implemented in the parallel constraint logic programming
language ElipSys. The features of constraint logic
programming are used to enable the integration of pre-
existing mapping information (partial probe orders from
cytogenetic maps and local physical maps) into the global
map generation process, while parallelism enables the search
space to be traversed more efficiently. CME was tested using
data from chromosome 2 of Schizosaccharomyces pombe and
was found able to generate maps as well as (and sometimes
better than) a more traditional method. This paper illustrates
the practical benefits of using a symbolic logic programming
language and shows that the features of constraint handling
and parallel execution bring the development of practical
systems based on AI programming technologies nearer to
being a reality.

Introduction
Genetic and physical maps are constructed to provide a long
range view of the genome by locating landmarks (genes and
other genetic markers) on particular chromosomes. Some of
these are positioned as a result of genetic linkage analysis
(e.g. inheritance patterns of genes), others by physical
analysis of the genome (e.g. hybridization fingerprinting,
Lchrach et a1.1990). The landmarks provide a high level
index, by which the positions of DNA clonest can be located
and then sequenced. Assuming the landmark maps are
correct, it is theoretically possible to sequence the entire
genome by sequencing the minimal subset of the clones
which in combination span the whole genome and then
ordering them according to the higher level maps. More
practically, physical maps can be used as an index to
libraries of cloned DNA used to focus in on areas of the
genome of particular interest (e.g. to locate the positions of
genes) which are known to contain those markers.

Hybridization Fingerprinting
The establishment of ordered clone libraries relies on the
identification of clones from overlapping segments of the

1. A clone is a contiguous short subsection of a genome inserted
into the genome of host species in order to be replicated, stored and
analysed.The type of host used determines the insert size of the
clone (lambda, 15 kbp (kilo base pair); cosmid (E. colt) 40 kbp;
YAC (yeast artificial chromosome) (S. cerevisiae) 200-600 kbp; Ra-
diation Fusion Hybrid (mouse) 1000 kbp+).

genome. Groups of contiguous clones with established
overlaps are called a contig. A well established technique
for detecting overlaps between DNA clones is called
hybridization fingerprinting (Lehrach et al. 1990). After
fragmentation of the genome, the fragments are cloned into
a host so that they may be easily stored, replicated and
analysed. Samples of each clone are spotted in a grid (by
robot) onto large nylon filter membranes and then they are
hybridized with radioactive markers (probes). Assuming
that the clones are randomly distributed over the genome
(their locations unknown), similarities in the hybridization
patterns of different clones with sets of probes imply that
they derive from overlapping segments of the genome. The
pattern of hybridization revealed by exposed spots observed
on autoradiographs of the filter grids is then recorded
(Figure 1).

The computational problem is to take a digital
representation of the hybridization pattern from all the
filters covering the chromosome and determine both the
most complete order of probes containing the greatest
number of contiguous regions and the order of clones along
chromosome as defined by this probe ordering. In the
absence of experimental noise this would be a trivial
problem and could be solved using a number of simple
algorithms (e.g. the greedy algorithm whereby probes/
clones were ordered by firstly selecting the most similar
pair and repeatedly adding the most similar). However,
noise from the following four sources makes the problem
non-trivial:
¯ random noise (coming from the experimental methods

or from threshold effects in image interpretation),
¯ co-ligated clones (clones which are a combination of

two or more distinct parts of the genome),

¯ clones with internal deletions and
¯ non single-copy probes (DNA sequences that occur at

more than one place in the genome).

The problem of probe ordering is essentially
combinatorial in nature and computationally very intensive
for large scale mapping experiments. The main approaches
developed so far are either entirely statistical (Michiels
1987, Branscomb 1990, Torney et al. 1990, Mott et al.
1993) and treat noise as an artefact to be minimized, or are
based on heuristic considerations (Mott et al. 1993) where
the aim is to eliminate noisy data with a concomitant loss of

78 ISMB--94

From: ISMB-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

(b)

(a)

(c)

®

00000100101000010010100000001
10001001000010000000100010001
00000100000000000010000000001
00010000100000000000001000000
00001000000000010000000000010
00001000000100000000010000001
00000000100000010101000001000
00100000001000001001010000001
00010010001110000000000100100

ro

clone 1
clone 2
clone 3
clone 4
clone 5

Figure 1: Hybridization Fingerprinting. Clones spotted onto nylon membrane in a grid by robot (a). Probes only bind to clones
containing the probe sequence and are identified because they "light-up" on the autoradiograph. (b) which through image processing
is transformed to a binary signature for each clone (c) where ’ 1’ indicates hybridization.

completeness. In both approaches the rationale for
minimizing or eliminating noise is to reduce or eliminate
subsequent wasteful experiments predicated upon the
assumption that the map is correct. In other words, the fewer
the errors in the map, the less the wasted research effort.

The advantages of statistical approaches are that the
problem can be treated as an instance of a well-known class
(in Mott’s case the symmetric travelling salesman problem)
and that reasonable solutions can bc generated in a
relatively short space of time (e.g. matters of minutes)
standard methods such as simulated annealing or other
optimization methods. The disadvantages are that
approximation methods with random components such as
simulated annealing can produce different solutions on
different runs with the same dataset. More importantly,
these methods make it difficult to extend or modify the map
construction problem to integrate mapping data from other
sources such as the genetic map. Some of the existing
techniques can only do this by either hand-crafted cost
functions or by manual intervention in the map construction
process.

The heuristic method of Grigoriev (described in Mort et
al. 1993) assumes that there is a large over-coverage of the
genome provided by the clone dataset and therefore
possibly noisy data can reasonably be eliminated without
loss of coverage. The advantages of this approach is that it
produces a very reliable probe ordering but the

disadvantages are that the resulting solution is not
necessarily from the maximal consistent set and too much
data is eliminated so that fewer markers are ordered.
Furthermore, human intervention is required to resolve
indeterminacy in the elimination of non-informative probes.

The potential for improving the existing approaches to
the contig map construction problem comes from the need
during the map construction process to exploit a priori
information such as local gene order at some chromosome
locations or partial maps constructed by other mapping
techniques and to integrate intersecting data sets.
Furthermore, we wish to combine elements of the heuristic
and algorithmic approaches and develop methods for
automating the parts of the process that are presently
subject to human judgement. In order to address these
issues we have chosen to adopt software tools from AI and
in particular logic programming.

In this paper we present a formulation of contig map
construction as a constraint satisfaction problem using the
parallel constraint logic programming language ElipSys
(Veron et al. 1993). We show the effect of different
constraining data on reducing the search space and how the
parallel programming features of ElipSys can contribute to
the realisation of software able to tackle large scale
molecular biology problems using declarative programming
languages.

Clark 79

generate_probe_order (Template, Orders, First, Threshold1, Threshold2):-
create_probes_templatewith N slots (No/Sites, Template),
extract_l 5 s t (Template, Sites),
al l_di f ferent (Sites),
app ly_par t i a i_o rder (Orders,Template),
apply_neighbourhood_cons traints (Thresholdl,Template) ,
apply_adj acency_cons traints (Threshold2,Template) ,
bui i d_c o s t_ f unc t i on (Template, CostFunction),
initial_solution (First)
minimize (ins tant iate (Sites) , CostFunction)
generate_cl one_order (Sites) .

(a)

(b)
(c)
(d)
(e)

(f)
(g)

(h)
(i)

Figure 2: The top level goal and subgoals of CME.

Constraint Satisfaction and Constraint Logic
Programming
Constraint satisfaction problems are ubiquitous in AI and
operations research and have received extensive attention
since the early 70s (Nadel 1990). In general, constraint
satisfaction problems can be characterised as having four
components: objects (in CME these are the probes);
variables associated with those objects (position); values
associated with those variables ([1..N] for each probe);
constraints on the values that variables of specific objects
can take (Adjacency, Neighbourhood, Partial orders). The
goal of constraint satisfaction algorithms is to find values
for the variables for each object such that all constraints are
simultaneously satisfied.

Most constraint satisfaction algorithms are based on two
general approaches, tree search and arc consistency. In tree
search, the potential solution space is traversed from the
root to the branches by sequentially instantiating the
variables in some order. Conversely, arc consistency
methods are not tree based but use resolution techniques to
generate consistent sets of values for each of the variables
of each object and remove inconsistent values (Nadel,
1990). Many approaches have been adopted for
programming constraint satisfaction problems and in
general the software has been specific to a particular
application and programmed in an imperative language
such as ’C’ for performance reasons. Such approaches,
however, often lead to inflexible and hard to maintain
programs where simple conceptual changes in the problem
specification or the resolution strategy require extensive
reprogramming.

A more general approach uses a constraint handling
extension to logic programming (LP): constraint logic
programming (CLP). CLP can be understood as
generalization of LP where the basic operation of
unification is replaced by constraint checking (Jaffar and
Lassez 1987, Van Hentenryck 1991). CLP integrates

efficient constraint-solving methods from algebra, artificial
intelligence, operations research and logic to support, in a
declarative way, computational paradigms such as partial
enumeration, constraint satisfaction and branch and bound
search. These employ both search and consistency methods.
CLP languages therefore combine the advantages of LP
(declarative semantics, relational form and non-
determinism) with the efficiency of special purpose
problem-solving (search) algorithms. From a user’s
perspective CLP programs have great expressive power due
to the natural way in which constraints are integrated into
the logic programming framework. Program design can
also be more intuitive because the programmer works
directly in the domain of discourse. Moreover, the runtime
efficiency of the resulting program is also enhanced because
of the exploitation of computation techniques over specific
domains.

ElipSys (ECRC Logical Inferencing Parallel System)
a parallel CLP language developed at ECRC which includes
constraint handling on finite domains. The parallel
execution model employed by ElipSys allows programs to
be run concurrently on either shared or distributed memory
computer architectures. Exploitation of parallelism is
enabled by user annotations of non-deterministic predicates
or through the use of built-in parallel predicates such as
par._member/2. A useful way of viewing the interplay
between the constraint propagation and parallel execution
strategies is that the constraints provide the mechanism for
a priori pruning of the hypothesis space, while parallelism
allows it to be traversed more efficiently. ElipSys has
previously been employed in RNA secondary structure
prediction (Heuze 1989) and Protein Topology Prediction
(Clark et al. 1993a, 1993b).

Contig Mapping with ElipSys (CME)
The CME program uses the CLP paradigm of constrain and
generate rather than the traditional paradigm of generate
and test.

80 ISMB-94

raw data 1noisy /
I probe-clone [

/ matrix / simulated annealing
.L OR other noise

~- .-~ ’’~.minimlzation algorithms
Data reduction~ ,,,- -~\x" k
Heuristics---~" . .,,,--"~ k ~ Simulated

A.--"’" - ~ l Annealing

[~~
~ i.....!., S o lntion..-,’," CME

Provide partial --1
~;~ orders on probes-~d .,,,,.’~
%

I
%. ,,,--" I Final CME Contig

% ,-" I _% .,,,,--"

Genetically
Mapped Data "’"illl""""’.,.,.llll.’- Other hybridization

data sets

SoRware Processes ""’~/~’" Constraints

Figure 3: Relation of CME to simulated annealing and other data and analysis techniques. Ensuring consistency with other intersecting
data sets is discussed in the final section

The constrain and generate paradigm entails:
¯ defining the hypothesis space
¯ specifying constraints
¯ labelling (or search)

If the intention is to minimize some cost function to
direct the search, then the final stage is:
¯ defining a cost function
¯ labelling the variables in order to minimise the cost

function
Figure 2 shows the top level goals of CME and Figure 3

illus~ates the relationship of CME to other aspects of the
physical map generation process.

Defining the Hypothesis Space
Like the methods of Mott and Grigoriev, described above,
the strategy used by CME is to firstly order the probes and
then order the clone library. In general in CLP, the definition
of the hypothesis space is achieved through the use of
domain variables. The domain definitions determine the
possible binding values of each variable. In CME the
hypothesis space is defined by a procedure to

¯ create a template with N slots Fig 2(a)
Here, N is the number of probes, the call to

create_probes_template_with N slots/2
uses the ElipSys finite domain variable constructor
operators and returns a list of FD variables Sl_ N each of
which has a domain 1..N to represent the site or probe
position

Template = [$1-_{ 1, 2, 3 N},S2-_{ 1, 2, 3 N},
... SN-_{ 1,2, 3 N}].

Specifying Constraints
In ElipSys, all equalities and inequalities are specified as
arithmetic constraints. These are not simply instantiated and
then checked. Additionally, the ElipSys runtime system
employs look ahead inference rule which attempts to
remove inconsistent values from the domain of a variable.
The particular constraints applied are spatial constraints (no
two probes can co-occur in the same location), threshold
constraints (thresholds on the allowable dissimilarity values
for neighbouring probes) and partial order constraints (e.g.
from a genetic map, or a reliable existing contig).

Clark 81

10000

10

Figure 4: Overview of scaling data - effects of different constraints

¯ spatial constraints Fig 2(b)

In all_different(Sites) the values of the
variables all have to be different, i.e. once a probe is
positioned it is not considered further. This constraint is
supported by the built-in predicate al l_di f f erent / 1.
¯ partial order(s) constraints (Orders) Fig

If it is known that probe x is localised before probe y
then the domain variable representing the sites associated
with probe x will be smaller than the one associated with
probe y:

Sx =_{ 1, 2 N-I } and Sy =_{2, 3 N}
¯ Threshold constraints Fig 2(d,e)

The neighbourhood constraint ensures that two or more
probes with a pairwise dissimilarity (Eq 2) less than the
threshold must be neighbours and its logical opposite, the
adjacency constraint, ensures that probes with a pairwise
dissimilarity value greater than threshold2 cannot be
adjacent.

Cost Function
The two costs described here are each defined as an
additive linear function. Only one cost is used at a time for
minimization purposes, though the program computes both
for each run. They are built by the clause
build_cost_function (Template, Cos tFun)

Figure 2(f).
Costl is the sum of all the dissimilarities values between

the probes for a given order and is the classic pairwise
dissimilarity measure employed in a variety of techniques.

Supposing Txy is the number of clones that hybridize to
both probes and Rxy the number of clones hybridizing to
either probe; then the maximum likelihood of the distance
between the probes is:

dxy = (Txy - Rxy) / Txy (Eq. 1)
These values are pre-computed. The total cost, P(K), for

a permutation X of the probes is therefore:

P(K)= E ’In i hi+ ! (Eq. 2)

Cost2 is defined as the sum of the costs for each clone,
defined for each clone as the number of positive
hybridizations not in the largest contig. It is achieved by
using a built-in symbolic constraint defined in
sequences(+ListItems, +Item, +MaxLength,

-Occurrences).
Note that although this cost function is computed across

clones, the particular search tree traversed consists of probe
orders with dependencies propagated using an active
constraint mechanism that links probe and clone sites using
a goal suspension mechanism.

Search Strategy and Minimization
The user can assign an initial starting probe order, which
may be the result of a previous analysis in the predicate
initial_solution(?First), Figure 2(g). This
initial solution is used both to compute the initial value of
the cost function for subsequent minimization and as the
configuration from which search may begin, unless it
violates a hard constraint. A user-supplied configuration
might be the output from an optimization procedure such as

82 ISMB-94

3_

Figure 5: Simulated speed-up due to parallel processing

simulated annealing. In the absence of a user-supplied
starting configuration an initial solution is generated using
the "greedy algorithm" where the first probe is taken as that
with the smallest set of possible neighbours.
¯ minimization of cost Fig 2(h)

The cost minimization is performed using the built-in
predicate minimize(Term, Cost) where Term is the
predicate attributing the values to be used in the cost
function, here instantiate (Sites). This predicate
calls a built in branch-and-bound algorithm which prunes
branches of the search tree for which the partial cost is
already greater than the existing minimum and is guaranteed
to find a global minimum cost solution within the
constraints, given unlimited computational resources.
¯ explicit instantiation Fig 2(h)

Search is initiated using the instantiate/1
predicate. Only combinations of variable assignments not
ruled out by the constraints are considered. The precise
search strategy employs a best first search based on the
pairwise measures in Eq. 1. It is this aspect of the program
that is potentially executed in parallel.

Finally, Figure 2(i), clones are ordered using the dynamic
programming algorithm of Mott et al. (1993) implemented
in C.

Results and Evaluation
We describe the ordering of a YAC library from S. pombe, a
unicellular yeast with a genome of 15 million base pairs
(about one-tenth of the human X chromosome) divided into
3 chromosomes. It has all the basic characteristics of a

eukaryotic genome. Over 450 genetic markers have been
identified, with over 200 markers genetically localized on
the three chromosomes. Because of its small size and a low
abundance of repeated sequences, the S. pombe genome is
useful for prototyping new mapping techniques. Cosmid
and YAC genomic libraries have been constructed by the
ICRF Genome Analysis Laboratory to assist in the
development of large scale mapping methods. Data from
hybridizations between a panel of probes and the ICRF
YAC S. pombe library was separated into three subsets
corresponding to the three chromosomes (according to the
results obtained by the statistical approach of Richard
Mott). In this study we focused on the data for
Chromosome 2. Since most of the probes correspond to
genetically identified markers, such experiments should
also allow the alignment of the genetic map with the
physical map.

Scaling-up

In order to evaluate the scaling properties of CME a
structured set of samples of increasing size were selected
from the chromosome 2 data set. Results for scaling data
are summarized in Figure 4 for runs on a SparcStation2.
Each dataset contained N probes (N E {8, 10, 12, 14,16}
with 3N clones and N hybridizations due to noise. The data
presented are the medians of 9 runs (3 runs on each of
random data orders) measuring CPU time spent in user
mode. The six curves represent the effects of introducing
various constraints into the search. Assuming that complete
dissimilarity between probes corresponds to a value of 100,
we constrain all pairs of probes which have a dissimilarity

Clark 83

n

g-

r_-
-°

......::. :

tli_~/li

Figure 6: CME generated physical map for S. pombe chromosome 3 for 55 probes, 269 clones, (3rd solution)

value less than a threshold to be adjacent in the final probe
order. The far left curve (adj0neighl00) is obtained without
any constraints, while the second curve (adj25neigh100)
shows the effect of increasing the adjacency constraint. If
we now introduce a further constraint which states that
probes with greater than 95% dissimilarity cannot be
adjacent the search time is further decreased
(adj25neigh95). Finally the last two curves demonstrate the
effect of partial order constraints, for a partial order among
N/2 of the probes (adj40neigh95ord). The overall result
clear and shows that the introduction of each additional
constraint vastly reduces computation time. However it is
also clear that the resulting curves are still exponential in
the number of probes. Figure 5 shows the possible speed-
ups by use of parallelism. These data were derived using
simulated parallelism on a SparcStation2. The point to note
is that the speed-up was greatest for the largest search space

(10 probes with an adjacency constraint of 25%) - a factor
of approximately 4.5 with 5 processors. We are currently
replicating these results on an ICL DRS6000 with 4 Sparc2
processors.

Full data sets
Results for CME with the data for chromosome 2 (55

probes 502 clones) are shown in Table 1. These were
obtained using the best solution of Mott et al. (1993) as the
starting configuration and the final heuristically produced
partial map using the method of Grigoriev as a partial order
constraint. CME demonstrated that using Costl (above),
moderate adjacency and neighbourhood constraints and the
partial order constraints from Grigoriev’s map (Mott et. al.
1993), the simulated annealing solution of Mott (1993)
a minimum solution for this cost function. Using the

84 ISMB-94

alternative cost function (Cost2), however, CME found
slightly superior solution after 6 minutes of CPU usage.

Table 1:

Method
Cost 2 Cost 1

(CPU time) (CPU time)

Simulated Annealing 200 2256
(Mott et al., 1993) (few mins)
CME Starting Solution

CME 2nd solution 196 2256
(6 minutes) (11 hours)

In a second analysis, clones having 0, or more than 7
positive hybridization were eliminated from the data set. As
with the heuristic method of Grigoriev, the justification for
this is that clones with 0 or 1 hybridizations do not
contribute to contigs, while clones with more than 7
hybridizations are very likely to contain noise. Thus the
reduced data consisted of 55 probes and 239 clones (from
502 in the initial dataset) (Table 2). We have not yet had
opportunity to run simulated annealing with this reduced
data set and hence the initial starting configuration was
based on the simulated annealing solution for the whole data
set (502 clones). However, CME was able to improve
significantly upon the best result for simulated annealing
with the larger set using the alternate cost function. Figure 6
shows the resulting contig for the third CME solution.

Table 2:

Method
Cost2 Costl
(time) (time)

Simulated Annealing 138 2546
(Mott et al., 1993) (few mins)a
CME Starting Solution

CME 2nd solution 116 2523
(5 minutes)

CME 3rd solution 110 2459
(7 minutes)

a. Based on simulated ~ nneahng solutto a of full set of
clones.

Discussion and Conclusions

In this paper we describe the ordering of a subset of genetic
markers in a YAC library from the yeast S. pombe using a
program written in the ElipSys parallel constraint logic
programming language. The generation of long range
physical maps is a problem with combinatorial complexity
that also requires complex human judgement in order to
integrate the range of data necessary to yield satisfactory
solutions. Problems with similar properties have been
addressed previously using AI languages and techniques. In

particular the contig mapping problem shares many of the
difficulties of restriction endonuclease mapping (Stefik
1978). Other applications of AI techniques to molecular
biology can also be considered as examples of constraint
solving. For example, DENDRAL (Buchanan and
Feigenbaum 1978) the MOLGEN project (Stefik 1981a,b)
and the PROTEAN system (Hayes-Roth 1987).

These earlier systems were either written in LISP or
developed in general problem solving architectures built in
LISP. Although there are many advantages in the use of
logic programming languages (e.g. Prolog) for building
knowledge-based systems, LP languages have not often
been considered as appropriate vehicles for large scale AI
applications.The main problem attributed to LP arises from
its uniform but simple depth-first, left-to-right
computational model. This makes LP programs equivalent
to simple generate and test with standard backtracking.
However, in generate and test, constraints are only used to
test if the overall assignment is a solution. No pruning
occurs in the search except of the search tree subordinate to
the current node as defined by the current set of variable
bindings. Thus generate and test potentially explores too
much of the search space and is very inefficient for larger
search spaces.

The inefficiency of generate and test in LP may be
contrasted with the result of search procedures based on
consistency techniques (local value propagation, data
driven computation, forward checking and look ahead).
They are based on the idea of a priori pruning, that is the
using of constraints to reduce the search space before the
discovery of a failure. The pruning in consistency
techniques is achieved by spending more time at each node
of the search tree removing combinations of values that can
not appear in a solution. Thus these procedures are oriented
towards the prevention of failures and enable both an early
detection and a reduction of the backtracking and the
constraints check.

Constraint logic programming therefore offers the best of
two worlds: the declarative semantics, relational form and
problem abstraction features of LP languages which when
combined with consistency techniques make it possible to
preserve most of the efficiency of specialized programs.
This leads to the idea of embedded consistency techniques
into logic programming so that logic programs keep their
descriptive features while being more efficient. This new
paradigm can be characterised as "constrain and generate".

The research described in this report has shown that
using techniques from CLP as currently implemented in
ElipSys it is possible to tackle the problem of building
probe hybridization map for data sets of limited size,
yielding comparable or improved solutions over other
methods. Furthermore it was demonstrated that the addition
of each type of constraint can potentially decrease the total
search time by an order of magnitude. Finally it should be
emphasised that CME is complimentary to other contig
mapping approaches in so far as the results of previous
analyses can either be used as partial order constraints or as
initial starting positions.However, the huge search space

Clark 85

which has to be explored would still make the application
very slow with large data sets (e.g. human X chromosome).
There are a number of developments that might be
considered for improving this limitation.

Recursive Algorithms and Parallelism
CME simultaneously orders all probes. An alternative
approach would be to incrementally and recursively order
increasingly large sets of probes taking the best previous
order as a fixed ordinal level constraint and introducing the
probes in a best first (i.e. lowest pairwise dissimilarity)
basis.This has some similarities with the method described
by Letovsky and Berlyn (1992). As we have demonstrated,
parallelism resulted in near linear speed-ups. Use of
massive shared memory parallelism can therefore be
expected to play a significant role for larger data sets.

More constraints
In CME, constraints come from three sources: general
properties of good solutions (adjacency and neighbourhood
constraints), partial orders from other sources and the data
themselves. Clearly if more uncertain data is introduced the
computation can become more complex, because the cost
function to be minimized has more free variables. However,
if new constraints in the form of characteristics of good
solution or partial orders or other "certain" constraining
data can be identified then the problem potentially becomes
simpler because more values from the domain of variables
can be eliminated without the need for search.

Alternative cost functions
Use of pairwise difference as a cost measure has the effect
of obscuring experimental artifacts such as clone co-
ligation. The alternate cost function described in this paper
makes a step in the direction of explicitly modelling this
process. Subsequently, a new ElipSys built-in constraint
has been devised explicitly to model co-ligation for use in
minimization. The new constraint contigs/5 should
make it possible to explicitly model the process of co-
ligation, rather than treat it as random noise. Indeed using
such a constraint it is possible to specify constraints on
solutions such that all clones with a given number of
hybridizations should contain a given number of contigs.

We are currently extending the use of CME with the S.
pombe dataset using elements of all these four. The long
term aim for extending this approach for human
chromosome physical mapping is probably most dependent
upon the availability of constraints arising from other data
sets.- in particular the use of mapping data at many
different resolutions (e.g. RFHs, mega-YACs).

Acknowledgements
This research was funded by the Imperial Cancer Research
Fund, the European Computer-Industry Research Centre
and the European Union under ESPRIT Ill project 6708
"APPLAUSE". Thanks to Richard Mott (ICRF Genome
Analysis Laboratory) for making data and display programs
available and ECRC colleagues for ElipSys support.

References
Branscomb, E. et al. 1990. Optimizing Restriction Fragment

Fingerprinting Methods for Ordering Large Genomic Li-
braries., Genomics. 8:351-366.

Buchanan, B. G. and Feigenbaum, E. A. 1978. DENDRAL and
Meta-DENDRAL: Their Applications Dimension. Artifi-
cial Intelligence. 11:5-24.

Clark, D. A.; Rawlings, C. J.; Shirazi, J.; Veron, A. and Reeve,
M. 1993(a). Protein Topology Prediction through Parallel
Constraint Logic Programming, In Proceedings of the
First International Conference on Intelligent Systems for
Molecular Biology (eds. L. Hunter, D. Searls, and J.
Shavlik) AAAI/MIT Press, Menlo Park CA.

Clark, D. A.; Rawlings, C. J.; Shirazi, J.; Li, L-L.; Reeve, M.;
Schuerman, K. and Veron, A. 1993(b). Solving Large
Combinatorial Problems in Molecular Biology Using the
ElipSys Parallel Constraint Logic Programming System.
The Computer Journal 36(8): 690-701.

Hayes-Roth, B.; Buchanan, B.G.; Lichtarge, O. et al. 1986.
PROTEAN: Deriving Protein Structure from Constraints.
Proceedings of National Conference of American Asso-
ciation of Artificial Intelligence 5:904-909

Heuze, R 1989. RNA secondary structure prediction in Elip-
Sys. Technical Report ElipSys/10. European Computer-
Industry Research, Centre, Arabellastrasse 17, D-8000,
Munich 81, Germany.

Lassez, J-L. and Jaffar, J. 1987. Constraint Logic Program-
ming. In Proceedings of the 14th ACM Symposium on
Principles of Programming Languages, Munich, Germa-
ny.

Lehrach, H.; Drmanac, R.; Hoheisel, J. et al. 1990. Hybridiza-
tion Fingerprinting in Genome Mapping and Sequencing,
Genome Analysis, 1, Genetic and Physical Mapping.
Cold Spring Harbour Laboratory Press, 39-81

Letovsky, S. & Berlyn, M.B. 1992. CPROP: A rule-based pro-
gram for constructing genetic maps. Genomics. 12:435-
446.

Michiels, E 1987. Molecular approaches to genome analysis: a
strategy for the construction of ordered overlapping clone
libraries, CABIOS 3(3): 203-210.

Mot-t,R, Grigoriev, A, Maier, E, Hoheisel, J. and Lehrach, H.
1993. Algorithms and software tools for ordering clone
libraries: Application to the mapping of the Genome of
Schizosaccharomyce.s pombe. Nucleic Acids Research
21(8): 1965-1974.

Nadel, B.A. 1990. Constraint Satisfaction Algorithms. Compu-
tational Intelligence 5(4): 188-221.

Stefik, M. 1978) Inferring DNA Structures from Segmentation
Data. Artificial Intelligence 11: 85-114

Stefik, M. 1981(a). Planning with Constraints [MOLGEN:
1]. Artificial Intelligence 16:111-140

Stefik, M. 1981(b). Planning and meta-planning [MOLGEN:
Pt 2]. Artificial Intelligencel6:141-169

Tomey, C. Schenk, K. Whittaker, C. White, S. 1990. Computa-
tional methods for physical mapping of chromosomes.
The First International Conference on Electrophoresis,
Supercomputing, and the Human Genome; (Cantor and
Lim, eds): World Scientific, 268-278.

Van Hentenryck, E 1989. Constraint Satisfaction in Logic Pro-
gramming, MIT Press

Veron, A, Schuerman, K, Reeve, M. and Li, L-L. 1993. How
and Why in the ElipSys OR-parallel CLP System. In
Bode, A, Reeve, M. and Wolf, G (eds) PARLE 93, Lec-
ture Notes in Computer Science, 694: 291-304. Springer-
Verlag, Heidelberg.

86 ISMB-94

