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Abstract

A new category of protein motif is introduced. This
type of motif captures, in addition to global structure,
the nested structure of its component parts. A data.set
of four proteins is represented using this s(:heme. 
structured machine discovery procedure is used to dis-
cover recurrent amino acid motifs and this knowledge
is utilized for the expression of subsequent protein mo-
tif discoveries. Examples of discovered multilevel mo-
tifs are presented.

Introduction

In an earlier paper (Conklin, Fortier, & Glasgow 1993)
we presented a knowledge representation formalism for
protein motif representation and discovery called a
spalial description logic (SI)f~). The logic is specifi-
cally tailored to reasoning about spatially structured
objects, and is a convenient and expressive formal-
ism for representing various types of protein motifs.
Our knowledge discovery method, a relational concep-
tual clustering procedure, uses 8/3/~ as a representa-
tion language and groups similar protein fragments
into classes described by discovered, subsuming mo-
tifs. This representation and discovery technology has
been applied to several molecular datasets.

The spatial description logic formalism is used, ill
general, to describe structured objects, that is, objects
with parts along with defined relations among these
parts. Parts can recursivcly refer to other structured
objects, providing a mechanism for nesting or reducing
the complexity of an object. In our previous research,
nested motifs were not explored. The i)urpose of this
paper is to illustrate the use of ST)L: on multilevel pro-
tein motif representation and discovery. In a multilevel
representation language, the parts of a protein motif
(amino acids) need not be 1)rimitive identifiers, rather,
they can be structured objects - - amino acid motifs --
in turn. Both protein motifs and embedded amino acid
motifs are discovered by our machine learning proce-
dure. The "advantage of the multilevel representation
is that the structure at one level provides contextual
information that has some bearing on structure at a
lower or higher level.

Tile first section of this paper reviews protein motif
rcl)resentation using SZ)/~, and presents the concept 
a nmltilevcl structured protein motif. The second sec-
tion reviews the machine discovery 1)rocedure, and in
the third section it is applied to a small database of
multilevel protein fragments. Examples of discovered
nmltilevel 1)rotein motifs are presented. The paper con-
eludes with a discussion of the pragmatics of multilevel
protein motifs, and potential fllture research.

Multilevel protein motif representation

A protein fragment is an observed pattern of amino
acid residues, for example, a region of (ld) primary
structure or of (3d) tertiary structure. protein motif
is an abstraction of one or more fragments. Protein
motifs can be classified into four categories. Sequence
motifs are linear strings of residue identifiers with
an implicit topological ordering. Sequence-structure
motifs are sequence motifs with predefined secondary
structural elements attached to one or more residues in
the motif. The sequence is assumed to be predictive of
the associated structure. Structure motifs are 3d struc-
tural objects, described by positions of residue objects
in 3d Euclidean space. Finally, siruclurc-sequencc mo-
tifs are coml)ined ld-3d structures that associate se-
quence information with a structure motif. Structure-
sequence motifs need not indicate a fixed direction
of iml)lication between structure and sequence. This
is particularly usefill for our purposes (Fortier el al.
1993), since they represent, in addition to sequence-
structure rules, 3d features that may be rnatched to
fragments in an emerging protein electron density map.

There has been much research on the discovery of
pure structure motifs, that is, motifs with no attached
sequence information [e.g., (Hunter & States 1991;
Rooman, Rodriguez, & Wodak 1990; Onizuka et al.
1993)]. Recent research has looked at structure-
sequence motifs, which are also concerned with the
characteristics of a residue at a particular position of
a structure motif [e.g., (Conklin, Fortier, & Glasgow
1993; Unger et al. 1989; Zhang el al. 1993)].

All 1)revious structure-sequence discovery work, in-
cluding our own, has assumed that the components of
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motifs -- amino acid identifiers -- are devoid of manip-
ulable 3d structure. An extension of previous work is to
base the discoveries of a system on the internal spatial
structure of the amino acids. There are two approaches
to such an extension. One is to code, as background
knowledge, the definitions from manual amino acid ro-
tamer classifications (Ponder & Richards 1987). The
approach we have chosen is to use a machine discovery
procedure to autonomously discover its own rotamer
classes. Both approaches require a knowledge repre-
sentation, such as $l)£, capable of describing multi-
level structured objects.

A structured object is composed of parts along with
defined relations among these parts. A structured ob-
ject may be composite, recursively comprising other
structured objects as parts, or otherwise atomic (not
further decomposable). The level of a structured ob-

ject is defined inductively as follows. The level of an
atom is 0. The level of a composite object is one greater
than the maximum of each part level. To draw an
example from protein structure, atoms are level-0 ob-
jects. Amino acids are level-1 objects, containing only
level-0 objects as parts. Protein structure motifs .....
polypeptide chains of amino acids -- are either level-1
or level-2 objects, depending on whether amino acids
are atomic or composite in the representation.

Figure 1 illustrates the two styles of structure-
sequence protein motif. The level-1 protein motif in
Figure 1 (top) [see (Conklin, Fortier, & Glasgow 1993)
for a full discussion of level-1 motifs] has as parts prim-
itive concept terms such as axginine and polar and
hydxophobic These concepts are not themselves 3d
motifs and have no internal structure. Each amino
acid is positioned at its Ca location. The motif is a 4d
object; dimensions 1 through 3 are used for Cartesian
coordinates, and dimension 4 for the sequence posi-
tion. The motif preserves two relations, the binary
topological distance relation and the quaternary spa-
tial delta relation. The distance relation measures
how far apart two residues are in the sequence. The
delta relation partitions the virtual backbone torsion
angle space into four ranges, defined by Ring et al.
(1992): U (-75 to 15), L (15 to 105), Z (105 to 195) 
J (195 to 285). To the right of the motif is the S:P£
syntax for generating the depiction and relational se-
mantics. The keyword image in the concept definition
declares an image term: this is a method for concisely
expressing structured concepts and relations.

Figure 1 (middle) illustrates a level-2 motif: the type
we are concerned with in this paper. One of the parts
of the motif (aamotif-1) is itself an amino acid motif
with an internal level-1 structure. The amino acid mo-
tif is illustrated below the container motif. It preserves
the bonded and planarity relations, and subsumes
any phenylalanine with the indicated parts in the ap-
propriate topological and planarity relationships. The
planaxity relation (Klyne & Prelog 1960) divides tor-
sion angle space into four regions: syn-periplanar

(-30 to +30), anti-periplanar (150 to 210), +clinal
(30 to 150) and -clinal (210 to 330). Note that 
level-2 motif of Figure 1 is only one of many possible
ways of parsing the level-0 atomic structure into aggre-
gates. It is, however, quite natural since amino acids
are the accepted building blocks of proteins. While
the internal relations of the amino acids -- the in-
tramolecular relations -- are preserved by a level-2
motif, "cousin" relationships -- interatomic relations
between different amino acids of the container motif --
are not retained. This is the small penalty that must
be paid with aggregation.

Not illustrated by Figure 1 is a protein motif rep-
resented as a level-0 object. Although this is possible
in S’D£, there are many problems with such a repre-
sentation. Objects wouhl be complex and hard to un-
derstand due to the lack of conceptual organization or
grouping of parts. Furthermore, it becomes computa-
tionally difficult to match objects with many atomic
parts. Researchers in chemical information systems
have also encountered similar problems, and have con-
sidered ~reduced" graphs as a representation language
for small molecules (Takahashi, Sukekawa, & Sasaki
1992). However, in contrast to the S~£ language,
reduced graphs discard the internal structure of the
aggregated parts.

A central idea in S:D£, and indeed in all description
logics, is subsumptio,. One concept is subsumed by an-
other if all of its possible instances are also instances of
the other. The concept definitions and the semantics of
a particular description logic dictate the criteria for in-
stance relationships. As outlined in (Conklin, Fortier:
& Glasgow 1993), subsumption in S~/: can be com-
puted by finding a relational monomorphism (Haralick
& Shapiro 1993) --- similar to a subgraph isomorphism
but with hyperedges -- which also preserves subsump-
tion among the parts of a motif. Since the parts of
a nmtif can be any concept, including another motif,
this inductive definition of subsumption extends im-
mediately and elegantly to multilevel protein moti£s.

Multilevel protein motif discovery

In an earlier paper (Conklin & Glasgow 1992) we de-
scribed IMEM (Image MEMory), an incremental re-
lational conceptual clustering system. IMEM is a
prototype, similarity-based discovery system; observed
structural similarities are assumed to be potentially
indicative of an interesting and useful discovery. The
system scans $T~£: concept definitions, one by one, and
incorporates them into an expanding concept taxon-
omy. This concept taxonomy is used to direct a motif
towards similar motifs, when concept formation may
be triggered by high similarity. The newly formed mo-
tif, a common subsumer, is then classified: placed just
below all most specific subsumers and just above all
most general subsumees. In this manner a network of
recurrent motifs emerges and is maintained.

The IMEM conceptual clustering system has been
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PHE

,~’HE
ARG

TRP polar and hydrophobic

defconcept level-l-motif (image 
[TRP,[5.8,5.4,14.6,37]]
[THR,[7,5,1.9,15.0,381]
[polar and hydrophobic,[8.7,3.6,18.4,39]]
[ARG,[5.2,2.9,19.8,401]
[PHE,[6.1 ,-0.7,21.2,41 ]]
[PHE,[9.4,0.5,22.6,42]])

IdistanceAelta]);

aamotif-1

,,.PHE
ARG

TRP polar and hydrophobic

defconcept level-2-motif (image 
[TRP,[5.8,5.4,14.6,37]]
ITHR,[7.5,1.9,15.0,38]]
[polar and hydrophobic,[8.7,3.6,18.4,39]]
[ARG,[5.2,2.9,19.8A0]]
[aamotif- 1, [6.1 .-0.7,21.2,41 ] ]
[PHE,I9.4,0.5,22.6A2]I)

[distance,delta]);

CZ CE2

CD1 ~ ~CG

CA

CD2 defconcept aamotif- 1 (image 
[N.[8.1,0.422.2]]

iC-’Z,[ 10.4,-2.9,18.81])
[bonded,planar]) and PHE;

Figure 1: Two styles of protein moti£ Top: a level-1 motif. Middle: a (multi) level-2 motif. Bottom: one of its
components.
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applied with success to several small molecule datasets
from the Cambridge Structural Database (Allen et
al. 1991), and produces results which compare very
favourably with human and/or other classification
schemes (Conklin el al. 1992). IMEM has also been
applied to a medium-sized dataset of level-1 protein
fragments (results forthcoming).

The S~)/~ interpreter uses a reference-by-meaning se-
mantics. The meaning of an identifier (i.e., a concept
name) is fixed at definition time, and an identifier must
be defined -- occurring on the left hand side of a defini-
tion -- before being used in another concept definition.
Therefore, for multilevel protein motifs, all amino acids
must be defined before any level-2 container motif is
encountered.

Central to this discovery method is the computation
of a common subsumer of two structured objects which
have high similarity. Since similarity is computed by
finding a common subimage, it requires a structure-
preserving mapping between the parts of the two im-
ages. Similarity of multilevel objects is measured, ill
the current system, by inspecting only the relational
structure and not the common characteristics of parts.
Another issue that arises, for multilevel motifs, is that
of generalization or generating a common subsumer for
corresponding level-1 parts. One choice is to generate a
new subsuming level-1 motif whenever necessary. This
can make the learning process tedious since the com-
mon subsumer routine is computationally expensive,
and also many duplicate concepts could be created.
The more natural choice, consistent with the general-
ization method for parts which are not motifs, is to
use the current concept taxonomy to return a more
general concept term. This works for multilevel motifs
because all level-1 structures will have been clustered
(new subsuming concepts created) before any level-2
motif is encountered. Generalization of two parts rela-
tive to the current concept taxonomy is done by finding
the conjunction of all their least upper bounds. The re-
lational conceptual clustering system of Thompson &
Langley (1991) uses a similar generalization method,
although their concept taxonomy is a tree, and not a
more general partial order as in gD£.

Results
A database of 402 overlapping protein heptamer frag-
ments was created from four proteins [Protein Data
Bank codes 4HHB (chain B, 140 fragments), 5PTI (52
fragments), 1BP2 (117 fragments) and 1PCY (93 frag-
ments)]. Taylor’s (1986) domain theory of amino acid
physicochemical properties was coded as background
knowledge in 8Z)£. The 402 heptamer fragments con-
tained a total of 426 amino acids; these were also ex-
tracted from the PDB with their complete atomic 3d
coordinates. The names assigned to the atoms are
the PDB labels (given in PDB fields 14-16 of ATOM
records); this predefined labelling greatly simplifies the
relational matching process for amino acids.

Parts Planarity relation

CE2 CD2 CG CB ap
CE1 CD1 CG CB ap
CD2 CG CB CA -C

CDI CG CB C.k "Jf-C

CG CB CA N -C

CG CB CA C ap

Table 2: The internal planarity relationships of the
rightmost motif of Figure 2.

Level-1 (amino acid) classification
All 426 amino acids were first incorporated into the
initial knowledge base comprising the domain theory
indicated above. We used a low threshold for concept
formation, so that very slight similarities will trigger
the generation of an amino acid motif. The computa-
tion of a common subsumer takes place only between
amino acids of the same type. A total of 96 level-1
amino acid motifs were discovered by our system. Each
amino acid type has its own sub-taxonomy, which can
be stored and, in the future, incrementally refined. For
example, Table 1 illustrates the concept taxonomy for
proline. The first entry in a row is the name of the
motif; concepts appear witb a unique name, and in-
dividuals are at the leaves of the taxonomy. There
are 7 discovered concepts and 21 instances in this sub-
taxonomy. The second entry in a row is the number
of parts in the motif; note that the number of parts
decreases as one climbs the taxonomy.

To illustrate subsumption of amino acid motifs, Fig-
ure 2 displays three discovered phenylalanine motifs,
ordered by subsumption. The motif at the left of the
figure is a planar six-member ring with an attached car-
bon. This motif occurs in 22 out of 23 phenylalanine
amino acids encountered in the training set. The right-
most motif is very specific, having 10 parts in certain
planarity relationships. The internal planarity rela-
tionships of this motif, excluding the planar ring which
is all syn-periplanar, are given in Table 2.

Level-2 (heptamer) classification
The discovered concept taxonomy of amino acids pro-
vides extra background knowledge for protein motif
discovery. All 402 heptamer fragments were incorpo-
rated into this knowledge base. The generalization
method outlined earlier was used.

An example of a discovered multilevel motif is given
in Figure 3. One of its parts is a previously discovered,
specific amino acid proline motif (recall Table 1). The
motif is a strand with two J relationships (abbreviated
as the structural sequence J J). hi the small database
of 402 heptamers, this motif has 6 instances. This is an
interesting discovery, as it illustrates that the structure
and sequence of this particular motif is often associated
with a particular proline rotamer.
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UNIQ-129 3 PRO
UNIQ-73 4 PRO

4HHB-aa5 7 PRO
UNIQ-143 6 PRO

4HHB-aa58 7 PRO
4HHB-aa36 7 PRO
4HHB-aalO0 7 PRO
1BP2-aa14 7 PRO
1BP2-aa18 7 PRO
1BP2-aa68 7 PRO
1PCY-aa86 ? PRO

5PTI-aa2 7 PRO
iBP2-aa37 7 PRO
1BP2-aal10 ? PRO
1PCY-aa36 7 PRO

UNIq-369 4 PRO
4HHB-aa51 7 PRO
UHIq-3?4 5 PRO

UNIQ-1380 6 PRO
1PCY-aa23 ? PRO
4HHB-aa125 ? PRO

UHIQ-I506 6 PRO
IPCY-aa47 ? PRO
4HHB-aa124 7 PRO

5PTI-aa8 ? PRO
5PTI-aa9 7 PRO
5PTI-aa13 7 PRO
IPCY-aaI6 7 PRO

Table h The discovered sub-taxonon,y of proline motifs.

CZ CE2

\

CB

22 instances

CZ CE2

CA

5 instances

CZ CE2

CA 4 instances

C

Figure 2: Examples of discovered level-1 (PHE) motifs.
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Sequence Structure ~ DRMS

1819
1828
1954
2008
2017
2026
2035
2233
2386
2494
2854

X)(X)(UNIQ-4)(1)(UNIQ-9)(h LLLL (2,0) 0.40
s)(pay)(UNIQ-143)(h)(1)(c)(h) JLLL (2,0) 0.64
X)(UNIQ-S43)(UNIQ-138)(h)(c)(h)(h) JZLL (2,0) 0.73
pd)(s)(nay)(vNIq-143)(X)(X)(X) JJLL I2,0} 0.90
h) (UNIQ-4)(h)(s) (spay)(UNIq- JZJJ (2,0) 0.33
hs)(h)(UNIQ-39)(h)(h)(s)(c) LLLL (2,0) 0.87
X)(UNIQ-4)(h)(s)(s)(I)(I) LLLL (2,0) 0.19
X)(h)(psda)(UNIQ- 129)(X)(UNIQ- ZJLL (2,0) 0.81
pay)(s)(X)(X)(s)(UNIQ-113)(X) ’ LLLL (3,1) 0.48
1) (H)(l)(psa)(UNIq-73) ZJJL (2,0) 0.88
X)(X)(h)(h)(X)(X)(UNIQ-4) LLLL (10,2) 0.43

Table 3: Some discovered nmltilevel structure-sequence motifs.

~an
and hbond-donor

small

d hbond-acceptor and hydrophylic

UNIQ_143

amino-acid

Figure 3: An example of a discovered level-2 motif.

Table 3 displays more discovered motifs in a tex-
tual notation. The "sequence" column shows seven el-
ements enclosed by brackets; each element is a conjunc-
tion of property abbreviations, e.g., a "psa" residue is
polar, small, and a hydrogen bond acceptor. X in-
dicates any residue: other capital letters are abbrevi-
ations for specific residues. The "structure" column
shows the structural sequence of the motif. Although
many motifs were discovered, Table 3 displays only
those with certain features. First, they must contain
a discovered anfino acid motif as a component. Sec-
ond, the average similarity of their instances, as mea-
sured by a distance RMS metric, must be less than
1.0 Angstrom. This is done because it does not neces-
sarily follow that motifs, qualitatively similar accord-
ing to the delta relation, are also quantitatively or
"visuMly" similar. We also quantify the relationship
between sequence and structure of the motif. The se-
quence of motif 2854, for example, occurs 12 times in
the small database; 10 times (M+) in the indicated
structure LLLL, and 2 times (M-) in some other struc-

ture. Clearly this is an interesting motif and discovery,
as there is some confidence and support for a sequence-
structure prediction rule. The motif UNIQ-4 is a LEU
motif. The component UNIQ-113 of motif 2386 is a
PHE and is the leftmost motif displayed in Figure 2.
Also interesting is motif 2017, which is subsumed by
the motif of Figure 3.

Discussion
This paper has described and applied a representation
and discovery system for finding spatial regularities
among objects. Protein motifs are represented as mul-
tilevel structured objects, where components can have
an internal structure. This allows a discovery proce-
dure to capture associations between the spatial struc-
ture of a motif, its sequence, and the nested spatial
structure of its parts.

The discovery system can produce motifs for which
there is a near exclusive relationship between sequence
and structure. These motifs might be used for struc-
ture prediction or could be matched directly to an
emerging electron density map. Multilevel motifs add
an extra dimension to this analysis. The parts of a
multilevel motif can be focused on, and they may tell
us where to look for atomic parts in a higher resolution
map.

An issue that has not yet been totally resolved is
how exactly to quantify the "interestingness" of a dis-
covery. Many motifs, varying in specificity, nlay be
produced by our discovery procedure. In this paper,
"good" amino acid motifs are ones that are specific and
recurrent in the database. Similarly, good multilevel
motifs are specific, and their sequences have a prefer-
ential relationship with an associated structure. Cer-
tainly, specific multilevel motifs with many instances
represent interesting patterns, while overly general mo-
tifs might not. However, the value of a particular motif
will often depend on the eventual use of the knowledge
base in general. For motif retrieval purposes, even very
general motifs can play an important role in the index-

Conklin 101



ing of protein fragments.
Finally, although we have only considered level-2

protein fragments -- segments of level-1 amino acid
residues - the scheme can also be applied to higher
level structure. For example, it would be interesting to
see if certain supersecondary (level-3) structures have
preferential residue segment (level-2) motifs. For such
an exercise, it might be necessary to extend S/3Z: to
represent line and volume data, and not only point
data objects.
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