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Abstract

In this paper, we study the application of an
ttMM (hidden Markov model) to the problem
of representing protein sequences by a stochas-
tic motif. A stochastic protein motif represents
the small segments of protein sequences that have
a certain function or structure. The stochastic
motif, represented by an HMM, has conditional
probabilities to deal with the stochastic nature of
the motif. This HMM directly reflects the charac-
teristics of the motif, such as a protein periodical
structure or grouping. In order to obtain the op-
timal HMM, we developed, the "iterative dupli-
cation method’ for HMM topology learning. It
starts from a small fully-connected network and
iterates the network generation and parameter
optimization until it achieves sufficient discrimi-
nation accuracy. Using this method, we obtained
an ttMM for a leucine zipper motif. Compared
to the accuracy of a symbolic pattern represen-
tation with accuracy of 14.8 percent, an tIMM
achieved 79.3 percent in prediction. Addition-
ally, the method can obtain an HMM for various
types of zinc finger motifs, and it might separate
the mixed data. We demonstrated that this ap-
proach is applicable to the validation of the pro-
tein databases; a constructed HMM has indicated
that one protein sequence annotated as "leucine-
zipper like sequence" in the database is quite
different from other leucine-zipper sequences in
terms of likelihood, and we found this discrimi-
nation is plausible.
Keyn, ords: Hidden Markov Model (HMM), mo-
tif extraction, HMM topology learning, iterative
duplication method, database validation

Introduction
Extracting a motif from protein sequences is an im-
portant problem. Motifs, the preserved sites in the
evolution process, are considered to represent the func-
tion or structure of the proteins. This motif extraction
problem increases in importance as many protein se-
quences are revealed, because the rate of sequencing
far exceeds that of understanding the structures.

*RWCP: Real World Computing Partnership

Until now, a symbolic pattern was used to repre-
sent a motif. For example, the pattern of the ieucine
zipper motif, a well-known motif for the DNA bind-
ing proteins, is "L-X(6)-L-X(6)-L-X(6)-L-X(6)-L" 
resenting a repetition of Leucine with any six residues.
One of the issues in motif representation is the ex-
ception handling caused by the variety of anfino acid
sequences. Konagaya(Konagaya &. Kondou 1993) em-
ployed a stochastic decision predicate, which consists
the conjunctive and disjunctive patterns and their
probability parameter to represent the exceptions in
the motif.

However, using a pattern representation can not pro-
duce satisfactory classification accuracy. For example,
the accuracy of leucine zipper motifs is only 14.8 per-
cent. This is because proteins usually have various se-
quences corresponding to different species, even around
motifs. In leucine zipper motifs, the repeated b’s (Leu)
tend to change to other amino acids, such as V (Val),
A (Ala), M (Met). Such variations are considered 
be related to the evolution process of organisms. Tlms,
these variations might be some systematical relation-
ships, i.e., the variations of amino acids at. a residue
relate to the neighbor residues. These systematical
relationships represent biological characteristics. An
IIMM can represent these systematical relationships
or biological characteristics. Therefore, in this paper, a
stochastic motif using an HMM is employed to achieve
high classification accuracy.

It is desirable to extract these biological characteris-
tics from training data only. They must be reflected in
the HMM Iopology. For example, when protein struc-
tures of t raining data are periodical such as helices, it is
expected that the obtained HMM topology is periodi-
cal. When training sequences comes from two different
subgroups or families, it is expected that the obtained
ItMM topology branches in two. For this purpose, gen-
eral IIMMs containing global loops are needed instead
of left-to-right models commonly used in speech recog-
nition. Accordingly, determining the IIMM topology
is one of the problems to solve, because there are lots
of candidate topology in general IIMMs.

One of the methods to determine the HMM topoi-
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Figure 1: Outline of motif extraction

ogy is to train from a large fully-connected IIMM and
delete negligible transitions. However, the HMM re-
sulting from a fidly-connected one may be very com-
plex and difficult, to interpret. Moreover, it. takes quite
a bit training time in order to optimize numerous free
parameters.

Thus, a new method, "the iteralive duplication
methotF, is developed for IIMM learning(Fujiwara &:
Konagaya 1993). The method enables us to obtain
an optimal IIMM topology for the given training se-
quences, as well ,as optimal IIMM parameters for the
network. It starts from a sm~dl fully-connected net-
work and iterates the network generation and parame-
ter optimization. The network generation prunes tran-
sitions and adds a state according to tile previous
topology. This method obtains simpler IIMM topol-
ogy in less time than the one obtained from a fully-
connected model. As a result of this method, for ex-
ample, the accuracy of leuciue zipper motifs is 79.3
percent. It is high when compared with accuracy of
i’1.8 percent when using the symbolic representation.
Figure 1 shows the outline of this motif extraction.

The validation of protein databases using IIMMs is
also discussed. One of the It MMs we have constructed
has indicated that a protein sequence annotated as
"leucine-zipper like" in the database is quite different
from other leucine zipper sequences in terms of like-
lihood, and we found this annotation is questionable.
Additionally, our method also revealed that some se-
quences without motif annotations shouht be discrim-
inated as leucine zipper motifs.

This paper is organized as followitlgs. First, we ex-
plain IIMMs and related works on I-IMMs. q’hen, we
explain the :’iterutive duplication methotF for IIMM
learning and the predicting method. After that, we
give the experimental results of two motif extraclions
and discuss examples of validating the database. Fi-
nally, we discuss the ite-ratwe duplication method in
more detail.
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HMMs

Overview

An HMM is a nondeterlninistic finite state automaton
that represents a Maxkov process. IIMMs are com-
monly used in speech recognition(Nakagawa 1988), and
recently have been applied to protein structure gram-
mar estimation(Asai, Itayamizu, & Onizuka 1993) and
protein modeling(Haussler ef al. 1993), (Baldi et al.
1994).

An IIMM is characterized by a network with a fi-
nite number of parameters and slates (see Figure 2).
Parameters represent initial probabilities, transition
probabilities, and observation probabilities. At dis-
crete instants of time, the process is assumed to be in
one state and an observation (or output symbol) is gen-
erated by the observation probability corresponding to
the current state. This state then changes depending
upon its transition probability.

Tran.prob.

I

Init. prob. =1.0 ON.prob. hilt. prob.=O.O

Figure 2: An example of HMM (lefl,-to-right)

A special type of IIMM, called a left-to-right model
it1 Figure 2, is commonly used in the case of speech
recognition. In this model, states are linearly con-
nected with self-loop transitions; a state visited once
is never revisited at a later time. This is because there
is little requirement to de~l with periodic structures in
speech recognition. IIowever, such periodic structures
are rat]mr commott in amino acid sequences and have
great significance for constructing a geometric slruc-
ture. Therefore, we adopt a general IIMM containing
global loops.

The correspondence between motifs and HMMs is
the following. The training set is the portions of amino
acid sequences that have the same structure or func-
tion. An IIMM is expected to model the training pro-
reins in terms of discrimination. The alphabet used
for the output symbols corresponds to 20 amino acids.
The test sequence is the portion of an amino acid se-
quence which might have the target st ructure or func-
tion. The result is the likelihood of the test sequence
calculated by I racing all possible I ransit ion paths that
observe the lest sequence in the IIMM.

To use a trained IIMM as a classifier, we first define
a Ihreshohl value according to the probabilities gen-
erating positive examples. The probability generated
by a given sequence is compared against the threshold
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Table 1: Zinc Finger in Prosit.e R25

C2H2 836 48
C4 315 8471
C3lt 33 152
C3tIC4 30 0
G ATA 30 0
C8C5C3H 8 5
PA RP 8 0
Others 65 -

Consensus patterns in Prosite

C-x(2,4)-C-x(12)-H-x(3,5)-H
C-x(2,7)-C-x(0,~s)-C-x(1,4)-c
C-x(2)-C-x(d)-II-x(4)-C or C-x(2)-C-x(12,13)-If-x(4)-C
C-x(2)-C-x(O,d2)-C-x-tI-x-[LIVM FYJ-C-x(2)-C-[LIVMA -C-x(0,d2)-C-x(2)-C
C-x-’N-C-x(4)-T-x-L-W- R- R-x(3)-G-x(3)-C-N-A-C
C-x(S)-C-x(5)-C-x(3)-tt
c K-x-C-x-[QE]-x(3)- K-x( 3)- R-x(16,18)-W-[H Y]-H-x(2)-C

TotaI 1{ 1327 18676 I

value, and the sequences producing larger values are
classified as the motif. One of the great advantages of
using HMMs is that we can quantify similarity between
the test sequence and the training set by comparing
their likelihood on the HMM.

Related Works
Haussler et.all(Haussler et al. 1993) use HMMs
for stochastical modeling and multiple alignment of
globins. Baldi et.al.(Baldi el al. 1994), (Baldi & Chau-
vin 1994) use IIMMs for globins, immunoglobins and
kinases. Since they chose one of the left-to-right model,
they cannot treat global loops except self-loops. Asai
et.all(Asai, Hayamizu, & Onizuka 1993) use HMMs
for secondary structure prediction. They propose a
method to construct a large HMM from smaller HMMs
using a protein structure grammar. However, the
grammar depends on human knowledge at the cur-
rent stage. As for automatic learning of HMM net-
work topology, Takanfi(Takami & Sagayama 1991) pro-
poses a state splitting method for speech recognition.
It starts from a small IIMM and increases the number
of states by choosing better state splitting; although
the model is restricted to left-to-right models. Our ap-
proach is more general and can deal with any network
topology.

Motif Extraction using HMM
Training Data and Test Data
For the purpose of extracting a leucine zipper motif,
112 positive examples, which are the collection of sub-
sequences annotated as leucine zipper (like), were cho-
sen from the Swiss Protein database Release 22. Also,
112 negative examples were randomly selected, which
satisfy the Prosite (motif database) pattern "L-X(6)-
L-X(6)-L-X(6)-L-X(6)-L", a repetition of leucine 
any six residues(Aitken 1990). Naturally, those nega-
tive examples are similar to positive examples in terms
of symbolic representation. Randomly selected, 80 per-
cent of the positive subsequences are used for training,
and the remaining positive and all negative examples
are used for prediction performance evaluation.

Additionally, a zinc finger motif, describing a nucleic
acid-binding protein structure, was also extracted with
our method. There are 1327 subsequences annotated
as zinc fingers in the Swiss Protein database Release
25. The training data were chosen to be 90 percent of
these positive data. The test data is the rest of the
positive data and the 8676 negative data containing
the motif pattern (See Table 1).

Learning Algorithm

input: (protein) sequences and
a small fully-connected tlMM.

initialization:
opthnize parameter for the HMM.
choose the best HMM on likelihood
as a seed.

repeat
network generation:

delete negligible transitions.
copy the most connected state.

parameter optimization:
optimize parameters for the new topology.
choose the best IIMM on likelihood.

until sufficient accuracy is obtained.
output: the resulting IIMM.

Figure 3: Iterative Duplication Method

In order to obtain the optimal IIMM topology for
the given training sequences, as1 "iterative duplication
melhod(Fujiwara & Konagaya 1993)" is used. This
method also produces the optimal [IMM parameters
for the network. The method includes transition net-
work generation and parameter optimization. The
method is summarized in Figure 3. It starts from a
small fully-connected network. In order to avoid con-
verging in the local maximum, many initial IIMMs
with random parameters are prepared. The Baum-
Welch algorithm is used for parameter optimization.
Network generation is performed by copying one node
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Figure 4: A step of learn-
ing. (Left) A general rule
for a duplication. (R.ight)
An example of the step from
six to seven. (a) The re-
suiting ]IMM with 6 states
after parameter optimization
and negligible transition dele-
tion. (b) A new network 
a hatched state copy. (c) 
obtained HMM with 7 states
after parameter optituization
and negligible transition dele-
tion.

selected from tile current network. The method iter-
ates the network generation and parameter optirniza-
Lion phases until sufficient discrimination accuracy is
obtained.

The details of network generation follow. First, we
delete the transitions with negligible transitional prob-
ability, that is less than t = max(t1, r), where ea is 
smoothing value and r is a convergence radius. Next,
for each state S~ except the final state, we count the
number of incoming and outgoing transitions of the
state, that is the number of transitions from the state
~ plus that of transitions to the state Si. Then we
select the state with the largest number (denoted as
S~) and make a copy of it (denoted as Sn,,o) so that
S,,~.,, has the same transition with S,. If the state S~
has a self-loop, S,~,,o has a self-loop and the transitions
from S, to S,~e,o and from ~S~,~, to S~ (see Figure 4).

Tlle purpose of deleting the negligible trmlsitions is
to restrict, the network topology space and eventually
to reduce the training cost for parameter optimization.
The reason to split the most connected node is that it
miglat represent overlapping of independent states. In
this case, the network topology may become simpler
by splitting Ihe states.

Figure ,1 shows an example of such a case1. 111 Figure
4 (a), the most connected state is a hatched state which
outputs E (Glu) with probability 0.26, Q (Gin) 
probability 0.15 and so o11. By splitting the state into
two states, we will obtain a new network which has

1The transitions unrelated to our explanation are omit-
ted in Figure 4.

additional transitions represented by bold lines (see
Figure 4 (b)). However, the network can be become
simpler, if the most transitions become negligible after
parameter optimization (see Figure 4 (c)).

hi each step, this algorithm products an optimal
IIMM for the training data with each number of states.
Selecting the IIMM with highest prediction accuracy,
we oblain the optimal number of states for the given
data.

Predicting Method

Prediction is performed by comparing likelihood, that
is the probability of generating a given sequence and
a threshold value obtained from training data. If a
sequence achieves higher likelihood than the threshold
value, then it is predicted to have the target mot if, that
is, the same structure and/or function.

111 the current implementation, the threshold value
is represented by the worst observed probability in the
training set will, the same length as a given sequence.
Such threshold dependency to lengtl, is regarded as
based on the fact that longer sequences tend to have
worse observation probabilities. More careful study is
needed to discuss more meaningful thresholds. One
solution would be to use discrimination analysis with
data of various lengths (see Figure 5). This discriulina-
Lion analysis is used for the zinc finger motif analysis.

The total prediction performance is measured by the
following equation,

i (z+ Z-
(accuracy)=l.O-~ x N+ +~),
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Figure 5: Discrimination Analysis

where N+ is the number of positive examples, N- is
the number of negative examples and E+ is the number
of errors occurred in the positive examples, that is,
the number of the positive data categorizing as the
negative by the IIMM. E- is the number of negative
errors.

Evaluation

Experimental Results
Table 2 shows the result of cross-validation for leucine
zipper motifs. Positive data is divided into 5 groups
and tested with both negative and positive data. Tile
average prediction accuracy is 99.1 percent for train-
ing data and 79.3 percent for test. data; 81.3 percent for
positive data and 77.3 percent, for negative data. Note
that in case of the symbolic motif representation as in
Prosite, the average prediction accuracy for test data
is just. 14.8 percent; 29.5 percent for the positive data
and 0.0 percent for the negative data. The low pre-
diction performance of symbolic representation mainly
results from the biasing in the negative test set which
is chosen from the sequences sinfilar to the positive set.
It is apparent tlMMs are more powerful than symbolic
representation in terms of prediction performance.

Table 2: Prediction accuracy (leucine zipper)

II Ipos.data II pos.data neg.data average

testO 98.9% 81.8% 83.0% 82.4%
testl 100.0% 91.3’% 65.2% 78.2oW
test2 98.9% 68.2% 83.9% 76.1%
test3 98.9% 87.0% 78.6% 82.8%
test4 98.9% 77.3% 75.9% 76.6%

I Ave. II 99.1% II 81-3%1 77.3% 79.3%

Accuracy
(%)
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75 ~ ¯ t-

70
t

65 ,~ /

[

neg.dam/\ /’~q
,,-- ,../ ’4

total ,,

oos.data k

10 20 30
The number of states

Figure 6: Prediction performance (leucine zipper)
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Figure 7: (Left) Biological structure of a leucine zipper
motif. (Right)The helical wheel.

Figure 6 shows the test. data prediction performance
with respect to the number of states for the leucine
zipper motifs. It shows that as the number of states
increases, the prediction performance for negative data
increases, but for positive data, it decreases. This is
natural since the expressive power of HMMs increases
as the number of states, and may over-fit the training
data. Criterion such as the MDL principle may be
helpful for avoiding the over-fitting but further study is
required. In the current implementation, HMMs with
twelve states are chosen, because we regard positive
accuracy to be more important than negative.

Figure 8 shows an IIMM for leucine zipper motifs
obtained using the ilerative dnplication method. This
HMM contains global loops corresponding to the "heli-
cal structure" in the leucine zipper motif. Such helical
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Figure 10: Likelihood (leucine zipper)

structure shown in the figure 7 is caused by the exis-
tence of seven amino acids per each two periods. This
is because a pair of aligned leucines forms a zipper-
like structure. On the sight of Figure 7, this charac-
teristic can be seen in the circles, the helices viewed
from above. These circles show that there are many
hydrophobic amino acids on one side around com-
bined leucines and many hydrophilie amino acids on
the other side. This tendency of hydrophilic and hy-
drophobic amino acids is one of the characteristics of
the helices, and is called a helical wheel. As compared
with lhis, in the figure 8, each circle at the right cor-
responding to each IIMM pass h~s a similar charac-
teristic to helical wheel. The characters on the circles
are the most frequently observed amino acid in each
state. In order to see the helical wheel, hydrophobic

amino acids, such as l (lie), V (Val), L (Leu), F 
C (Cys) are described by bold letters in the following.
On the other hand, hydrophilic amino acids, such as R
(Arg), K (Lys), N (Asn), D (Asp), Q (Gin), 
(Ilk) are described by pale letters. Another M (Met),
A (Ala), G (Gly), T (Thr), S (Ser), W (Trp), 
P (Pro) are described by broken letters. These circles
show three kinds of helical wheels. Therefore, the it-
eralive duplication method automatically extracted the
helical structures and characteristics from the positive
data.

A similar result can be obtained when using a large
fully-connected IIMM. llowever, it. takes much longer
time t.han our method (see Figure 9, 10).

Table 3 shows the result of cross-validation for zinc
finger motifs. Positive data is divided into 10 groups
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Figure 12: An ItMM (zinc finger)

Table 3: Prediction accuracy (zinc finger)

II trainin$
[ pos.data

test0 93_4%
testl 93.7%
test2 93.1%
test3 92.3%
test4 92.6%
test5 91:5~
test.8 93.8%
test7 93.1%
test8 92.3%
tesi,9 94.1%

yAve. I[ 93.o%

pos.data

83.2%
95.5%
90.2%
93.3%
88.8%
83.6%
91.8%
89.4%

91.,6%
II 89.4%

test
I neg.data

87.8%
80.8%
78.1%
80.9%
77.5%
80.1%
81.9%
81.9%
84.2%
84.2%

’81.7%

I average
85.5%
88.1%
84.2%
87.1%
83.2%
81.8%
86.8%
85.6%
85.3%
87.9%

85.6%

and tested with both negative and positive data¯ Fig-
ure 11 shows the prediction performaace with respect
to the number of states for the zinc finger motifs. The
average prediction accuracy is 93.0 percent for train-
ing data and 85.6 percent for test data; 89.4 percent
for positive data and 81.7 percent for negative data.
Using the symbolic representation described in Table
1, the accuracy is 47.5 percent (95¯0 percent for pos-
itive data and 0.0 percent for negative data). These
leucine zipper and zinc finger motifs are represented
by ambiguous symbolic patterns, i.e., they are weak
motifs.

Figure 12 is aa HMM for a zinc finger motif. The
biological structure of the zinc finger is shown in figure
13. Mixed data, e.g., C2H2 and C4 type, are used for
training; however these mixed data might be separated

Accuracy (%)
100

Training

v

t~est :Pos.

f
[’e.st: Neg.

90

80

70

60

5C
10 20 30 40 50

The number of states

Figure 11: Prediction performance (zinc finger)

into several passes on the basis of their types by our
method.

The Prosite gives more details, i.e., "generally, but
not always, the residue in position +4 after the second
cysteine is an aromatic residue, and that in position
+10 is a leuciue" in case of C2It2 type. Our method
reveals these tendencies. Moreover, it. reveals the ten-
dencies in the other position (See in Figure 12).

Validation of Database

Since the IIMM gives a quaatitative value with re-
spect to the similarity of a sequence to the traitfing
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Figure 13: Biological structure (zinc finger)

sequences, it is also applicable for the database valida-
tion. For example, in case of a leucine zipper motif,
the likelihood of positive and negative examples with
length 29 is shown in Figure 14. As shown iu the fig-
ure, one data (KU7_IIUMAN) which has an annotation
"leueine zipper moliflike" is far from the other positive
exantples. Therefore, tiffs annotal ion of KU7_I1UMAN
is questionable. According t.o the original paper men-
tioning KU7_IIUMAN, the authors stated Ihat they
are not fully confident KU7_HUMAN is the leucine zip-
per motif. Note that KU7_I]UMAN is included in the
training data.

Motif
Po~iblity High-4- -~. Low

Positive ~,~,,~ ~.~.~ ................~ .............Data ~ ...... KU7_ ff3MAN

,~-,,.,.,,-,,.,~ ~ ~’,~ $~,,~ ~,-- .....
Negative~. ~.-&.,~.-’,.,~ ,~ ,,~
Data ~:’~<~,~,~.’:’:’~ ~<’,g~:¢ ~.,~<’~ ...............~ ~, M5 S’I RPYMOU 

~x.~,, ~.N~ ~,~,,,,~,,N~ ~,~.N\,’~.,. MYC ~VlM(~"~ ~ ~

-~.,~,- ~g~, ~ ~ "’’MYS ~ ~ICDI

~,N\",%\’~,\’~"\""\\’~""~ ~,~""’~’~"\’~ ’""~~-~,-~-,~,\-.~\~"’~"’~""""~,,s,~,~,~.~,"’"""" ..... RGI2 _ ~ ACTI.

0.00 -10.00 -20.00 -40.00 -50.00
Threshold value Logarithm Likelihood (Bit)

Figure 14: Each likelihood (leucine zipper)

At, the same time, the IIMM reveals that MYC_
AVIMC has a subsequence that achieves high like-
lihood, tlowever, it has no annotation. MYCs
in other species, MYC_FELCA, MYC_IIUMAN,
MYC_MOUSE have annotations about "leucine zipper
motif". There are five such data with no annotations
for motifs. These indistinct data were also not omitted
in calculating accuracy.

The questionable cases are shown in Figure 15. The
circles show helices observed from above. Data are de-
scribed from the inside out. ATF6_IIUMA N is one of

KU7_HUMAN
L

N
ATF6 HUMAN MYC_AVIMC

V L

Figure 15: Art example of database Validat.ion

the positive data. Compared to this, KUT_HUMAN
breaks the helical wheel with respect to the distribu-
tion tendency of hydrophilic and hydrophobic anaino
acids. MYC_AVIMC not annotated motif has a typi-
cal leucine zipper motif, aligned leucines and ll~e helical
wheel.

These results show that IIMMs have good potential
for the database validation.

Discussion
In order to represent a motif, an HMM has some

advantages over a symbolic pat.tern. It deals with the
stochastic nature of the motif. For example, a leucine
zipper motif forms a helical structure, a helix, char-
acterized "helical wheel" that tends to partition hy-
drophilic and hydrophobie residues. This tendency
is difficult to represent accurately by a symbolic pat-
tern, so the symbolic pattern "L-X(6)-L-X(6)-L-X(6)-
I,-X(6)-I," is far from being a specific pattern. On
the other hand, the IIMM represents the tendency,
enabling us to obtain high accuracy in prediction.
Moreover, the IIMM represents the relationship anaong
amino acids. For example, figure 8 in the previous sec-
tion shows that if G (Gly)is next to L (Leu), the anaino
acid next to G tends to be A (Ala), Q (Glu) or K (Lys).

The iteralive duplication method seems to produce
the optimal IIMM topology using only training data.
This method gradually grows the IIMM topology con-
taining global loops.

The method initially chooses a smM1 I:IMM topology
for training data after parameter optintization and neg-
ligible transition deletion. In this topology, each state
might conlain the union of independent characteristics,
e.g., output probabilities and state connections, since
the nun~ber of st ates is insufficient.

Then, the method tries to find an overlapping state
for dividing its characteristics. The most connected
state is selected for division, because this state has
maa~y transitions from or to various states. In the cur-
rent implementation, we randomly select, one of the
most connected states. Some selection criteria may be
studied in the future.
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Figure 16: IIMM topology growth

Copying a state might grow tile IIMM topology.
This is clear after parameter optimization at the next
step (see Figure 16). When two branches are needed
at the state, the IIMM grows in the vertical direction.
On the other hand, when it is necessary to lengthen
at a state, it grows in the horizontal direction. More-
over, it grows more complex structure, such as right-
to-left transitions, or skipping transitions over states,
if needed.

In each step, trained parameters might be used as
the next initial parameters. However, these parame-
ters tend to lead a local optimal topology, because the
Baum-Welch algorithm converges to tile local maxi-
mum likelihood. Moreover, tiffs iterative method ex-
pands the error. Therefore, random initial parameters
are used in our method. Stochastic search algorithm
such as a genetic algorithm, would be applicable in
stead of random search.

Conclusion
An IIMM is capable of representing a stochastic mo-
tif well. According to the experience of leucine zipper
motif extraction, the IIMM shows higher discrimina-
tion performance than symbolic motif representation.
The HMM is also useful for the validation of anno-
tated comments in amino acid sequence database. In
fact, one ambiguous entry was detected by the gen-
erated IIMM. Additionally, some data is found that
they omit annotations of leucine zipper motifs. As
for the learning performance, the iterative duplication
method, increasing the number of states step by step,
produces the optimal HMM containing global loops
from the training data only. It greatly reduces conver-
gence speed compared to Baum-Welch algorithm for
fully connected IIMMs.
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